

MidEast 2007 Alireza Tavanfas CERN & IPM

This talk is based on:

arxiv.org/0704.2440 [hep-th]

in collaboration with:

Minxin Huang Albrecht Klemm Marcos Mariño

SETUP OF THE QUESTION

START with: M theory in 11 dimensions

COMPACTIFY IT ON A GENERIC C.Y._3

In 50 this generic compactification leads to an associated

 $\mathcal{N}=2$ supergravity

In particular we get bunch of

U(1) vector multiplets

 $A_i \equiv C^{\mathrm{M.T.}}_{(3)|_{\Sigma_i}}$

 Σ_i basis for $H^2(\mathbb{X})$; $i = 1, ..., b_2(\mathbb{X})$

Take an ensemble of
M2 branesM2 braneswrapped on the 2-cycles

 $Q = Q_i \Sigma_i \in H_2(X, \mathbb{Z}) ; i = 1, ..., b_2(\mathbb{X})$

Q_i is the charge under A_i

J.

Little group of massive particles in 50 is $SO(4) \simeq SU(2)_L \times SU(2)_R$

BPS condition allows either of

jl or jr

to be turned on

Can LABEL the associated spectrum of 50 BPS particles by charg & spin

(Q,m); $m \leftrightarrow SU(2)_L$

therefore ask for

 $\Omega(Q,m)$

Let us turn to the gravity side of the 50 story

LOOK FOR the corresponding

electrically-charged rotating black holes in the SUGRA+CORRECTIONS they are in fact generalization of the BMPV black hole

J. C. Breckenridge, R. C. Myers, A. W. Peet and C. Vafa 1996

COMPUTE the

BEKENSTEIN-HAWKING-WALD ENTROPY of these black holes:

 $S_{\text{macro}} := S_{B.H.W}(Q, m)$

QUESTION

 $\frac{\text{COMPUTE}}{\Omega(Q,m)}$

within an appropriate microscopic ensemble of the M_2 branes

& SHOW THAT:

 $S_{\text{micro}} := \text{Log}[\Omega(\mathbf{Q}, \mathbf{m})] \equiv S_{\text{macro}}$

(to all orders in the asymptotic large "charge" expansion)

CONJECTURE :

THE MICROSCOPIC ENSEMBLE

IS GIVEN BY THE INDEX

* THE ELLIPTIC GENUS OF THE 5P SUSY THEORY

& EQUALS

*FREE ENERGY OF: A-MODEL T.S.T ON X

More precisely:

the A-model TST COUNTS the DEGENERACY $\Omega(Q,m)$ in the following way:

Let us: * t^i denote the size of the 2-cycles \sum_i as measured by the kählerform of the X

PEFINE the GOPAKUMAR-VAFA INVARIANTS through the relation:

$$\Omega(Q,m) = \sum_{r} \binom{2r+2}{m+r+1} n_Q^r$$

*

we have the EXACT EQUALITY:

MORAL of this CONJECTURE:

IF we compute $F_0, \ldots, F_{O[|Q|]}$ independently

we can EXTRACT $\Omega(Q,m)$

A TECHNICAL QUESTION !

How to COMPUTE

on a COMPACT C.Y. ?

ANSWER is:

a BLESSING SYMMETRY,

MIRROR SYMMETRY!

RECIPE:

MAP A/X TO B/its MIRRORX

Then the B-model $F_g(\lambda, t)$ on $\tilde{\mathbb{X}}$ satisfy:

$\bar{\partial}_{\bar{l}}F_g = \frac{1}{2}C_{\bar{l}}^{ij}(D_iD_jF_{g-1} + \sum_{h=1}^{g-1}D_iF_hD_jF_{g-h}) \; ; \; g \ge 2$

(HOLOMORPHIC ANOMALY EQUATIONS)

INTEGRATE these EQUATIONS with PROPER BOUNDARY CONDITIONS to OBTAIN $F_g(\lambda; X) = F_g(\lambda, \tilde{X})$

NEWS!

THANKS TO THE VERY RECENT PROGRESS IN SOLVING THE TST ON COMPACT C.Y.'s EXACT RESULTS FOR

ON THE QUINTIC C.Y. UP TO GENUS 51!

 $F_q(\lambda, t)$

M. x. Huang, A. Klemm and S. Quackenbush 2006

A GLANCE AT THE:

MACROSCOPIC RESULTS

For the purpose of this talk WE "JUST" CONSIDER

compact C.Y.'s with 1-kähler modulus namely:

 $b_2(\mathbb{X}) = 1 \Rightarrow Q = d \Sigma_1 \; ; \; d \in \mathbb{Z}$

Therefore we consider a 50 BPS black hole

of charge $d \in spin m$

It has been KNOWN for a long time that this is a BIG black hole & its BEKENSTEIN-HAWKING ENTROPY is given by

 $S_{B.H.} = 2\pi \sqrt{\frac{2}{9\kappa}} d^3 - m^2$

where: κ is the ONLY INTERSECTION NUMBER of the C.Y.

$$\kappa = \int_{\mathbb{X}} (\eta_1)^3 \quad ; \quad \eta_1 \leftrightarrow \Sigma_1$$

BUT

THERE ARE HIGHER DERIVATIVE CORRECTIONS TO SUGRA WHOSE CONTRIBUTION TO THE ENTROPY IS CAPTURED BY THE WALD ENTROPY

In the case of 50, **RECENTLY**, such a calculation has been done, especially based on the (SUSY-COMPLETION of) certain **R^2** contributions to the EFFECTIVE ACTION

M. Guica, L. Huang, W. Li and A. Strominger 2005 A. Castro, J. L. Davis, P. Kraus and F. Larsen 2007 M. Alishahiha 2007

we need only to report here

the large-charge asymptotic expansion of the SPINLESS MACROSCOPIC ENTROPY in the case of our 1-parameter C.Y.s:

 $S_{0+1+\dots}^{\text{macro}}(d) = b_0 d^{3/2} + b_1 d^{1/2} + \mathcal{O}[d^{-1/2}]$ $b_0 = \frac{4\pi}{3\sqrt{2\kappa}} \quad ; \quad b_1 = c_2 \frac{\pi}{4\sqrt{2k}}$ $\text{where:} \quad c_2 = \int_X c_2(X) \wedge \eta_1$

This is now our purpose to see whether

the KKV conjecture which proposes the

A-MOPEL TST AS THE MICROSCOPIC INPEX THEORY OF THESE BLACK HOLES

> is CLEVER enough to CAPTURE:

THE SAME ASYMPTOTIC DEGENERACIES

TECHNICAL WARNING! IN ORDER TO COMPARE THE **TST RESULTS FOR THE DEGENERACIES** $\Omega(d,m); \forall m$ WITH THIER B.H.W COUNTERPART **UP TO:** $g \leq g_{\text{max}} = O[d]$ SHOULD SOLVE: $F_q(t)$ TO VERY LARGE ORERS $O[d] \gg 1$

A KNOWN EXAMPLE IS RICHARDSON TRANSFORMATION

EXTRAPOLATION METHOPS

using proper

THE IDEA OF RICHARDSON

Imagine that we have computed

 $S(d) = \text{Log}[\Omega(d)]$

admits the LARGE ORDER ASYMPTOTIC EXPANSION :

 $S(d) = b_0 d^{3/2} + b_1 d^{1/2} + b_2 d^{-1/2} + \dots$

we want to

estimate the

coefficients of this series

{ b_0, b_1, b_2,... }

with very high accuracy

Step 0: Define a new series: $A(d,0) := \frac{S(d)}{d^{\frac{3}{2}}} = b_0 + b_1 d^{-1} + b_2 d^{-2} + \dots$ This approximates b_0 up to $O[\frac{1}{d}]$ Step 1: Define a new series: $A(d,1) = (d+1) A_0(d+1) - d A(d) = b_0 - \frac{b_1}{d^2} + \dots$ This approximates b_0 up to $O[\frac{1}{d^2}]$ Step N: Define a new series: $A(d,N) = \sum_{k=0}^{N} \frac{A(d+k)(d+k)^{N}(-1)^{k+N}}{k!(N-k)!}$ k=0This approximates b_0 up to $O[\frac{1}{d^{N+1}}]$

MORALS:

1. If we plot A(d, N) in terms of d we see that: larger value of N, faster it tends to the true value of b_0

2. Having found the value of b_0 , if we apply a similar procedure on the series:

 $S_1(d) := S(d) - b_0 d^{3/2} = b_1 d^{\frac{1}{2}} + b_2 d^{\frac{-1}{2}} + \dots$

we'll get the coefficient b_1 & so on

THE 13 1-PARAMETER C.I.CYS WHICH WE STUDY

DEFINITION AND RELEVANT DATA:

CY	χ	$c_2 \cdot \eta$	κ	CY	χ	$c_2 \cdot \eta$	κ
$X_5(1^5)$	-200	50	5	$X_6(1^4, 2)$	-204	42	3
$X_8(1^4, 4)$	-296	44	2	$X_{10}(1^3, 2, 5)$	-288	34	1
$X_{3,3}(1^6)$	-144	54	9	$X_{4,2}(1^6)$	-176	56	8
$X_{3,2,2}(1^7)$	-144	60	12	$X_{2,2,2,2}(1^8)$	-128	64	16
$X_{4,3}(1^5,2)$	-156	48	6	$X_{4,4}(1^4, 2^2)$	-144	40	4
$X_{6,2}(1^5,3)$	-256	52	4	$X_{6,4}(1^3, 2^2, 3)$	-156	32	2
$X_{6,6}(1^2, 2^2, 3^2)$	-120	32	1				

A C.I.CY of degree $\{d_1, ..., d_k\}$ in a weighted projective space $\mathbb{P}^{l-1}(\omega_1, ..., \omega_l)$ is denoted : $\mathbb{X}_{d1,...,d_k}(\omega_1, ..., \omega_l)$ $c_2.\eta = \int_{\mathbb{X}} c_2(\mathbb{X}) \wedge \eta_1 \; ; \; \kappa = \int_{\mathbb{X}} (\eta_1)^3 \; ; \; \eta_1 \leftrightarrow \Sigma_1$

The "horizontal line" in the plot denotes: b_0^{MACRO}

The "horizontal line" in the plot denotes: b_0^{MACRO}

The COMPLETE TABLE OF THE MICRO-MACRO COMPARISON AT THE LEADING ORDER

Calabi-Yau	d_{max}	$A(d_{max} - 3, 3)$	$b_0 = \frac{4\pi}{3\sqrt{2\kappa}}$	error
$X_5(1^5)$	14	1.35306	1.32461	2.15~%
$X_6(1^4, 2)$	10	1.75559	1.71007	2.66~%
$X_8(1^4, 4)$	7	2.11454	2.0944	0.96~%
$X_{10}(1^3, 2, 5)$	5	2.99211	2.96192	1.02~%
$X_{3,3}(1^6)$	17	1.00204	0.987307	1.49~%
$X_{4,2}(1^6)$	15	1.07031	1.0472	2.21~%
$X_{3,2,2}(1^7)$	10	0.821169	0.855033	-3.96 %
$X_{2,2,2,2}(1^8)$	13	0.722466	0.74048	-2.43~%
$X_{4,3}(1^5,2)$	11	1.21626	1.2092	0.58~%
$X_{6,2}(1^5,3)$	11	1.52785	1.48096	3.17~%
$X_{4,4}(1^4, 2^2)$	7	1.42401	1.48096	-3.85 %
$X_{6,4}(1^3, 2^2, 3)$	5	2.06899	2.0944	-1.21 %
$X_{6,6}(1^2, 2^2, 3^2)$	4	2.95082	2.96192	-0.37 %

The "horizontal line" in the plot denotes: $b_1^{ m MACRO}$

The "horizontal line" in the plot denotes: $b_1^{ m MACRO}$

 $b_1^{\text{TST}}(d \mid \{0, 1, 2, 3\})$

The COMPLETE TABLE OF THE MICRO-MACRO COMPARISON AT THE SUBLEADING ORDER

Calabi-Yau	d_{max}	$A_1(d_{max} - 3, 3)$	$b_1 = \frac{\pi c_2}{4\sqrt{2\kappa}}$	error	estimated b_2
$X_5(1^5)$	14	11.2668	12.4182	-9.27 %	-11.9503
$X_6(1^4, 2)$	10	11.9237	13.4668	-11.5 %	-12.1848
$X_8(1^4, 4)$	7	14.0537	17.2788	-18.7 %	-14.9973
$X_{10}(1^3, 2, 5)$	5	15.2509	18.8823	-19.2 %	-14.9817
$X_{3,3}(1^6)$	17	9.29062	9.99649	-7.06 %	-9.63958
$X_{4,2}(1^6)$	15	10.0226	10.9956	-8.85 %	-10.7834
$X_{3,2,2}(1^7)$	10	8.45163	9.61912	-12.1 %	-9.3828
$X_{2,2,2,2}(1^8)$	13	7.84595	8.88577	-11.7 %	-8.88773
$X_{4,3}(1^5,2)$	11	9.5981	10.8828	-11.8 %	-9.96404
$X_{6,2}(1^5,3)$	11	12.5614	14.4394	-13.0~%	-14.2582
$X_{4,4}(1^4, 2^2)$	7	9.70091	11.1072	-12.7 %	-9.41295
$X_{6,4}(1^3, 2^2, 3)$	5	11.1008	12.5664	-11.7 %	-10.0821
$X_{6,6}(1^1, 2^2, 3^3)$	4	11.1378	12.2179	-8.84 %	-8.15739

SIMILAR MATCHING BETWEEN THE TST PREDICTIONS AND THE MACROSCOPIC RESULTS WE SKIP TO THE ANALYTIC SECTOR OF OUR STUDY

OF THE SPINNING CASE $\Omega(d, m \neq 0)$

SHOWS

A QUALITATIVELY

AND

QUANTITATIVELY

A SIMILAR ANALYSIS

ANALYTIC ASYMPTOTIC RESULTS:

TST PREPICTIONS FOR **DEGENERACIES OF:** SMALL BHs IN **K3-FIBRATIONS**

$Q \in \operatorname{Pic}(K3)$

TO SIT IN THE K3 FIBER:

& RESTRICT THE M_2 -brane charge Q

S

$K3 \to \mathbb{X}$

HERE WE CONSIDER:

THIS WAY WE ENGINEER: 50 BPS SMALL **BLACK HOLES** WHICH ARE NECESSARILY SPINLESS

 $Log[\Omega^{TST}(Q)] \longleftarrow compare \longrightarrow S^{B.H.W}(Q)$

J.

COMPACTIFICATIONS OF M-THEORY

ON K3-FIBRATIONS

GENERICALLY ADMIT A

CELEBRATED HETEROTIC-DUAL DESCRIPTION

IN WHICH

THE HETEROTIC COUPLING

IS IDENTIFIED WITH

THE SIZE OF THE BASE

THEREFORE IN THE LIMIT:

 $\frac{\text{VOL}[\mathcal{S}] \longrightarrow \infty}{\text{CAN EXTRACT}}$

EXACT NON-PERTURBATIVE INFORMATION

IN THE M-THEORY SIDE

BASED ON 1-LOOP CALCULATIONS

IN THE HETEROTIC SIDE

IN PARTICULAR :

THE EXACT GENERATING FUNCTION

OF THE GOPAKUMAR-VAFA INVARIANTS

 n_{O}^{r}

ASSOCIATED TO THE

FIBER-MEMBRANES

CAN BE EXTRACTED IN CLOSED ANALYTIC FORMS

THIS WAY THE PARTITION FUNCTION OF THE FIBER-MEMBRANES IS COMPUTED AS THE FOLLOWING:

 $= f_{\mathbb{X}}(\mathrm{e}^{2\pi i\sigma})\xi^2(\nu,\sigma)$

WHERE:

$f_{\mathbb{X}}(e^{2\pi i\sigma}): \textbf{A MOPEL-DEPENDENT MODULAR FORM} \\ \textbf{KNOWN FOR VARIOUS CHOICES OF } \\ \boldsymbol{\xi} \\ \boldsymbol{\xi}(\nu, \sigma) = 2\sin(\pi\nu) \frac{\eta^3(\sigma)}{\vartheta_1(\nu|\sigma)}$

3. $X = \text{Enriques C.Y.} \longrightarrow f_X = -2 \eta (2\sigma)^{-12}$

ANALYTIC EVALUATION OF THE MICROSCOPIC DEGENERACIES:

IN ORDER TO COMPARE THE TST PREDICTIONS WITH THEIR MACROSCOPIC COUNTERPARTS

SHOULD EVALUATE THE LARGE CHARGE ASYMPTOTIC EXPANSION OF THE FOURIER INTEGRAL:

$\Omega(N) = \int_{-\frac{1}{2}+i0^{+}}^{\frac{1}{2}+i0^{+}} d\sigma \int_{0}^{1} d\nu \ e^{-2\pi i N\sigma} \Phi(\nu, \sigma)$

 $N = Q^2/2 \in \mathbb{Z} \quad ; \quad \Phi(\nu, \sigma) = f_X(p)\xi^2(\nu, \sigma)$

THIS ASYMPTOTIC EVALUATION CAN BE PERFORMED EXACTLY MODULO THE EXPONENTIALLY SUPPRESSED CORRECTIONS

$$S_{\text{K3}\times\text{T}^2}^{\text{TST}} \sim 4\pi\sqrt{N} - \frac{29}{4}\text{Log}(N) + \text{Log}\left(\frac{\sqrt{2}}{\pi}\right) - \frac{591}{32\pi}\frac{1}{\sqrt{N}} + O[N^{-1}]$$

$S_{\rm STU}^{\rm TST} \sim 4\pi\sqrt{N} - \frac{9}{4}\text{Log}(N) + \text{Log}\left(\frac{\sqrt{8}}{\pi}\right) + \frac{129}{32\pi}\frac{1}{\sqrt{N}} + O[N^{-1}]$

$$S_E^{\mathrm{TST}}(Q) \sim \pi \sqrt{8N} - \frac{17}{4} \mathrm{Log}(N) + \mathrm{O}[N^0]$$

THE LEADING MICROSCOPIC ENTROPY IN A NUTSHELL

 $S^{TST}(Q) \sim 2\pi \sqrt{\frac{c_s}{12}} Q^2$

 $c_{\mathcal{S}} = \int c_2(\mathbb{X}) \wedge \eta_{\mathcal{S}}$

$C_{\mathcal{S}} = 12$: Enriques

 $C_{\mathcal{S}} = 24$: Other Cases including the ST model

THE MACROSCOPIC COUNTERPARTS CAN USE THE 5D-4D CONNECTION RECIPE:

1. MAP:

D6 charge : p0 = T.N.chargeD2 charge : $q_i = \frac{Q_i}{p^0}$ D0 charge : $q_0 = \frac{2j_L}{(p^0)^2}$

2. COMPUTE THE B.H.W ENTROPY FROM THE PREPOTENTIAL:

$$\mathcal{F} = -\frac{1}{2}C_{ab}\frac{X^{\mathcal{S}}X^{a}X^{b}}{X^{0}} - \frac{1}{6}C_{abc}\frac{X^{a}X^{b}X^{c}}{X^{0}}$$
$$C_{abc} = \int_{\mathbb{X}}\eta_{a} \wedge \eta_{b} \wedge \eta_{c} \quad ; \quad \eta_{a} \in H_{2}(K3;\mathbb{Z})$$
$$C_{ab} = \int_{\mathbb{X}}\eta_{\mathcal{S}} \wedge \eta_{a} \wedge \eta_{b}$$

RESULT:

POING SO

WE GET PERFECT MATCHING

WITH THE MACROSCOPIC ENTROPIES

AT THE LEADING ORDER

FOR ALL THE CASES.

The "horizontal line" in the plot denotes the expected value from the macroscopic analysis: 4π

A QUESTION:

INVIEW OF THE INTERPRETATION OF

THE A-MODEL TST AS THE MICROSCOPIC THEORY OF THE GENERALIZED BMPV BLACK HOLES,

CAN WE LEARN ABOUT THE NONPERTURBATIVE COMPLETION OF THE TOPOLOGICAL STRING

THE OTHER WAY AROUND ?