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Introduction

This year will be the 10th anniversary of the AdS/CFT conjecture.

By now there are many known examples of gravity/gauge theory du-

alities.

Typically tests of the conjecture have been made at the conformal

point, from the first work on matching non-renormalized quantities (pro-

tected operators, their correlation functions) through to the more recent

work on integrability of the theory at the conformal point, in the planar

limit.

But the most interesting physics comes from breaking conformal in-

variance ...
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On the one hand one wants to use holographic engineering to open a

window into gauge theories at strong coupling.

For example, there have been many attempts to construct geometries

realizing duals of confining gauge theories with chiral symmetry breaking.

Moreover, black hole geometries are being used to probe the thermal

physics of quark gluon plasmas at strong ’t Hooft coupling, with an eye

on RHIC.

In both cases one needs to extract quantitative precise results from

the geometry - the answers are not already known from weak coupling

computations!

Going in the other direction, from gauge theory data to geometry,

there is a fundamental question at stake: how is the geometry recon-

structed from gauge theory data?
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At the more fundamental level, the significance of the AdS/CFT duality

lies not so much on the specific examples but in the shift of paradigm for

physical reality it implies. From this point of view specific examples are

mostly useful laboratories – what is important is the general lessons one

learns.

Physics is a quantitative science so any paradigm shift must come

equipped with a new set of precise computational rules.

The basic principles underlying the gravity/gauge duality were laid

down already in the foundational papers on AdS/CFT. Bringing these

principles into their logical conclusion, however, has led to a long jour-

ney with many surprises and subtle issues to resolve.
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In the first part of this talk I will review recent progress and discuss

the current status of holographic methods, while afterwards I will move to

discuss applications to black hole physics, where the shift in paradigm is

already happening ...
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Black holes and Holography

Defining questions in gravity for the last 30 years have been:

• Why does a black hole have entropy proportional to its horizon

area?

• Is there information loss because of black holes?

• How does one resolve spacetime singularities, such as those inside

black holes or in Big Bang cosmologies?
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Recently, the gauge/gravity duality motivated a new idea in black holes

physics, the fuzzball proposal which, if true, it would provide answers to

these questions.

According to this proposal, associated with any black hole there are

an exponential number of horizon-free non-singular solutions that look

like the black hole asymptotically but generically differ from it up to the

horizon scale.

These solutions represent the “microstates” of the black hole; the orig-

inal black hole provides only the “average” description of the system.
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This proposal would resolve black hole puzzles because:

• The entropy of the black hole would be of standard statistical origin.

The physics of black holes would then be no different than that of a distant

star, with temperature and entropy being of statistical origin.

• There are no horizons and therefore no information loss. Incomimg

matter would escape back to infinity at late times.

• Spacetime is non-singular. The black hole singularity is an artifact

of the coarse-grained description.

In the second part of this talk I will describe progress towards promot-

ing this interesting idea to a physical quantitative model using holographic

methods.
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The talk will be based on a number of papers:

• How to determine the dual field theory data given an asymptotically AdS×
X geometry and vice versa.

Kaluza-Klein holography with M Taylor, 0603016;

Coulomb branch vevs with M Taylor, 0604169;

Holography for bubbling solutions with M Taylor, 0706.0216;

• Using AdS/CFT methods to test and make quantitative the fuzzball pro-

posal.

Fuzzball solutions for black holes and D1-brane–D5-brane microstates

with M Taylor, 0609154;

Holographic anatomy of fuzzballs with I Kanitscheider, M Taylor, 0611171;

Fuzzballs with internal excitations with I Kanitscheider, M Taylor, 0704.0690
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Recovering gauge theory data from a geometry

So, given a geometry conjectured to be dual to a certain gauge theory,

what would one like to compute?

To be definite, suppose that we have an asymptotically AdS5 × X5

geometry and we have already identified the CFT that is dual to AdS5×
X5. The geometry is then expected to be dual to a QFT that in the UV

flows to this CFT.

Then one would first like to deduce the vacuum structure correspond-

ing to the geometry, namely the vevs and parameters of deformations.

For example, in the dual of a confining theory one would like to extract

the vev of the gluino condensate
〈
λλ̄

〉
.
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However, to compute such vevs quantitatively is quite subtle...

For example, for a given geometry one can often see the existence of

a gluino condensate qualitatively using the ”linearized” AdS/CFT dictio-

nary developed in 1998-1999: normalizable modes in the near boundary

asymptotics of bulk fields ”yield” the corresponding vevs.

This relationship is however imprecise - vevs are non-linear in sugra

asymptotics.

Whilst in some cases the linearized approximation gives an answer

which is qualitatively correct, there are many known cases where it gives

qualitatively incorrect results, e.g. typically one finds E 6= 0 for a susy

vacuum.
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The holographic formulas for the vevs (and other n-point functions)

can be in derived in all generality for arbitrary backgrounds that are asymp-

totically AdSp × Xp. Here I will only summarize the answer and then

move to discuss applications.

The derivation starts from the basic principles of gravity/gauge theory

duality that relates bulk fields to boundary gauge invariant operators and

the bulk partition function to the generating functional of boundary corre-

lators and leads to exact formulas that give the vevs of gauge invariant

operators in terms of the coefficients in the asymptotic expansion of bulk

fields.
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On the way one had to understand

1. how to deal with the infinities that appear in the naive implementa-

tion of the program,

2. how to properly take into account the compact part of the geometry.

The first issue is dealt with by the formalism of holographic renormal-

ization, which is the precise gravitational analogue of QFT renormaliza-

tion, and the second with ”Kaluza-Klein” holography.
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To understand the holographic formulas one needs to know some

facts about asymptotically (locally) AdS spacetimes.

These spacetimes solve the Einstein equations with a negative cos-

mological constant and have the following asymptotic (Fefferman-Graham)

form

ds2 =
dr2

r2
+

1

r2
gij(x, r)dxidxj

where

gij(x, r) = g(0)ij + r2g(2)ij + ... + rd
(
log r2h(d)ij + g(d)ij

)
+ ...

This is an expansion in r (the conformal boundary of the spacetime is

located at r = 0). A covariant way to organize this expansion is in terms

of eigenfunctions of scale transformations [Papadimitriou, KS, 2004].
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The underlying structure of the renormalized holographic correlators

is best exhibited in a radial Hamiltonian formalism, where the radial co-

ordinate plays the role of time. (This is also the most efficient way to do

actual computations.) [Papadimitriou, KS, (2004)]

A fundamental property of asymptotically locally AdS spacetimes is

that scale transformations are part of the asymptotic symmetries and

therefore every covariant quantity can be decomposed into a sum of

terms each having a definite scaling.

In particular, the radial canonical momentum π can be decomposed

into eigenfunctions of scale transformations πk of weight k and further-

more each of these eigenfunctions is related to the asymptotic coeffi-

cients by (in general) non-linear relations.
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The precise relationship between vevs and supergravity asymptotics

can be summarized as follows. Let OI
k label the set of operators of di-

mension k. Then
〈
OI

k

〉
= πI

k +
∑

cI
I1···Ij

πI1
k1
· · · πIj

kj
.

Here πI
k is the part of radial canonical momentum πI that has weight k.

Recall that it can be expressed non-linearly in terms of field asymptotics.

The terms non-linear in canonical momenta arise whenever k=
∑

ki;

the constants cI
I1···Ij

are related to extremal correlators.
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These formulae are derived by first implementing a non-linear gauge

invariant KK map to (d+1) dimensions and then applying (standard)

(d+1)-dimensional holographic renormalization formulae.

1. Expand the perturbations of 10d fields about the AdSd+1 × N

background in harmonics of the compact manifold.

Φ = ϕB + φ

and

φ(x, y) =
∑

ψI(x)Y I(y)

where Φ denotes collectively all fields, ϕB is the AdSd+1 × N solu-

tion, φ are the fluctuations and Y I(y) denotes collectively all spherical

harmonics (scalar, vector, tensor) and their derivatives.
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2. Insert the expansion in 10d equations of motion and find the equa-

tions that gauge invariant combinations satisfy.

Not all fluctuations are independent: there are diffeomorphisms that

map them to each other and to the background solution. To deal with this

issue we developed a systematic procedure to construct gauge invariant

combinations:

ψ̂I = aI
JψJ + bI

JKψjψJ + · · ·
where aI

J , bI
JK are numerical coefficients. The gauge invariant combina-

tions are the physical KK modes and they satisfy equations of the form

( −m2
I)ψ̂

I = DI
JKψ̂J ψ̂K + EI

JKDµψ̂
JDµψ̂K

+F I
JKD(µDν)ψ̂

JD(µDν)ψ̂K + · · ·
where DI

JK , EI
JK , F I

JK are numerical coefficients.
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3. These equations reduce to (d + 1)-dimensional field equations

upon use of a non-linear field transformation, the non-linear KK map,

which can be integrated into an action.

The non-linear KK map

ΨI = ψ̂I + J I
JKψ̂J ψ̂K + LI

JKDµψ̂
JDµψ̂K + · · ·

leads to equations

( −m2
I)Ψ

I = λI
JKΨJΨK + · · ·

that can be integrated to an action, and holographic renormalization can

then be carried out.

4. Certain finite boundary terms in the 10d action must also be taken

into account; these lead to the non-linear terms in the vevs related to

extremal correlators.
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Holographic map

The expressions for the 1-point functions can be written explicitly in

terms of the asymptotics of the 10d solutions.

Thus, to obtain the vevs for a given solution, one expands it to high

enough order in the radial coordinate and decomposes deviations from

the AdSd+1 ×N background into harmonics.

These deviations can then be inserted into the holographic 1-pt func-

tions to obtain the vevs.

The map is constructed perturbatively in the number of fields, with

only a finite number of fields participating in the computation of the vev

of a given operator. The number however increases with the operator

dimension.
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Remarks

• This method allows one to extract, using algebraic manipulations

only, all QFT data from any supergravity solution which is asymptotically

(AdS ×N). These can then be used to identify the holographic dual.

• Any precise computation in gravity/gauge duality requires these

techniques; this holds also for non-local operators and corresponding

bulk branes/strings. [KS, Taylor (2002)][Karch, O’Bannon, KS (2005)].
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Applications

Our method allows strong tests of gravity/gauge theory duality beyond

the conformal point.

Example: N = 4 SYM on the Coulomb branch.

N = 4 SYM has a Coulomb branch corresponding to giving a vac-

uum expectation value (vev) to the scalars subject to the condition

[X i1 , X i2 ] = 0.

A useful parametrization of the CB branch is in terms of vevs of the chiral

primary operators,

OI1 = CI1
i1···ikTr(X i1 · · ·X ik),

where CI1 is a totally symmetric traceless rank k tensor of SO(6).
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In the large N limit, a generic point on the CB is described by a

smooth (unit normalized) distribution of eigenvalues, ρ(x), and the vevs

can be computed exactly

〈OI1〉 = N (k)
∫

d6xρ(x)(CI
i1···ikx

i1 · · · xik),

whereN (k) is a specific numerical coefficient.

These vevs are known to be protected from quantum corrections, be-

cause of the 16 supercharges. The challenge for holography is to extract

these vevs from the corresponding supergravity solution.

23



The decoupling limit of multi-center D3-brane solutions is the corre-

sponding holographic dual,

ds2 = H(x⊥)−1/2dx2
|| + H(x⊥)1/2dx2

⊥

The harmonic function and its asymptotic expansion corresponding to

a smooth distribution ρ(x) of D3 branes is

H = L4
∫

d6y
ρ(y)

|x− y|4 =
∑

k,I

hkI
Y I

k

rk+4
,

where

hKI = 2k(k + 1)L4
∫

d6xρ(x)
(
CI

i1···ikx
i1 · · · xik

)
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Following the steps outlined above one arrives at

〈
OI

k

〉
=

N2

π2

(k − 2)
√

(k − 1)

2k/2
√

k(k + 1)L4
hkI

Upon use the value of hkI we obtain exact agreement with the weak

coupling result!
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A similar analysis of the LLM bubbling solutions provides a precise

map between geometries and 1/2 BPS states ofN = 4 SYM on R×S3

and a very impressive agreement between gravitational and QFT com-

putations of vevs. [KS, Taylor, 0706.0216]

More generally, these techniques can be used to identify the field the-

ory duals of previously known solutions ...

And can be combined with supersymmetric classification tools to de-

velop holographic engineering, the systematic construction of holographic

duals.
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The fuzzballs program

1. Review of the fuzzball proposal

2. General 2-charge fuzzball solutions

3. Holographic anatomy of fuzzballs

4. Implications for the fuzzball program
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The fuzzball proposal

According to this proposal, associated with any black hole there are

an exponential number of horizon-free solutions that look like the black

hole asymptotically but generically differ from it up to the horizon scale.

[Lunin, Mathur (2001)]

These solutions represent the “microstates” of the black hole; the orig-

inal black hole provides only the “average” description of the system.
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The AdS/CFT correspondence supports this picture, at least for su-

persymmetic black holes. [KS, Taylor] (2006)

More precisely, the gravity/gauge duality relates a given asymptoti-

cally AdS geometry to either a deformation of the CFT or the CFT in a

non-trivial vacuum characterized by the expectation values of gauge in-

variant operators. Conversely, one expects that for any stable state of

the CFT there exists an asymptotically AdS solution, whose asymptotics

encode the vevs of gauge invariant operators in that state.

If the field theory is in a pure state, there is no entropy and one ex-

pects the corresponding geometry to be horizon-less. This is the fuzzball

proposal.

There is however no guarantee that the geometry should be well-

described by supergravity alone, i.e. weakly curved everywhere.
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The most basic questions are:

• Can one find enough such geometries for each black hole?

•What properties should such geometries have to be associated with

black hole microstates?

• Can one show quantitatively how black hole properties emerge

upon coarse-graining?
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Answering these questions in full generality is currently out of reach.

However, one may focus on the simplest possible non-trivial set up,

the D1-D5 system.

For this system an exponential number of horizon-free non-singular

solutions was found by Lunin, Mathur (2001). This provided enough so-

lutions to account for a fraction of the black hole entropy.

31



General 2-charge fuzzball solutions

We recently obtained in [Kanitscheider, KS, Taylor, 0704.0690] the gen-

eral 2-charge D1-D5 solutions for IIB supergravity on T 4 and K3 by du-

alizing the F1-P geometries of [Callan etal], [Dabholkar etal] (1995)

D1-D5 solutions of IIB/T 4 are obtained from F1-P solutions of IIB/T 4

by use of standard S and T dualities.

D1-D5 solutions of IIB/K3 are obtained from F1-P solution of the het-

erotic string on T 4. These are first mapped to P-NS5 solution of IIA/K3

by string-string duality and then we proceed by S and T dualities.

32



The solutions are characterized by a curve in N -dimensional space.

•N = 24 for the K3 solutions; most general such solution.

• N = 8 for the T 4 solutions; most general solution carrying only

bosonic excitations in T 4. [Solution with fermionic condensates can be

obtained by dualizing the solution of [Taylor (2005)].]

The curves represent the profile of the string in the original F1-P sys-

tem as well as the profile of the charge waves in the case of the heterotic

F1-P system.

The solutions of Lunin-Mathur (2001) are a subset of these solutions,

characterized by a curve in R4 representing the blown-up of the naive

geometry to a supertube in the transverse space.
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• All fields of IIB sugra are non-trivial in the solution.

• The solution is determined in terms of 26 (K3)/10 (T 4) harmonic

functions, (K, f5, Ai,A,Aα−), which in turn are determined by the

curve F i(v), F(v), Fα−(v). For example,

f5 =
Q5

L

∫ L

0

dv

(xi − Fi(v))2
; A = −Q5

L

∫ L

0

∂vFdv

(xi − Fi(v))2
.

• The solution has the same mass and conserved charges as the

naive (singular) D1-D5 system.

• It has non-zero angular momentum provided the curves Fi are non-

zero, and carries multipole moments.

• F i are associated with transverse excitations, F ,Fα− with excita-

tions in the internal manifold.
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• It is non-singular and horizon-free as long as F i(v) does not self-

intersect and have only isolated zeros.

•When F i = 0 the solutions collapses to the naive solution.

• In the ”decoupling limit” the solutions become asymptotically AdS3×
S3 × T 4/K3 so one may use KK holography to identify what these so-

lutions are dual to.

Often people use only the symmetries, along with the R charges (an-

gular momenta), in identifying the dual but there is an infinite amount

of other data , namely vevs of chiral primary operators encoded in the

geometry; these capture the ”multipoles”.
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ds2 =
f

1/2
1

f̃1f
1/2
5

[−(dt− Aidxi)2 + (dy −Bidxi)2]

+f
1/2
1 f

1/2
5 dxidxi + f

1/2
1 f

−1/2
5 ds2

M4 ,

e2Φ =
f 2

1

f5f̃1

, B
(2)
ty =

A
f5f̃1

, B
(2)
µ̄i =

ABµ̄
i

f5f̃1

,

B
(2)
ij = λij +

2AA[iBj]

f5f̃1

, B(2)
ρσ = f−1

5 kγωγ
ρσ, C(0) = −f−1

1 A,

C
(2)
ty = 1− f̃−1

1 , C
(2)
µ̄i = −f̃−1

1 Bµ̄
i , C

(2)
ij = cij − 2f̃−1

1 A[iBj],

C
(4)
tyij = λij +

A
f5f̃1

(cij + 2A[iBj]), C
(4)
µ̄ijk =

3A
f5f̃1

Bµ̄
[icjk],

C
(4)
tyρσ = f−1

5 kγωγ
ρσ, C

(4)
ijρσ = (λγ

ij + f−1
5 kγcij)ω

γ
ρσ,

C(4)
ρστπ = f−1

5 Aερστπ,
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Now the harmonic functions characterizing the solution can be ex-

panded near the AdS boundary in terms of spherical harmonics as

f5 = Q5

∑

k,I

f I
5kY

I
k

r2+k
, f I

5k ∼
∫ L

0
dvCI

i1···ikF
i1 · · ·F ik

where k labels the degree of the harmonic and I its degeneracy; CI
i1···ik

is the corresponding symmetric traceless tensor.

Using the methods of KK holography, vevs of chiral primary operators

can be expressed in terms of the field asymptotics, and hence in terms

of the coefficients in the expansions of the harmonic functions.
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Results

The vev of the stress energy tensor is (non-trivially) zero,

〈Tij〉 = 0

in agreement with the fact that the fuzzballs are conjectured to be dual to

Ramond ground states in the CFT.

Furthermore, there are non-zero vevs for the R symmetry currents

and for scalar chiral primaries. Schematically,
〈
OI

k

〉
∼ f I

5k + · · ·

Any proposal for the dual must reproduce these vevs.
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Field theory dual

The dual CFT is a deformation of a sigma model with target space the

symmetric orbifold of the compactification manifold.

• The holographic results invalidate naive proposals that associate

each of the fuzzball solutions (specified by a curve F i) to a single R-

ground state.

• We proposed a precise map that associates a given supergravity

solution to a specific superposition of R-ground states. The exact form of

the superposition depends on the curves determining the solution.

• This proposal passes all kinematical tests and all accessible dy-

namical tests.

• Given such a precise proposal, one can now envision deriving black

hole properties by coarse graining the fuzzball geometries.
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The proposal

Given a curve F I we extract the Fourier coefficients,

F I(v) =
∑

n>0

1√
n

(αI
ne−inv + (αI

n)∗einv),

and consider the coherent state:
∣∣∣F I

)
=

∏

n,I

∣∣∣αI
n

)
,

Contained in this coherent state are Fock states, such that

∏
(âI

nI
)mI |0〉 , N =

∑
nImI .
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Now retain only the terms in the coherent state involving these Fock

states, and map the FP oscillators to CFT R operators via the dictionary

1√
2
(â1

n ± iâ2
n) ↔ OR(±1+1),(±1+1)

n ;

1√
2
(â3

n ± iâ4
n) ↔ OR(±1+1),(∓1+1)

n ;

âρ
n ↔ OR(1,1)

(ρ−4)n.

where OR(p,q)
n are operators associated with (p, q) cohomology of the

internal manifold and n is the twist.

Computing the vevs of gauge invariant operators in this state one find

exact agreement with the gravity computation, within the approximations

used.
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In general one must go beyond supergravity to accurately describe

the physics of the system.

• Most of the geometries contain small regions of high curvature, so

they are not well-described by supergravity.

• When one includes geometries with internal excitations, the situa-

tion is even worse: geometries with only internal excitations F i(v) = 0

collapse to the naive singular geometry. These should account for a finite

fraction of the black hole entropy but are not visible in sugra approxima-

tion at all!

• Even the geometries that only involve macroscopic scales generi-

cally can only be resolved from each other by effects beyond supergrav-

ity; their vevs differ from each other by a very small amount (∼ 1/N

effects).
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Implications for the fuzzball proposal

One could argue (or hope) that these problems are confined to the

two charge system, which after all is not a macroscopic black hole.

However, on rather general grounds one can argue that these issues

will persist in other cases.

The typical scale of the fuzzball geometry is linearly related to the

angular momenta/R charges: the greater the angular momentum, the

more the supertube blows up in the transverse R4.

So when there are only internal excitations along X4 there is no an-

gular momentum in R4 and the D1-D5 branes don’t expand into a super-

tube.
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Now in the D1-D5(-P) system the density of microstates dN,j1,j2 as a

function of the R-charges is known and one may compare the total num-

ber of states, dN =
∑

j1,j2 dN,j1,j2 , with the states of zero R-charge,

dN,0,0. The salient feature is that (for large charges and the 2-charge

system)

dN,0,0
∼= dN/N.

Thus the zero-charge states are suppressed only polynomially with re-

spect to the total (exponential) number of states. The typical state has

zero R charge. This structure is similar in both the 2 and 3 charge cases.

Thus many 3-charge microstates have very small R charges and the

corresponding geometric duals most likely have small scales. As in the

2 charge case, a finite fraction of the entropy would be associated with

geometries carrying only excitations on X4, not blown up at all in R4.
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What have we learned?

The success in constructing a map between horizon-free solutions

and microstates consistently with the AdS/CFT correspondence provides

the most stringent test of the fuzzball proposal to date.

Generically however one needs to go beyond the leading supergravity

approximation to extract the physics.

Given that many of the fuzzball geometries are not likely well-described

in supergravity, and explicitly constructing all of them for even the 3-

charge system is difficult, perhaps we need a different approach to the

problem.
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We argued that it is likely there does not exist enough geometries,

well-described and distinguishable in supergravity, to span the entire set

of black hole microstates.

However a sufficiently representative basis may still exists. That is,

suppose one chooses a single representative of the indistinguishable

geometries, and assigns a measure to this geometry. Such basis of

weighted geometries may be sufficient to obtain the black hole proper-

ties.

Thus to make progress within supergravity, one should understand

quantitatively how typical is the state associated with any given fuzzball

solution, which requires understanding the precise map between geome-

tries and states.
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Conclusions

We have seen how holography can increasingly be promoted to a very

precise framework that can be used to compute gauge theory properties

from geometry and vice versa.

In particular, we have discussed how to decode the hologram for

asymptotically AdS ×X geometries.

We have also used these techniques to scrutinize and further develop

the fuzzball proposal for black holes.

Our results certainly support the overall picture. However the detailed

correspondence between geometries and microstates is more complex

than previously suggested.
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