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Motivation

A system at a Lifshitz-like fixed point labeled by the exponent z
is characterized by an anisotropic scaling symmetry, i.e.
different space-time directions scale differently.

Example: Free scalar field theory at z = 2 in 4-dim:
∫

dt d3x
(

1
2
(∂tφ)2 −

1
2

(∂2
xφ)2

)

Here, under the scaling x → λx , t scales as t → λ2t .

An immediate observation is that such theories violate Lorentz
invariance. So why should we be interested?
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Motivation

Field theory − Particle Physics

New examples of ultraviolet complete field theories; 4-fermi
theory in 4-dims at the z = 3 fixed point provides ultraviolet
completion of the familiar Lorentz-invariant (low-energy
effective) 4-fermi field theories, like the NJL model.

In this model, fermion mass is generated dynamically and
a composite scalar field arises as a collective excitation of
fermions around the broken symmetry vacuum. Such a
scenario raises the possibility of eliminating the Higgs field
and the associated hierarchy problem.

Of course, the main issue then is to ensure that a
phenomenologically viable Lorentz invariance emerges at
low energies.......
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Motivation

String Theory

2-dim string theory has a nonperturbative formulation in
terms of a z = 2 system of fermions!

In recent studies, examples of flows between fixed-points
with different values of z have been constructed in string
theory:

Kachru, Liu and Mulligan, arXiv:0808.1725 - example of
z = 2 theory at the boundary flowing to z = 1 theory (in the
dual geometry) in the IR bulk.

Azeyanagi, Li and Takayanagi, arXiv:0905.0688 - example
of a z = 1 theory at the UV boundary flowing to an
anisotropic scale invariant theory in the IR bulk. These are
constructions in Type IIB theory.
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Motivation

Condensed Matter Physics

Many strongly correlated fermion systems exhibit Lifshitz type
multi-critical points.

Examples:

space-like anisotropic fixed points appear in realistic
magnetic substances, e.g. MnP. These substances are
modeled by an axial next-to-nearest-neighbour Ising
model. A competition between the ferromagnetic
nearest-neighbour and antiferromagnetic
next-to-nearest-neighbour interactions ( along a single
lattice axis) produces a modulated phase, in addition to the
usual ferromagnetic and paramagnetic ones.
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Motivation

quantum dimer models, e.g. Rokhsar-Kivelson model,
which is believed to be in the universality class of the z = 2
scalar field model. A more general (euclidean) Lagrangian
that reproduces properties of a class of quantum dimer
models is

L =
1
2

(∂τ h)2 +
1
2
ρ2(∇h)2 +

1
2
ρ4(∇

2h)2 + λ cos(2πh)

These models may explain certain features of high Tc

superconductivity.
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Outline

4-fermi model at z = 3; relevant and marginal deformations

exact solution in the limit of a large number of species

with only marginal couplings present

with marginal and relevant couplings switched on, including
the coupling which induces flow to the Lorentz invariant
z = 1 fixed point

anomalies

application to particle physics
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The Model

The basic degrees of freedom of the model are:

2N species of fermions ψai(t , ~x), a = 1,2; i = 1, ...,N,

which belong to the fundamental representation of SU(N)
and transform under the flavour group U(1)1 × U(1)2:

ψai → eiαaψai , a = 1,2

Each of these fermions is an SU(2)s spinor, where SU(2)s

is the double cover of the spatial rotation group SO(3).

The generators of rotations on fermions are the Pauli
matrics {~σ}.
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The Model

An action which is consistent with the above symmetries is:

S =

∫

d3~x dt
[

ψ†
1i

(

i∂t + i~∂.~σ ∂2
)

ψ1i + ψ†
2i

(

i∂t − i~∂.~σ ∂2
)

ψ2i

+g2 ψ†
1iψ2iψ

†
2jψ1j

]

Note the sign flip of the spatial derivative term between the
two flavours a = 1 and a = 2; this ensures that the
Lagrangian is invariant under the parity operation
ψ1i(t , ~x) → ψ2i(t ,−~x).

We will study the dynamics of this action in the large N
limit, holding the ’tHooft coupling λ = g2N fixed.
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The Model

According to z = 3 scaling dimensions, [x ] = −1, [t] = −3.
It follows that [ψ] = 3/2. In this case, all the three terms
appearing in the above action are of dimension 6 and
hence marginal.

Recall that in the usual context of a 3 + 1 dimensional
Lorentz invariant theory, any interaction involving four
fermions represents an irrelevant operator and so must be
understood as a low energy effective interaction.

Here the marginality of the interaction leads one to hope
that the theory is perhaps uv-complete. This is indeed the
case since the four-fermi coupling turns out to be
asymptotically free.
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The Model

A more general z = 3 action with all relevant and marginal
couplings, which is consistent with all the symmetries, is:

S =

∫

d3~x dt
[

ψ†
1i

(

i∂t − i~∂.~σ
(

(−i∂)2 + g1

)

+ g2(−i∂)2
)

ψ1i

+ψ†
2i

(

i∂t + i~∂.~σ
(

(−i∂)2 + g1

)

+ g2(−i∂)2
)

ψ2i

+g3

(

ψ†
1iψ1i + ψ†

2iψ2i

)

+ g2
4

(

(

ψ†
1iψ1i

)2
+
(

ψ†
21ψ2i

)2
)

+g2
5

(

ψ†
1iψ1iψ

†
2jψ2j

)

+ g2
6

(

ψ†
1iψ2iψ

†
2jψ1j

)]

,

The earlier action corresponds to putting all the couplings
g1, ...,g5 = 0 and setting g6 = g.
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Large- N Solution

One can eliminate the 4-fermi interaction using a standard
Gaussian trick. This introduces a complex scalar field and
gives the following action, which is equivalent to the 4-fermi
action:

S =

∫

d3~x dt
[

ψ†
1i

(

i∂t + i~∂.~σ∂2
)

ψ1i + ψ†
2i

(

i∂t − i~∂.~σ∂2
)

ψ2i

+ φ∗ψ†
1iψ2i + φψ†

2iψ1i −
1
g2 |φ|

2
]

The scalar field φ is an SU(N)-singlet and is charged
under the axial U(1) parametrized by exp[i(α1 − α2)].
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Large- N Solution

Since the action is now quadratic in fermions, one can
integrate them out, leading to the following effective action
for the boson:

Seff[φ] = −iNTr ln D̃ −
1
g2

∫

|φ|2

The operator D̃ can be written in terms of Dirac gamma
matrices γ0, γ i :

D̃ = γ0D, D = iγ0∂t + iγ i∂i(i∂)2 + (φ∗PL + φPR)

Although we find it expedient to use the Dirac gamma
matrices, the operator D is NOT the Dirac operator. For
instance, the coefficient of γ i has three powers of
momenta, as appropriate for a z = 3 theory.
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Large- N Solution

In the large N limit, the classical equation of motion
δSeff/δφ = 0 is exact, leading to

i
∫

dk0d3k
(2π)4

1

k2
0 − |~k |6 − |φ|2 + iǫ

=
1

2λ

This gap equation determines only the absolute value of φ.
The phase of φ can be identified with the
Nambu-Goldstone mode of the symmetry breaking
U(1) × U(1) → U(1).

The left-hand-side of the gap equation is logarithmically
divergent by z = 3 power counting - both numerator and
denominator have dimension 6.
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Large- N Solution

Rotating the contour to Euclidean signature k0 → ikτ and
doing the angular integration gives

4π
(2π)4

∫

dkτ k2dk
1

k2
τ + k6 + |φ|2

=
1

2λ

Change to the variable k1 = k3 and extend the range of
k1-integral to the entire real line (possible because the
integrand has k1 ↔ −k1 symmetry):

∫

dkτ dk1

(2π2)

1
k2

τ + k2
1 + |φ|2

=
3π
λ

This is gap equation for the Gross-Neveu model!

True for any spatial dimension d with z = d . GN model is
just the first, z = d = 1, in the series.
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Large- N Solution

The integral is logarithmically divergent - need a cut-off Λ.
As in the GN model, gap equation determines the
dynamically generated (cut-off independent) scale m
(m3 = |φ|) in terms of the cut-off dependent coupling λ(Λ):

4π2

λ(Λ)
= ln(

Λ2

m2 ) =⇒ m = Λe− 2π
2

λ(Λ)

This is equivalent to a statement for the beta-function for λ:

β(λ) = Λ
dλ
dΛ

= −
λ2

2π2

Condensate generated for arbitrarily weak coupling -
contrast with the critical coupling required in the usual
relativistically invariant NJL model.
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Large- N Solution

Effective potential for the homogeneous mode of φ is:

Veff(φ) = N|φ|2
(

1
λ(Λ)

−
1

12π2 ln(
Λ6

|φ|2
) −

1
12π2

)
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At the minimum, |φ| = m3 = Λ3 exp[−6π2/λ]

The treatment of the effective potential and the RG flow
presented above is exact in the strict N = ∞ limit.
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Large- N Solution

Veff(φ) should be cut-off independent. Define a (cut-off
independent) running coupling:

1
λ(µ)

=
1

λ(Λ)
−

1
2π2 ln(

Λ

µ
),

with beta-function

β(λ(µ)) = µ
dλ(µ)

dµ
= −

λ(µ)2

2π2

Here µ is an arbitrary scale. Then,

Veff(φ) = N|φ|2
(

1
λ(µ)

−
1

12π2 ln(
µ6

|φ|2
) −

1
12π2

)
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Large- N Solution

That there is a running coupling in the large-N solution can
also be seen by considering fluctuations of φ. Parametrize
these as

φ(t , ~x) =

(

m3 +

√

λ

2N
σ(t , ~x)

)

e
q

λ

N π(t,~x)

The Nambu-Goldstone mode is the phase π(t , ~x). It can be
absorbed into fermions by an axial U(1) rotation (but
reappears through the fermion kinetic terms).

The interaction of σ(t , ~x) with fermions is
√

λ

2N
σ(ψ†

1iψ2i + ψ†
2iψ1i) −

1
2
σ2 −

√

2N
λ
σ
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Large- N Solution

The only diagrams that survive in the leading order in 1/N
contribute to the renormalization of the 2-point function of
σ:

k

k−p

p p

This leads to a renormalization of the Yukawa coupling of σ
and a running coupling, consistent with what we obtained
from requiring Veff(φ) to be cut-off independent.
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Marginal deformations

Full set of marginal couplings, consistent with symmetries,
is

g2
4

(

(

ψ†
1iψ1i

)2
+
(

ψ†
2iψ2i

)2
)

+g2
5

(

ψ†
1iψ1iψ

†
2jψ2j

)

+ g2
6

(

ψ†
1iψ2iψ

†
2jψ1j

)

The full system can also be analysed exactly in the large-N
limit. Other possible fermion condensates (< ψ†

aiψai >,
a = 1, 2) vanish =⇒ vacuum solution remains unchanged.

Additional deformation by the relevant operator
(

ψ†
1iψ1i + ψ†

2iψ2i
)

leads to nonzero values of < ψ†
aiψai >.

However, at leading order in large N, g4 and g5 remain
exactly marginal and hence the vacuum state remains
unchanged.
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Relevant deformations

This set consists of the two terms

g1

(

ψ†
1i(−i~∂.~σ)ψ1i + ψ†

2i(i~∂.~σ)ψ2i

)

+ g2ψ
†
ai(−i∂)2ψai

The operator multiplying g1 is the usual spatial derivative
term of the Dirac action. At z = 3, g1 is a relevant coupling
with dimension 2. This deformation causes flow to the
Lorentz invariant z = 1 fixed point.

The other relevant coupling, g2, has dimension 1. It can be
argued that this term does not affect physics, so we may
set g2 = 0.
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Restoration of Lorentz invariance

The sign of g1 could matter − similar deformations in other
cases lead to different phases for different signs. We will
restrict to the positive sign and set g1 = M2.

M is the energy scale at which Lorentz symmetry is
restored. Fermion dispersion relation, which is exact in
large N, reads:

k2
0 − k2(k2 + M2)2 − |φ|2 = 0

For k << M, this is approximately k2
0 − k2M4 − |φ|2 = 0

Now, rescale energy k0 = k ′
0M2 (equivalently rescale time,

k0/M2 = i
M2

∂
∂t = i ∂

∂t ′ = k ′
0). The new dispersion relation is

the standard Lorentz-invariant mass-shell condition:

(k ′
0)

2 = (k2 + m∗
2), m∗ = |φ|/M2
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Restoration of Lorentz invariance

Phenomenological consistency requires the
Lorentz-invariant mass scale m∗ = |φ|/M2 to be much
smaller than M. This implies |φ| ≡ m3 << M3. This results
in the hierarchy of scales

m
*

|k|
0

z=1 (Lorentz) z=3 (Lifshitz)

Mm

To leading order in 1/N, the scale M does not get
renormalized in the present model. In other models, or in
the absence of a large-N argument, one will need to worry
about the renormalization of M.
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Restoration of Lorentz invariance

Renormalization of M would result in a scale-dependent
notion of time in the low-energy theory. Equivalently, this
would lead to a scale-dependent velocity of light and one
should then worry about consistency with observations
(Iengo, Russo and Serone, arXiv:0906.3477).

A related issue is the possibility of different
renormalizations of the Lorentz symmetry restoration scale
for different fields in the theory, leading to a fine-tuning
problem.
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Relevant deformation and gap equation

The presence of a nonzero M affects the gap equation,
which needs to be solved again for a vacuum solution. The
modified gap equation is:

4π
(2π)4

∫

dkτ k2dk
1

k2
τ + k2(k2 + M2)2 + |φ|2

=
1

2λ

The divergence structure of the above integral remains
unchanged by the deformation:
∫

dkτk2dk
[

1
k2

τ + k2(k2 + M2)2 + |φ|2
−

1
k2

τ + k6 + |φ|2

]

+

∫

dkτ k2dk
1

k2
τ + k6 + |φ|2
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Relevant deformation and gap equation

Using a cut-off, as before, gives

4π2

λ
= ln(

Λ2

m2 ) −

∫ M2

m2

0

du
u

f (u)

20 40 60 80 100
u

0.2

0.4

0.6

0.8
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f
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Relevant deformation and gap equation

Since M does not get renormalized in leading order at
large-N, λ must be given the same cut-off dependence as
before =⇒ a running coupling λ(µ), as before.

Then, the gap equation for µ = M can be rewritten as

4π2

λ(M)
= ln(

M2

m2 ) −

∫ M2

m2

0

du
u

f (u)

Note that a solution exists only for M > m exp[
∫

M2

m2

0
du
u f (u)],

since otherwise the rhs is negative.
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Relevant deformation and gap equation

For large M/m, we get

8π2

λ(M)
= ln(

M2

m2
∗

)/
M2

m2
∗

where m∗ = m3/M2.

This should be compared with the gap equation in the
relativistic theory:

1 −
8π2

Ng2Λ2 = ln(
Λ2

m2 )/
Λ2

m2

Λ is the cut-off required to regularize the quadratically
divergent integral.
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Anomalies

Let us couple the fermions to a U(1) gauge field. In a
useful Dirac notation, this coupling can be written as

S =

∫

d3x dt
(

Ψ̄i iD/Ψi + four− fermi terms
)

where

D/ = γµDµ, Dt = Dt , Di = −Di(~D)2, Dµ = ∂µ + ieAµ

As in the Lorentz-invariant case, this theory has global
axial U(1) symmetry

δΨi = iα(x)γ5Ψi , δΨ̄i = Ψ̄i iα(x)γ5

Is the axial current conserved? Note that the current has a
complicated expression in terms of fields.



Motivation Outline The Model Large-N Solution Deformations Anomalies Application to particle physics Summary

Anomalies

Use Fujikawa’s argument and heat kernel method of
regularization to compute the anomaly:

∂µJµ5 = 2Tr
(

γ5 exp[iD/ 2/Λ6]
)

Recall that in the usual Lorentz-invariant case, the next
step is to write

(D/ )2 = −DµDµ +
i
2

Σµν [Dµ,Dν ]
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Anomalies

A calculation gives

∫

d4k
(2π)4 exp [−(k2

τ + |~k |6)/Λ6] ǫijk
(F0i |~k |2

Λ6

)(Fjk |~k |4

Λ6

)

The final answer is exactly as in the Lorentz-invariant case:

∂µJµ5 = −
e2N
16π2 ǫ

µνλσFµνFλσ
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Application to particle physics

We will now consider a simple extension of the system to
describe Higgs mechanism in which the Higgs field is a
composite object.

The degrees of freedom of the extended model are:

ψiα, χi , α = 1,2

ψiα transforms as the fundamental repn. of SU(2) and χi

as a singlet. The index α is gauged.

The 4-fermi interaction

(ψ†
iαχi)(χ

†
i ψiα)

leads to breaking of the SU(2) symmetry.
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Application to particle physics

The bilinear order parameter < ψ†
iαχi >= φα acts as (a

composite) Higgs field because its SU(2) phase is eaten
up by the gauge fields to which the ψiα couple.

Parametrize φα as follows:

φ(t , x) = exp(i~π(t , x).~τ )ρ(t , x)

The key point is that gauge field masses arise from their
gauge-invariant interactions with the ψ’s because of the
exchange of the would-be Nambu-Goldstone bosons, the
“pions”, π(t , x), a well-known mechanism originally
discovered in the context of Meissner effect.
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Application to particle physics

ψ x xψ

ψ

ψ ψ

ψ

π

L  

L  L  

R L  R
w w

In addition, we have the usual quarks and leptons,
appropriately coupled to the above fermions:

(ψ†
iαχi)(q

†
2q1α)

which is equivalent, after symmetry breaking, to the
standard q†

2q1αφα Yukawa coupling.
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Application to particle physics

After mass generation and Higgs mechanism, at low
energies, the ψiα and χi combine to give massive fermions.
It may be possible to arrange their masses to be sufficiently
high, consistent with phenomenological constraints.

Actually two χi ’s are needed to give mass to both
components of ψiα. Assuming that the pair χia, a = 1, 2
transforms as a doublet of another SU(2), one can arrange
the four-fermi interactions to be invariant under this
“custodial” SU(2).
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Summary

The ultraviolet properties of a field theory at an arbitrary z
Lifshitz-like fixed point can be quite different from its z = 1
counterpart.

Fermions at z = 3 in 4-dims have an asymptotically free
four-fermi coupling. Hence, one could say that this theory
provides UV completion of relativistic effective four-fermi
theories at low energies.

Our example gives rise to mass generation and, in the
appropriate case, a composite Higgs field. This eliminates
the need for a Higgs potential, thus avoiding the hierarchy
problem.
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Summary

The key issue for a successful application to
phenomenology is that of restoration of Lorentz invariance
at low energies. This seems hard to achieve without
introducing new fine tuning problems, but further
investigation is needed to clarify the situation.

Applications to condensed matter physics seem to be more
feasible at present. Combined with AdS/CFT, this could
provide a powerful tool for solving problems in this area.
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