Dynamical Black Holes & Expanding Plasmas

Veroníka Hubeny

Durham University Fifth Crete Regional Meeting on String Theory, July 3, 2009

based on work w/ P. Figueras, M. Rangamani, & S. Ross (arXiv:0902.4696)

OUTLINE

Motivation & Background
Conformal Soliton flow
Boost-invariant (Bjorken) flow
Open issues: entropy dual?

Motivation

Tíme-dependence in AdS/CFT

- Fluid/Gravity correspondence far from (local) equilibrium
- Holographic description of entropy in dynamical setting

Fluid/gravity correspondence

- Long-wavelength dynamics of interacting QFT (fluid dynamics) = gravitational dynamics of asymp. AdS black hole [Bhattacharyya, VH, Minwalla, Rangamani]
- If geometry settles down, ∃ regular event horízon; & íts area ~> entropy current ín CFT
 [Bhattacharyya, VH, Loganayagam, Mandal, Mínwalla, Moríta, Rangamaní, Reall]
- What if the geometry does not settle down?

OUTLINE

Motivation & Background
 Conformal Soliton flow (=`CS)

- CS construction & geometry
- CS event horizon
- CS apparent horizon
- Boost-ínvariant (Bjorken) flow
 Open íssues: entropy dual?

Conformal Soliton flow

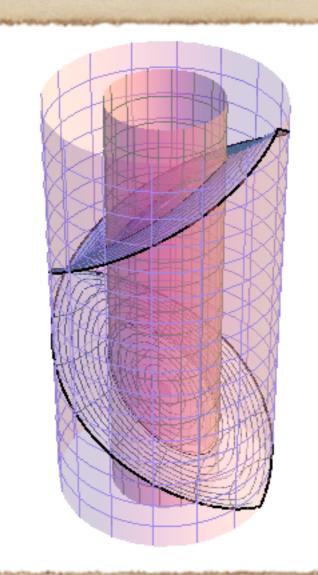
- CS geometry = 'Poincare patch' of Schw-AdS
 black hole
 [Friess, Gubser, Michalogiorgakis, Pufu]
- e.g. in 3D, constructed by applying the coord.
 transf. (global AdS → Poincare AdS)
 - $ds^{2} = -(r^{2}+1) d\tau^{2} + \frac{dr^{2}}{r^{2}+1} + r^{2} d\varphi^{2} \qquad \rightsquigarrow \qquad ds^{2} = \frac{-dt^{2}+dz^{2}+dx^{2}}{z^{2}}$
 - to BTZ: $ds^2 = -(r^2 r_+^2) d\tau^2 + \frac{dr^2}{r^2 r_+^2} + r^2 d\varphi^2$
- ▶ bulk coord transf → conformal transf. on bdy
- resultant metric $g_{\mu\nu}(t,x,z)$ looks dynamical.

Conformal Soliton geometry

 Black hole enters through past Poincare edge

and leaves through future
 Poíncare edge

 but geometry is timereversal invariant.



Conformal Soliton on bdy

Static Schwarzschild-AdS black hole corresponds a static ideal fluid in the bdy CFT;
whereas the CS flow describes dynamically contracting & expanding plasma.

Ideal fluid, no entropy production

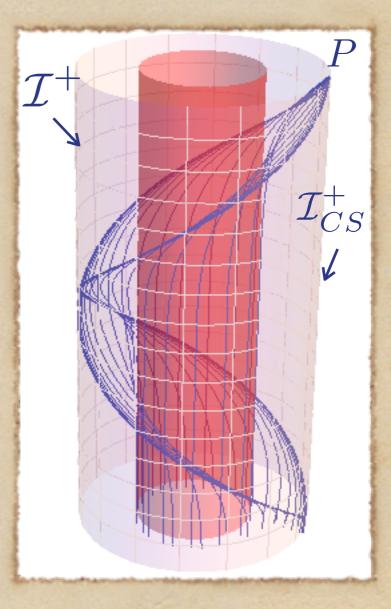
 Total entropy is invariant under conformal transformation (and given by the area of the event horizon of the BH in global coordinates)

CS event horizon

• Recall: event horizon \mathcal{H}^+ is defined as the boundary of the past of the future null infinity, $\mathcal{H}^+ \equiv \partial I^-[\mathcal{I}^+]$ hence it is generated by null geodesics. • For the CS spacetime, \mathcal{I}_{CS}^+ is a subset of \mathcal{I}^+ . • Hence the CS event horizon \mathcal{H}_{CS}^+ does NOT coincide with the global event horizon \mathcal{H}^+ . • It is easy to find \mathcal{H}_{CS}^+ explicitly...

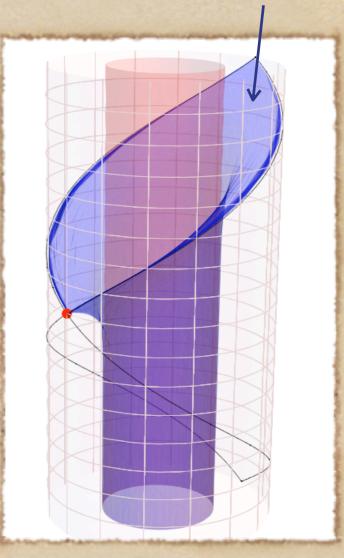
CS event horizon

 $\mathcal{H}_{CS}^+ \equiv I^-[\mathcal{I}_{CS}^+] = I^-[P]$ generated by null geodesics ending at P details



CS event horizon

- *H*⁺_{CS} ≡ *I*⁻[*I*⁺_{CS}] = *I*⁻[*P*]
 generated by null geodesics ending at *P*
- cut off at curve of caustics at $\varphi = \pi$

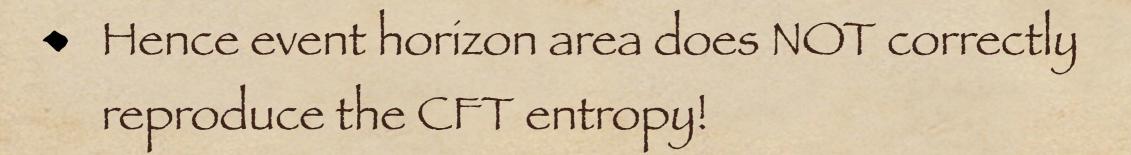


Has

Note: \mathcal{H}_{CS}^+ interpolates between global event horizon at early times and Poincare horizon at late times.

Area of CS event horizon

CS event horizon \$\mathcal{H}_{CS}^+\$ grows in time.
\$\mathcal{H}_{CS}^+\$ touches the boundary at \$t = 0\$.
Proper area at constant Poincare time slice diverges at \$t = 0\$.



details

Apparent horizon

- Recall: given a foliation of a spacetime, a trapped surface S is a closed surface with negative divergence θ for both outgoing and ingoing null congruence normal to S.
- The apparent horizon is defined as the boundary of the trapped surfaces, or outermost marginally trapped surface.
- We will consider this as co-dim. I tube evolving in time
- Technically speaking, this tube is called isolated horizon if it is null, and dynamical horizon if spacelike.

Foliation-dependence of AH

- In general dynamical spacetime admitting trapped surfaces, the location of apparent horizon depends on the choice of foliations.
- On the other hand, if the spacetime admits a Killing horizon, then this Killing horizon is an apparent horizon for any foliation which contains full slices of the horizon. Proof:
 - \bullet Null normals to any cross-sectional slice of the horizon ${\cal S}$ coincide with horizon generators.
 - Expansion vanishes $\rightsquigarrow S$ is marginally trapped surface
 - Since no trapped surfaces outside event horizon, S is the outer-most marginally trapped surface \implies apparent horizon.

CS apparent horizon

CS geometry admits a Killing horizon: requisite Killing field is simply ([∂]/_{∂τ})^a with τ = global time (hence same as global Schw-AdS event horizon)
 ⇒ for any foliation this Killing horizon at r = r₊ is an apparent horizon

 Hence CS apparent horizon has area which stays constant in time, and does correctly reproduce CFT entropy.

Summary for CS geometry

- Poincare patch of Schw-AdS: looks highly dynamical (even though secretly static).
- Event horizon of CS does not coincide with global event horizon, and its area diverges at finite time.
- Apparent horizon of CS does coincide with global event horizon, and has constant area.

OUTLINE

Motivation & Background
Conformal Soliton flow (=`CS)
Boost-invariant (Bjorken) flow (=`BF')
Open issues: entropy dual?

Bjorken flow geometry Proposed to describe QGP at RHIC [Bjorken] fluid on \mathbb{R}^4 $ds^{2} = -d\tau^{2} + \tau^{2} dy^{2} + dx_{\perp}^{2}$ Boost invariance along collision direction all physical quantities depend only on τ . Exact dual geometry not known; but can expand around late proper times (metric functions of τ & radial coord r) [Janik & Peschanski] Describes a dynamically receding black hole in bulk, whose temperature $T \sim \tau^{-1/3}$

Horizons in BF spacetime

- Apparent horízon (for constant folíatíon)
 found previously. [Kínoshíta, Mukohyama, Nakamura, Oda]
- Event horizon can be obtained by analysing radial null geodesics (find the outer-most one which reaches \mathcal{I}^+ at late time $\tau \to \infty$)
- This is carried out by systematic expansion: $r_{+}^{(2)}(\tau) = \tau^{-\frac{1}{3}} - \frac{1}{2}\tau^{-1} + \frac{12 + 3\pi - 4\ln 2}{72}\tau^{-\frac{5}{3}} + \mathcal{O}(\tau^{-7/3})$

Horizons in BF spacetime

Domain where the expansion is to be trusted

Event horizon at second order

Apparent horizon at second order

5

...

Apparent horizon at zeroth order

Event horizon at first order

Apparent horizon at first order

Event horizon at zeroth order

 $r \tau^{1/3}$

0

0

 $\frac{1}{10}\tau$

Summary for BF geometry

At 2nd order, EH lies (just) outside AH
metric is regular everywhere on & outside EH
Curiosity @ Oth order metric: AH is outside EH (But does not solve Einstein eqns at higher orders and violates energy conditions.)

OUTLINE

Motivation & Background
Conformal Soliton flow (=`CS)
Boost-invariant (Bjorken) flow (=`BF')
Summary & open issues: entropy dual?

Dual of CFT entropy?

• We've seen:

• in original fluid/gravity framework, and for the BF geom, CFT entropy is given by area of EH \approx AH

• in CS geom, entropy given by area of AH \neq EH CFT entropy is NOT always reproduced by EH area.

 In retrospect, EH is too teleological to give entropy (since S is defined indep. of future evolution)
 Natural guess: entropy given by AH area ??

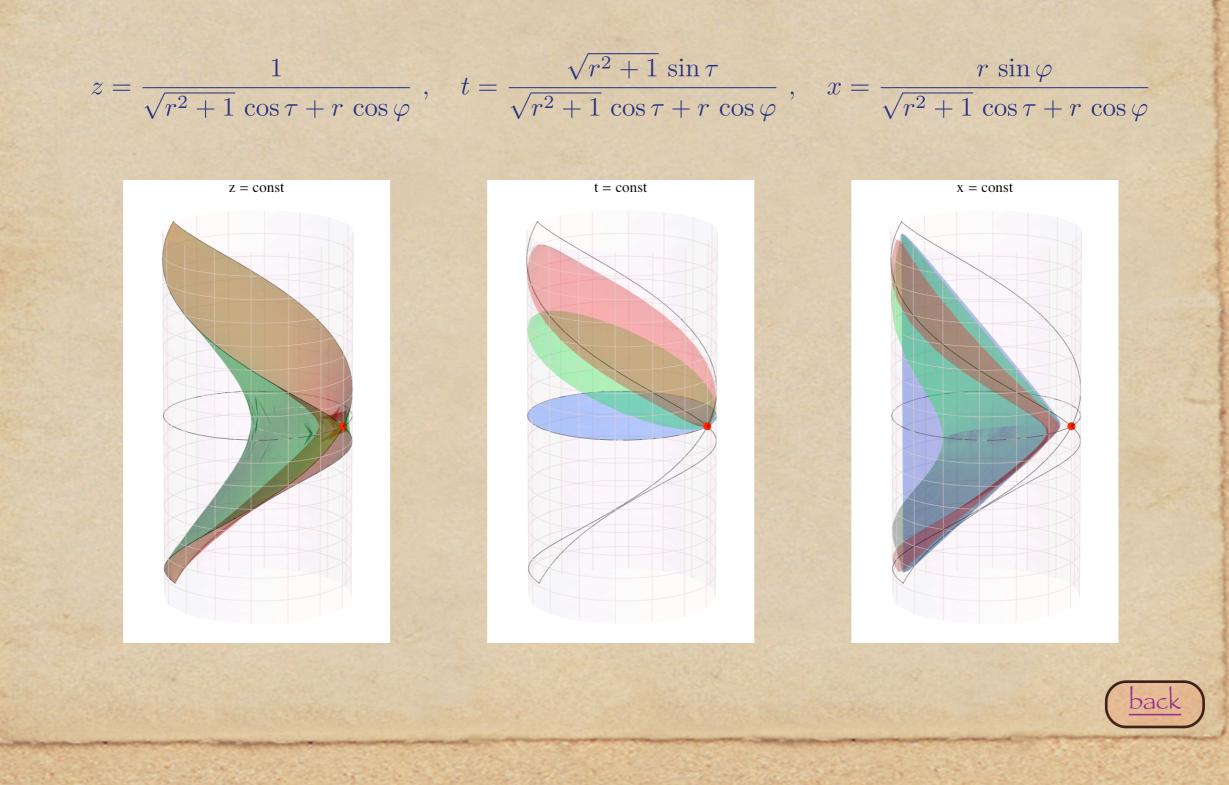
Dual of CFT entropy?

- BUT: this cannot hold universally!
 - AH is not always well-defined: it can jump discontinuously
 - AH is foliation-dependent for general dynamical backgrounds
- Possible resolution: entropy is well-defined only when temporal evolution is sufficiently slow.
 - Note: contrast with entanglement entropy...
- Under such conditions AH evolves smoothly.

Dual of CFT entropy?

- BUT: there is still a problem with foliation dep .:
 - Consider collapsed star in AdS which settles down at late times.
 - Naively: CFT entropy @ late times given by late time EH area.
 - BUT: 3 bulk foliations admitting no trapped surfaces even at arbitrarily late times!
- Other possible resolutions:
 - CFT prescribes a natural/preferred foliation (but no real evidence)
 - Only in static (equilibrium) configurations does the bulk dual of CFT entropy correspond to a geometrical object in the bulk.

Coordinate tranformation



CS event horizon - details

• geodesic equations: $\dot{r}^2 = 1 - \ell^2 + \frac{\ell^2 r_+^2}{r^2} , \qquad \dot{\tau} = \frac{1}{r^2 - r_+^2} , \qquad \dot{\varphi} = \frac{\ell}{r^2}$ • surface of event horizon \mathcal{H}^+_{CS} is parameterized by: $r(\lambda,\ell)^2 = (1-\ell^2) \lambda^2 - \frac{\ell^2 r_+^2}{1-\ell^2}$ $\tau(\lambda, \ell) = \pi - \frac{1}{r_{+}} \operatorname{arccoth}\left(\frac{1-\ell^2}{r_{+}}\lambda\right)$ $\varphi(\lambda, \ell) = -\frac{1}{r_+}\operatorname{arccoth}\left(\frac{1-\ell^2}{\ell r_+}\lambda\right)$ induced metric on horizon:

$$ds_{ind}^2 = \frac{d\ell^2}{(1-\ell^2)^2}$$

bac

event horizon area - details

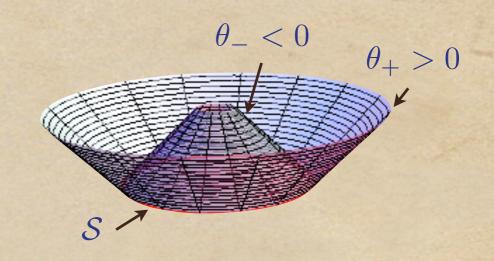
• CS event horizon area in terms of ang.mom. $\mathcal{A} = 2 \int^{\ell_{\max}} \frac{d\ell}{1-\ell} = 2 \operatorname{arctanh} \ell_{\Box} \square$ • ℓ_{max} is determined by position of caustics $\ell_{\max} = \frac{r \sinh(\pi r_{+})}{\sqrt{r_{+}^2 + r^2 \sinh^2(\pi r_{+})}}$ • Area diverges when horizon touches bdy $r \to \infty$ $\mathcal{A} = 2 \operatorname{arctanh} \left(\frac{r \sinh(\pi r_{+})}{\sqrt{r_{+}^2 + r^2 \sinh^2(\pi r_{+})}} \right)$

Trapped surface

For a closed surface S the divergence θ_± of outgoing / ingoing null congruence is defined as the fractional change in area along wavefronts of outgoing /ingoing null geodesics emanating perpendicularly to S:

For area A along 'wavefronts' at constant λ , expansion θ is given by

$$\theta = \frac{1}{A} \frac{dA}{d\lambda}$$



• Trapped surface has both $\theta_{-} < 0$ and $\theta_{+} < 0$.

