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OUTLINE
e Quasi-normal modes of AdS black holes

e Heavy ion collisions and hydrodynamics
e Phase transitions in topological black holes
e Conclusion

S. Musiri, S. Ness and G. S., Phys. Rev. D73 (2006) 064001.
G. Koutsoumbas, S. Musiri, E. Papantonopoulos and G. S., JHEP 0610 (2006) 006.
G. S., JHEP 0705 (2007) 042.
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Quasi-normal modes of black holes
Quasi-normal modes (QNMs) describe small perturbations of a black hole.

e A black hole is a thermodynamical system whose (Hawking) temperature
and entropy are given in terms of its global characteristics (total mass,
charge and angular momentum).

QNMs obtained by solving a wave equation for small fluctuations subject to the
conditions that the flux be

e ingoing at the horizon and
e outgoing at asymptotic infinity.
= discrete spectrum of complex frequencies.
e imaginary part determines the decay time of the small fluctuations

1
Sw = —
T
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AdS Black Holes

AdS/CFT correspondence:

= QNMs for AdS b.h. expected to correspond to perturbations of dual CFT.

establishment of correspondence hindered by difficulties in solving wave eq.
e In 3d: Hypergeometric equation .-, solvable

[Cardoso, Lemos; Birmingham, Sachs, Solodukhin]
e In 5d: Heun equation .. unsolvable.
e Numerical results in 4d, 5d and 7d

[Horowitz, Hubeny; Starinets; Konoplya]
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Asymptotic form of QNMs of AdS black holes
Approximation to the wave equation valid in the high frequency regime.

e In 3d: exact equation.

e In 5d: Heun eq. — Hypergeometric eq., as in low frequency regime.
— analytical expression for asymptotic form of QNM frequencies
— in agreement with numerical results.
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Gravitational perturbations
AdS Schwarzschild black holes with metric in d dimensions

2 2
» derive analytical expressions including first-order corrections.
» results in good agreement with results of numerical analysis.
radial wave equation

ds® = — f(r)dt® +

d2 W

a dr2

in terms of the tortoise coordinate defined by
dry 1

dr — f(r)’
potential V' from Master Equation [ishibashi and Kodama]

For tensor, vector and scalar perturbations, we obtain, respectively,
[Natario and Schiappa]

+ Vr(ro)]V = w?W
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£/ -I-rczi - 3) I (d—2)(d—-4)f(r) n (d — 2)]”(7")}

Vi) = £ { - 2

W(r) = f(r) {E(E +7,,CQZ —%) + - 2)(jr; DI 2?“(1;”_(7“;)}

-2
Vs(r) = ‘2(;) [e(z +d-3)-([d—-2)+ (d 1:d(fi3_ Q)M]
{d(d —1)?(d—2)*p* 6(d—1)(d—-2)*(d-4)[(L+d—-3) - (d—-2)]p
x R2,y2d—8 N R2pd—5
(d—4)(d—-6)[((t+d—3)—(d—2)]?r*  2(d—1)%(d—2)*u3
+ R2 + r3d—9
4(d — 1)(d—2)(2d?> —11d+ 18)[¢((4 +d — 3) — (d — 2)]u?
+ r2d—6
(d—1)?(d—2)*(d=4)(d—-6)p> 6(d—2)(d-6)[{({+d—3)—(d—2)]*n
+ r2d—6 B rd—3

6(d—1)(d-2)°(d=4)[e(¢+d—3) — (d—2)]u
rd—3

+a4ll(t+d—-3) - (d—-2)P +d(d -2l +d—-3) — (d— 2)]2}
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Near the black hole singularity (r ~ 0),

1 At  (d=3)2 (4 d-3)

V4 = — - *_ZT; cee A1 = )
! 4r§+[—2(d—2),u]ﬁr T ! 2(2d—5)jL d—?2
v — 3 n Ay T_%+ A :d2—8d+13 (44 d—3)
YT a2 T Cad— ) o TV T o(2d - 15) d—2
and
1 A —dd
‘/S — = 2 + > LT* w )
4r: [—2(d — 2)u]+2
where

_ (2d®—24d>+94d—116) (&> —T7d+14)[(({+d—3) — (d — 2)]
o 4(2d — 5)(d — 2) (d—1)(d - 2)2

We may summarize the behavior of the potential near the origin by

As

=¥

j> -1

471,%

1
V = 4+ Ar, 24+ ...

where 5 = 0O (2) for scalar and tensor (vector) perturbations.
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for large r,

2 1 oo dr
Jo T o b, =
A(rye — Tx) o f(r)

where joo = d—1,d— 3 and d — 5 for tensor, vector and scalar perturbations,
respectively.

After rescaling the tortoise coordinate (z = wrx), wave equation

V =

d—

3
(HO -+ w_mHl) vV = 0,

where

SH

—1

T&“

Ho

_d? [j%2-1
 dz2 42

By treating H as a perturbation, we may expand the wave function

—1] , Hi1=—-Az

_d=3
W(z) =WVo(z)+w 2W(2)+...
and solve wave eq. perturbatively.
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The zeroth-order wave equation,
HoWo(2) =0,
may be solved in terms of Bessel functions,
Wo(z) = A1vz J%(Z) + AQ\/EN%'(Z)~

For large z, it behaves as
2 .
Wo(z) ~ \ﬁ [Al cos(z — ay) + A sin(z — a+)] ,
7T
(A1 — iAg)e el f —Z(A] + iA)e e
V2T V2T

where ar = 7(1 £j).

George Siopsis Patra - June 2007



Ringtones of black holes . .. 10

large z (r — o0)
wavefunction ought to vanish .. acceptable solution

W(ry) = Bylw(re — 7s) Tise (w(re = )

NB: W — 0 as r« — 7+, as desired.
Asymptotically, it behaves as

W (rs) ~ \/%B cos [w(rs —7«) + 0] , B = %(1 + Jjoo)

match this to asymptotic behavior in the vicinity of the black-hole singularity
along the Stokes line Sz = S(wrx) =0

= constraint on the coefficients A1, Ao,
Ajtan(wrs — B8 —a4) — Ap = 0.
iImpose boundary condition at the horizon
W(z)~e? |, z— —o0,

=> second constraint
analytically continue wavefunction near the origin to negative values of =.
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» rotation of 2 by —7 corresponds to a rotation by ——" near the origin in
the complex r-plane.

using
J(e772) = eI, (2), Ny(e "2)=e"YN, — 2icosnv J,(z)
for z < 0, the wavefunction changes to
Wo(z) = e mU+D/2, /7 {[Al (14 eiﬂj)Az} Ji(—z) + Are'™ N (—z)}
2 2

whose asymptotic behavior is given by

(0 Nors [Al — (14 2e )AQ} e “+ Nor [A{ —iAp] e

= second constraint
A1 —i(1 +26/™) A5 =0
constraints compatible provided

1 —i(1 4 2e7™)

‘ tan(wry — 8 — ag) —1 =0
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.. quasi-normal frequencies
1
1 4 2eimt

— v . ) _
wr*=z(2—|—]—|—joo)—tan 1 + nw

[Natario and Schiappa]
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First-order corrections
[Musiri, Ness and Siopsis]

To first order, the wave equation becomes
HoWi1 +H1Wo=0
The solution is
\/ZJ%(ZI)Hl\Uo(Z/)
4%

V2 N%(z’)Hl\Uo(z’)
w

Wi(2) = VZNL(2) /Ozdz’ VEA() /Ozdz’

W = 2/r is the Wronskian.
.. wavefunction up to first order

W(z) = {A1[l — b(2)] — Aza2(2)} V2J,(2) + {A2[1 + b(2)] + A1a1(2)} V2Ni(2)
where

a1(z) = 7%Aw%/ dz' z’_ﬁjg(z/)J%(z’)
0

az(z) = %4w§_2/ dz' z’_ﬁNé(z/)N%(z’)
0

b(z) = %Aw%/ dz' z’_ﬁJ%(z’)N%(z’)
0

A depends on the type of perturbation.
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asymptotically

2
W(z) ~ \/: [A] cos(z — ag) + ASsin(z — ay )],

7T

where
Al =[1-b]A1 —apAs , A5 =[14blAr+a14,
and we introduced the notation
a1 =ai(o0) , ap=uan(oco) , b=>5b(c0).
First constraint modified to
Al tan(wrs — B —ay) — A5 =0

[(1 —E) tan(wF* —6—oz_|_) —C_Ll]Al — [1 —|—E—|—C_LQ tan(wﬁk —6—0&+)]A2 =0
For second constraint,

— approach the horizon
— rotate by —m in the z-plane
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a1(e7z) = " ﬂe_“”al(Z)
. _d—3 ) ..
ar(e"2) = e I3 |¢imigs(2) — 4 cos? %]al(z)—Qi(l—l—e“U)b(z)
. . d—3 - .
b(e 2) = ¢ Td2 b(z)—i(1+e—mﬂ)a1(z)}

inthe limit z — —oo,

W(z) ~ —ie_ijﬂ/zBl cos(—z —ay) — ieijﬂ/QBQ sin(—z — ay )
where
Bi = A1 — Are ™iz[b—i(1 4 e ™)aq]

d-3

— Ape i

et™ g, — 4 cos? %al —2i(1 4 et™ )E]

—i(1 4 €™) [Az + Aoe B [b — i(1 4 e ™)ay] + Are e ™ a,
By = A+ Ase ™ [b—i(1 4 e ™)a1] + Are e ay
*. second constraint
[1 — e ™= (i@ + b)] A1 — [i(1 + 26™) 4+ e ™= ((1 + €™)ay + e™az — ib)] A2 = 0
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compatibility of the two first-order constraints,

14+b+axtan(wrs — B —ay) i(1+ 2e™) + e_”_((l + e™)ay + e as — ib) ' _

(1 -d)tan(wrs — B — at) — a1 1—e ™ ﬁ(zal—I—b)
= first-order expression for quasi-normal frequencies,

e = (244 ) + N2 4
4 217

1 - . —ird=3— _ _ird=3_ _ _imd=3_
8 {6Zb —2ie” "d2b—9a; +e "d2a; +az —e md_zw}

where
_ _ 7mA[(nm —i r(d%)r(l 2(d 2))
T T(za) M2GEL) (L + 5555)
ar = [1—|—2cotggj—:3cotg< +Z—2>]al
b = —cot ggj:g a1

_d=3
» first-order correction is ~ O(n d-2).
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4d

compare with numerical results [Cardoso, Konoplya and Lemos]

set the AdS radius R = 1: radius of horizon rx related to black hole mass u
by

2u = 7“13{ +rg
f(r) has two more (complex) roots, r_ and its complex conjugate, where

1/3
_ _in/3 >, 1 _ _in/3 >, 1
r-=e¢€ (\/u —I—27 u) e (\/u —|-27—I—u)

The integration constant in the tortoise coordinate is

1/3

*

oo dr r r_ r r*

o F() 1"y

’F* —

TN — 55
37“_—|—1 T 37“*_ —|—1 T
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Scalar perturbations

19% T T T |<>| T A '\A) A<> -2_345 T T T T T T T T
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Fig. 1: rgy = 1 and £ = 2: zeroth (horizontal line) and first order (curved line) analytical compared with

numerical data (diamonds).

4A5F4(%)

((4+1) -1

_ 1 ) :
W Ty = (n+z>7r—|—§|n2—|—em/ 62

only the first-order correction is /-dependent.

2un

, Ag =
> 6

In the limit of large horizon radius (rgy ~ (2u)1/3 > 1),

__m(1+14v3)

*N

3\/§TH
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Numerically for £ = 2,

0.508 + 0.293i
“n — (1.299 — 2.250i)n + 0.573 — 0.419i + + !

rH T%{\/ﬁ

which compares well with the result of numerical analysis,

<ﬂ> ~ (1.299 — 2.25i)n + 0.581 — 0.41i
T"H /) numerical
including both leading order and offset.

For an intermediate black hole, ri = 1, we obtain

0.654 4+ 0.4582
NG

In Fig. 1 we compare with data from numerical analysis. We plot the gap

wn = (1.969 — 2.350i)n 4+ 0.752 — 0.370i +

Awnp = wn — wp_1
because the offset does not always agree with numerical results.
» numerical estimates of the offset ought to be improved.

George Siopsis
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For a small black hole, rgy = 0.2, we obtain

1.093 + 0.561+

wn = (1.695 — 0.571i)n + 0.487 — 0.0441i +
NG

to be compared with the result of numerical analysis,

(wWn)numerical =~ (1.61 — 0.6i)n 4+ 2.7 — 0.374
The two estimates of the offset disagree with each other.
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Tensor perturbations

197 T T T T T T T 235 T T T T T T T
1.969 | i P e VAVAVAVAVAVAV;
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20

&A01214161820

Fig. 2: rgy = 1 and £ = 0: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).

1 ) :
WnTy = (n + Z) 7r—|—% In2+4¢/
Numerically for large ryz and £ = 0O,
Wn

H

f AT

(3)

1672

2un

= (1.299 — 2.250i)n + 0.573 — 0.419; +

Ar =

300+ 1)+ 1
6

0.102 + 0.05861

7“]2{\/5
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For an intermediate black hole, ri = 1, we obtain

0.131 4+ 0.09162
NG

in good agreement with the result of numerical analysis (Fig. 2), including the
offset.

For a small black hole, ri = 0.2, we obtain

wn = (1.969 — 2.350i)n + 0.752 — 0.370i +

0.489 4+ 0.251¢
NG

wn = (1.695 — 0.571i)n + 2.182 — 0.615i +

175 T T T T T _056 T . Y ' : <>
1.7t NNNINININI 058 0000V VVV
I R VAR VAR,
1.65} <><><> ] (5062— O ]
1or 0 0.64}
1,55} ] oesl
1.57 : .0.68}
145 ; L L L L _07 1 ] 1 | |
0 2 4.6 8 10 12 02 4,46 8 10 12

Fig. 3: ry = 0.2 and ¢ = 0: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).
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Vector perturbations

I_ k
WnTs = (n-l—%)ﬂ-l-—ln 2+ ”‘”/4“4\28; )\m Ay = E(E"I' 1)

198 1 T T T T T T T -234

1o6l 500000000000 2.36 00056666‘”’é‘V"V”V”V@
1o8] O<><><> ] -2.38 1 o .
1,94} ¢ : 24 “
193_ N '2.42_ 7
19o] _ 2441 —
1.91f : -2.46 1
1.0 : -2.48} ) —
1.895— 8303572767 254

6 8 %&Lg 14 16 18 20 Q\AO 1214 16 18 20

Fig. 4. rgy = 1 and ¢ = 2: zeroth (horizontal line) and first order (curved line) analytical (eq. ()) compared with
numerical data (diamonds).

Numerically for large r and £ = 2,

8.19 + 6.29i
“n — (1.299 — 2.250i)n + 0.573 — 0.419i + + 6.29¢

T 7“12_1\/5
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to be compared with the result of numerical analysis,

Wn

<_> ~ (1.299 — 2.25{)n + 0.58 — 0.42i
TH/ numerical

For an intermediate black hole, ri = 1, we obtain

0.741 + 0.519:

wn = (1.969 — 2.350i)n + 0.752 — 0.370i +
NG

and for a small black hole, ri = 0.2, we obtain
1.239 4+ 0.63571%

wn = (1.695 — 0.571)n + 0.487 — 0.0441i +
NG

estimates of the offset agree for large r g but diverge as ryg — 0.

George Siopsis Patra - June 2007



Ringtones of black holes . .. 25

1.75—— -0.56 ———————————

1.7F VAN q -0.58
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e e _ 0.64f O 0 ¢ -
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23 45,6 78 91011 23 4 5%, 7 8 91011

Fig. 5: rgy = 0.2 and ¢ = 2: zeroth (horizontal line) and first order (curved line) analytical (eq. ()) compared with
numerical data (diamonds).
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Electromagnetic perturbations
electromagnetic potential

Near the origin,

j2—1+£(£—|—1)r*_3/2+
472 >/ —ap

where 5 = 1 - vanishing potential to zeroth order!
» need to include first-order corrections for QNMs.

VEm =

QNMs
o Z. 1 o e+ 1)
w'r*—mr—zlnn—l-Q—Z,ln(2(14—’6)«4‘\/""*)v A= 2\/—4u

» correction behaves as In n.
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Fig. 6: r; = 100 and ¢ = 1: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).

For a large black hole, we obtain the spectrum

Awn  3v3(1—1iV3) (1 i 0.179 + 0.1034

+ > = 1.299-2.25:— +. ..

n

Y

TH 4 Ann
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1.7-<> . 25| i}
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Wn, S AAWn

Fig. 7: rp = 1 and ¢ = 1: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).

For an intermediate black hole, rg = 1,

wp = (1.969 — 2.3507)n — (0.187 + 0.15677) Inn + ...
and for a small black hole, rg = 0.2,

wn = (1.695 — 0.571i)n — (0.045 + 0.135i) Inn + . ..
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Fig. 8: ry = 0.2 and ¢ = 1: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).

All first-order analytical results are in good agreement with numerical results.
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“A second unexpected connection comes from studies carried out using the Relativistic Heavy
lon Collider, a particle accelerator at Brookhaven National Laboratory. This machine smashes
together nuclei at high energy to produce a hot, strongly interacting plasma. Physicists have
found that some of the properties of this plasma are better modeled (via duality) as a tiny black
hole in a space with extra dimensions than as the expected clump of elementary particles in
the usual four dimensions of spacetime. The prediction here is again not a sharp one, as the
string model works much better than expected. String-theory skeptics could take the point of
view that it is just a mathematical spinoff. However, one of the repeated lessons of physics is
unity - nature uses a small number of principles in diverse ways. And so the quantum gravity
that is manifesting itself in dual form at Brookhaven is likely to be the same one that operates
everywhere else in the universe.”

S
—»‘4—
/$\
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AdS/CFT correspondence and hydrodynamics
[Policastro, Son and Starinets]
correspondence between N/ = 4 SYM in the large N limit and type-IIB string
theory in AdSs x S°.
» in strong coupling limit of field theory, string theory is reduced to classi-

cal supergravity, which allows one to calculate all field-theory correlation
functions.

— nontrivial prediction of gauge theory/gravity correspondence

entropy of N' = 4 SYM theory in the limit of large 't Hooft coupling is precisely
3/4 the value in zero coupling limit.

long-distance, low-frequency behavior of any interacting theory at finite tem-
perature must be described by fluid mechanics (hydrodynamics).

universality: hydrodynamics implies very precise constraints on correlation func-
tions of conserved currents and stress-energy tensor:

» correlators fixed once a few transport coefficients are known.
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Hydrodynamics
conserved current: j#
chemical potential © = 0, so in thermal equilibrium

(3%) =0
retarded thermal Green function

Gt (wr @) = =i [ % ™7 0(0) ([ju(), 3o (O)).

where ¢ = (w,q), z = (t,x)

» determines response to a small external source coupled to the current.

w and g small:
e external perturbation varies slowly in space and time
e macroscopic hydrodynamic description for its evolution is possible.
diffusion equation
d0j° = DV?5°,
where D is a diffusion constant with dimension of length.

George Siopsis
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= overdamped mode, dispersion relation
w = —z'Dq2 :

pole at w = —iDg? in the complex w-plane, in the retarded correlation func-
tions of 50
stress-energy tensor TH”

8OTOO _I_ aZTOZ — :
8T + ;T =0,

where
TOO — TOO — P P = <TOO> )
. g g 1 . o g
R n(07% + 0,70 - S8, T ) 4-¢5 9, T,
pTPp

p (p): energy density (pressure)
n (¢): shear (bulk) viscosity.
two types of eigenmodes:

e the shear modes - transverse fluctuations of momentum density 79¢, with
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a purely imaginary eigenvalue
_n
p+p’

e sound wave - simultaneous fluctuation of energy density 790 and longitu-
dinal component of momentum density T9%, with dispersion relation

) 1 2 2 3p
W= Usq — ———— U = —.
conformal theory = stress-energy tensor is traceless, so

1
= 3p , =0, us=-—47x
p p C S \/§

w=—iDg® , D=
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Gravity

The non-extremal 3-brane background is a solution of type-lIB low energy
equations of motion.

In the near-horizon limit r < R, the metric becomes

2
ds?, = (”TUR) (— F(uw)dt? + dz? + dy? + dz2> +

du’ + R?dQ2
4u2 f(u) utr

2
. . T
where T' = 7:}%2 is Hawking temperature, u = T—g, fluw) =1—u2

The horizon corresponds to v = 1, spatial infinity to u = 0.
gauge theory/gravity correspondence:

e background metric with non-extremality parameter rq is dual to N' = 4
SU(N) SYM at finite temperature 7" in the limit of N — oo, g&,,N — oco.
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Shear Mode
compute two-point function of stress-energy tensor in the boundary theory
» consider small perturbation of metric

Juv — g/glg) + h,UJ/

where gfﬁ? is given by

22 P2 2
2 T T R 2 2 R 2
dsg = (—f(u)dt + dx ) + 4f(u)u2du .
Einstein equations:
0 1 2\ —6
R :RII(LI/)_I_R,SU/) 4 ... = ?QFW’/\Zﬁ
To first order in Ay,
1 4
RIL(U/) — —ﬁhuy .

assume perturbation ~ e 'witiqz
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fix gauge
huy =0
3 classes of perturbations:
® hyy #= 0,00 hyy = —hyy # 0;
® hytand hy, 7= 0, or hys and hy, 7= 0O;

e h;, and all diagonal elements of h,,, are nonzero, and hyy = hyy
(sound wave).
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Perturbation with h,, = O

1 — 3u? 1 0°h 0?hay\ 14 u?
h!! h! ) — S hay =0
T N T LT (f 022 0Ot? fuz

_ uhgy
Introduce ¢ = TRYZ — hy,
Fourier component ¢, (u) satisfies eq. for minimally coupled scalar

1+ u? w? — g2 f
D — &, + = ¢ = 0.
Coup P uf?
For incoming wave at horizon,
br(u) = (1 —u) "2 Fy(w),

where Fj.(u) is regular at w = 1 and can be written as a series

. 2 —
Fi(u) = 1_7’;’ n? ;’“4-“; [(| Ltu g0 —)> LtU 4,1 =% o),

retarded Green function
G (@, @) = =i [ a2 e 0(0)([ Ty (), Ty, (0)])
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Deduce

shear viscosity of strongly coupled N’ = 4 SYM plasma (Kubo formula)

n= lim —/dtdw e ([T (), Tiy(0)]) = ~N2T3.
w—0 2w 38

NEXT: Calculation involving different components leads to same result!

George Siopsis
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Perturbation with h;, %= 0, hy, %= 0
In this channel correlation functions have diffusion pole.

Einstein equations for Fourier components of H; = &@—%2, H, =

Deduce

H,§+°'fH’_o
1 2
H -~ -2y, Y g —o,
U uf uf
1 2
H — +“H’+m H+ g, =o0.
uf u f? u f?
o=y S Sy,
wq wq w
H///_Q_UH//_I_Quf_qu_szHz_O
/ u f?

In the low-frequency, long-wavelength limit, solve as before...

uh o

(7T R)2 :

George Siopsis
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a1

Hi(u) = (1 — u)"™2G(u)

"o 2u_ Ay ,
¢ (f 1—u)G+

@+———+

f 4uf

2 2

201 _
G(u) =C [u—z‘w(l—u—gln 1+u) 49 (1 u)] + O (w*, w9°,q%) .

0 Hp + awH?

C = ! =
0 — 5
Deduce correlators
N27T3¢?
G;(j x 9 — O w27w 27 4 J
ta tz (W, q) S(iw_DqQ)Jr (w°, wq°,q7)
N?7T3wq
G ) - - O wzaw 27 4 ’
te,ez (W, q) 8(io — D) + O(w*, wq",q7)
N27T30°2
G ’ — O w27w 27 4 ’
2ze2(W, q) 8(io — D) + O(w*, wa",q7)
1
where D = AT

w2[4 — u(1 +u>2]> o

George Siopsis
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Deduce n:
i — 1
» recall from hydrodynamics D = et
Entropy:
3 2
§ = —8g = 7T—NQT?’,
4 2

where sg is entropy at zero coupling.
2
From s = g—g, p = 3p,deduce p + p = 7T7N2T4,

T 23
= _N?7T3 ., “=_—
=g

» agrees with Kubo formula.
» no agreement unless s = 3so.

George Siopsis
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behavior of n as a function of the 't Hooft coupling

n = folggmNINT?

where f,(z) ~ ——forz < 1and fy(z) = Fforz > 1.

» At weak coupling,

> 1
S 47

George Siopsis
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Conformal soliton flow

the holographic image on Minkowski space of the global AdSs-Schwarzschild
black hole is a spherical shell of plasma first contracting and then expanding.

» conformal map from S%=2 x R to (d — 1)-dim Minkowski space

[Friess, Gubser, Michalogiorgakis, Pufu]
QNMs = properties of plasma

1
72 Re Sin —
) o w3 — 4w 2

— vy = (CO0s2¢) at § = 5 (mid-rapidity), average with respect to energy
density at late times

_ s (yP=a?) L - _
0 (22 (eccentricity at time t = 0).

Numerically, %2 — 0.37, cf. with result from RHIC data, %2 ~ 0.323
[PHENIX Collaboration, arXiv:nucl-ex/0608033]

George Siopsis
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e thermalization time

1 1

= ~ ~ 0.08fm/c , 1T, = 300 MeV
T T 2mw|  8.6Theax / beak

cf. with RHIC result = ~ 0.6 fm/c
[Arnold, Lenaghan, Moore, Yaffe, Phys. Rev. Lett. 94 (2005) 072302]
Not in agreement, but encouragingly small

» perturbative QCD yields = £ 2.5 fm/c.
[Baier, Mueller, Schiff, Son; Molnar, Gyulassy]
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Analytical calculation of low-lying QNMs
[G. S., hep-th/0702079]

Vector perturbations
introduce the coordinate

wave equation
d—4 d—4 / N
—(d - 3)?ud3 f(u) (w3 fu)V' ) + RV =2V , &=
\

where prime denotes differentiation with respect to v and
flu) = “)—1—uﬁ(u—12u)

TH

~ . , (d-—1)d-2)(1+ 2%
VV(U)_?‘;V:]C(U){ (d 2)(d-4) = Flu) h ( )u}

T 4

¢(4+d-3)
i

where L2 =
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First consider large black hole limit r;; — oo keeping & and L fixed (small).

Factoring out the behavior at the horizon (u = 1)

W= (1 —u) IR ()
the wave equation simplifies to

AF" + BaF' +Cy g F =0

)2 w0 uwaes (1 — uas)

2d—8 d—1

where
A = —(d—3)%u= (1 —ui)
By = —(d=3)ld—4-(2d-5)u=]u= —2(d—3)"—
_ d—2)[d—4—3(d—2)us] __
c.. = L2+( )[ ( Jus] 2
: 4
- &}2 d_1 + (d - 3)2 &}2 uﬂ(l — ug)
1 — uis (d—1)2 (1 —u)?
@ [d—4 — (2d — 5)us]uis
(43 ™ [ ( Juas]u - 3)
d—1 1—u

1—u

2d—8 d—1

5 1w ues (1 — ues)
(1 —u)?

d—1

George Siopsis
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solve perturbatively:
(Ho+H1)F =0
where
HoF = AF" 4 BoF' 4+ CooF
H1F = (B —Bo)F' + (Cyz —Coo)F
Expanding the wavefunction perturbatively,

F=Fy+F+...
at zeroth order we have

HolFpo =20
whose acceptable solution is
d—2
Fy = u2(d-3)
d—2
regular at horizon (v = 1) and boundary (u = 0, or¥V ~ r 2 — 0 as

r — 00).
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Wronskian
1
W= —= d—1
3(1 — ud—3)
Another linearly independent solution
_ w
Fo=Fy | —
0] 0 Fg

unacceptable .- diverges at both horizon (Fy ~ In(1 — u) for v ~ 1) and

d—4 d—4
boundary (Fg ~u 20-3) foru ~ 0,0or ¥ ~r 2 — ocoasr — 00).

At first order we have
Holr = —H1Fo
whose solution may be written as

F1—Fo/
E2
0

The limits of the inner integral may be adjusted at will

/Fo'/'leo

.~ this amounts to adding an arbitrary amount of the unacceptable solution.
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To ensure regularity at the horizon, choose one of the limits at u = 1

» integrand is regular at the horizon, by design.
at the boundary (u = 0),

_ 1 FoH1 Fp
F1 = F| -+ regular terms
! OJo AW .
The coefficient of the singularity ought to vanish,
P FoHaFy _
o AW

= constraint on the parameters (dispersion relation)

aoiz — z'ach — a2@2 =0
After some algebra, we arrive at

d—3
= —-——, = d — 3
0Ty
The coefficient as

e may also be found explicitly for each dimension d,

George Siopsis
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e it cannot be written as a function of d in closed form.
e it does not contribute to the dispersion relation at lowest order.
e E.g., ford = 4,5, we obtain, respectively

L2 R d—3 L2
) , W1 R —1 -+ 2
d—1 a d—1

In terms of frequency w and quantum number /,

€(€—|—d 3) w1 d—3 L+ d-3)
, — & —1 + 5
(d— 1)TH TH an (d— 1)7“H
The smaller of the two, wq,

woz

e is inversely proportional to the radius of the horizon,
e is not included in the asymptotic spectrum.

George Siopsis
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The other solution, w1,
e IS a crude estimate of the first overtone in the asymptotic spectrum.

e shares important features with asymptotic spectrum:
— 1t is proportional to rg;
— dependence on ¢ is O(1/7%,).
The approximation may be improved by including higher-order terms

» Inclusion of higher orders also increases the degree of the polynomial in
the dispersion relation whose roots then yield approximate values of more

QNMs.
» this method reproduces the asymptotic spectrum albeit not in an efficient
way.
Include finite size effects:
— use perturbation (assuming 1 /r is small) and replace H by

1
H1=H1+ 5Hy
"H
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where
HHF — AHF” —|— BHF, —|—CHF

Ay = —=2(d—3)%u?(1 —uw)
1_ d—1
By = —(d-—3)u [(d—3)(2—3u)—(d—1)1 ?_lum]
— U d-3
Chw = d_—2[d—4—(2d—5)u—(d—1) 1_?11&5_;]
2 1 — wues

Interestingly, zeroth order wavefunction Fy is eigenfunction of H gy,

HpFo = —(d—2)Fp
.. first-order finite-size effect is simple shift of angular momentum

22 172
-
H
.. QNMs of lowest frequency are modified to
Ll+d—-3)—(d—2)
—1

(d—1)ry

wo —

+0(1/r%)

George Siopsis
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For d = 4,5, we have respectively,

((-1¢+2)  (+1)*-4
3ryg ’ ' Ar g

wog = —1

In agreement with
[Cardoso, Konoplya and Lemos; Friess, Gubser, Michalogiorgakis and Pufu]

AdS/CFT correspondence

dual to AdS Schwarzschild bh: gauge theory fluid on boundary of AdS (S92 x R).
consider the fluid dynamics ansatz

u; = Ke_iQTVZ’
u;: (small) velocity of a point in the fluid, V,: vector harmonic on S%—2.
Demanding that this ansatz satisfy standard eqgs of linearized hydrodynamics,
= constraint on the frequency of the perturbation €2 which yields
LUl +d—3)—(d—2)
Q= —
(d—1)ryg

+0(1/r%)

[Michalogiorgakis and Pufu]
in perfect agreement with its dual counterpart.
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Scalar perturbations
WA/ replaced by
3 -2
G = {2 [m+ (1+i2) u]
4 T

2
X {d(d—2)(1+i2) u%—6(d—2)(d—4)m(1+i2)ui—3
T TH

H

3
+(d — 4)(d — 6)m2u" 75 4+ (d — 2)2 (1 + iz) u?
"

2
+2(2d? —11d + 18)m (1 + %) u?
T

H
2
(d—4)(d—-6)(1+ =+
+ > ( H) u? — 3(d—2)(d — 6)m? (1—|—ri2>u
H H
6(d—2)(d— 4y (1+ ) 7
— 5 L+ 2(d - 1)(d - 2)m> 4+ d(d — 2)—-
’I“H T
~ _ A+d—3)—(d—2) _ 2(4+d—2)(¢-1)
where /. = 2 @D (d—2)2,  (d-1)(d-2)r2

}

George Siopsis
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In the large black hole limit r; — oo with m fixed, potential simplifies

d—

‘75(0)(,“) — {d(d — 2)’1,1,% —6(d —2)(d — 4)mus
m + u

[&]

+(d—4)(d—6)m2u T + (d — 2)%u°

4+2(2d? — 11d + 18)mu? — 3(d — 2)(d — 6)m?u + 2(d — 1)(d — 2)m3}

» additional singularity due to double pole of scalar potential at u = —m.

» desirable to factor out the behavior not only at the horizon, but also at the
boundary and the pole of the scalar potential,
d—4

.o 212(d-3)
W= (1-u) 12

—~

m -+ u
.. wave equation
AF" + B;F' +C5F =0
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where
A = —(d—3)2u%(1—u%)
By = —(d—3)us(1—um) [d 4 Q(Ad—3)]
Uu m—+ u
—(d—3)[d— 4 — (2d — B)urs|uis — 2(d — 3)? Zwlu“ll_uﬁ)
— —u
s o [ (d=2)(d—-4) (d-3)(d—-4)  2(d-3)?
-1 SRR e=1 1—u§) d— 4 d—3
_[{d—4—(2d—5)U3}u3+2(d 3) 7 1 ][2u _ﬁ%—l—u]
B _ s, [d 4—(2d 5)’U,d 3] 5_ B 5 100 u2dd38(1_ud 3)
(d=3)—— T (=3 T —a w2
‘75(0) (U’) o &}2 2 &}2 u%(l — u%)
e T Y aTy awp

Define zeroth-order wave equation HgFy = O, where
HoF = AF" 4 BoF'
Acceptable zeroth-order solution
Fo(u) =1
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» plainly regular at all singular points (v = 0, 1, —m).
» corresponds to a wavefunction vanishing at the boundary
(W ~ r_d_74 as r — o0).
Wronskian
~ 2
W= QZL i U)d—_l
wd=3 (1 — ud-3)

Unacceptable solution: Fy = [ W

e can be written in terms of hypergeometric functions.

e for d > 6, has a singularity at the boundary, Fy ~ u_gll:—g for u =~ 0,
Or\UNrdE—6—>ooaS’r—>oo.

e for d = 5, acceptable wavefunction ~ r—1/2; unacceptable ~ r=1/2Inr

e for d = 4, roles of Fy and F{; reversed; results still valid.

e [ is also singular (logarithmically) at the horizon (u = 1).
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Working as in the case of vector modes, we arrive at the first-order constraint
1 C — 5
o AW
H1Fo = (Bg — Bo) Fy + CaFo = Cg
.. dispersion relation

ap — ajtw — 3_2&}2 =0
After some algebra, we obtain

d—114+(d—2)m d—3 1 R
ag = , a] = , a>=—4{14+0
For small m, the quadratic equation has solutions
d—3 d—1
OF ~ —i (RN E—)
2
related to each other by & = —&, ™

» general symmetry of the spectrum.
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Finite size effects at first order amount to a shift of the coefficient ag in the
dispersion relation

1
ag — aQ —I— —QaH
"o

after some tedious but straightforward algebra, we obtain

an =~ {1+00m))

The modified dispersion relation yields the modes

in terms of the quantum number Z,
((0+d—3)—(d—2) i\/€(€+d—3)
(d—1)(d—2)ry d— 2
in agreement with numerical results

wE ~ —i(d - 3)

[Friess, Gubser, Michalogiorgakis and Pufu]
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e imaginary part inversely proportional to rg;, as in vector case

e finite real part independent of rg

— speed of sound vy = ﬁ (due to conformal invariance)

AdS/CFT correspondence
perturb gauge theory fluid on the boundary of AdS (S92 x R) using the ansatz

u; = Ke B7V,S |, 6p = Kle HTS
u;: (small) velocity of a point in the fluid,
dp: pressure perturbation,
S: scalar harmonic on S92,
Demanding that this ansatz satisfy eqs of linearized hydrodynamics,
= frequency of perturbation €2 in perfect agreement with our analytic result.
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Tensor perturbations

Unlike the other two cases, asymptotic spectrum is entire spectrum.
In large bh limit, wave equation

2d—8

—(d—3)2(uis — )V’ — (d—3)[(d — Buis — (2d — 5)u2]W’

+{E2+d(d—2) (d—2)? w2 }w — 0

1
4 1 — u+s

2
U -3

For zeroth-ordereq.,set L =0 =&
— two solutions are (W = F{ at zeroth order)

d—2 d—2

FO(’U,) = u20@-3 Fb(’u,) = u 263 |Nn (1 _ u;l_—;)

Neither behaves nicely at both ends (v = 0, 1)
.. both are unacceptable.
*. impossible to build a perturbation theory to calculate small frequencies.

in agreement with numerical results and in accordance with the
AdS/CFT correspondence

» there is no ansatz that can be built from tensor spherical harmonics T;;

satisfying the linearized hydrodynamic eqgs because of the conservation
and tracelessness properties of T; ;.
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PHASE TRANSITIONS IN TOPOLOGICAL BLACK HOLES

[Koutsoumbas, Musiri, Papantonopoulos and Siopsis]

MTZ black hole [Martinez, Troncoso, Zanelli]

4d gravity with negative cosmological constant (A = —3) and a scalar field
R+6 1
I:/d4\/——[ g 9,00,b — V ]

L g 1670 29 Meleyo (¢)

potential is given by
3 . 2 47TG
Vv = ———sinh“{/——
(¢) 0 3 ¢

static black hole solution with topology R? x X, where X is a 2d manifold of
negative constant curvature

2 2
ds® = T((::éi)'t;) ! <T2 — <1 + %) ) dt? + (7“2 — (1 + %) )

George Siopsis Patra - June 2007
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and the scalar field is

» = / Arctanh

For ¢ = 0, Topological Black Hole (TBH)
2G

/’/i

2Gul "~

/’/i

ds%z—['rQ—l— ]dtz—l—['rQ—l—

difference between the TBH and MTZ free energies

AF = Frppg — FMTz——ﬁ(T To)373 + ..

= phase transition between MTZ and TBH at the critical temperature Tg

1
dr? + r?do?

— 1
— 2r

George Siopsis
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QNMs of electromagnetic perturbations
wave equation

sy (1052 + |2 - (@43) 1P| wo =0,

where
2Gu

r

2
furz(r) = r° (1 + ) . freu(r)=r°—-1-

calculate QNMs both analytically and numerically - excellent agreement!
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MTZ: E/M perturbations, rp=5.00, xi=1.0

omega_|

T Pt i B Rl Rl W f = -100

omega_R

Contours displaying the lines Re [¢o(w)] = O (dashed lines) and Im [¢o(w)] = O (dotted
lines) on the complex w—plane for MTZ Black Holes and r = 5.0.

QNMs lie on a straight line with negative slope; spacing is constant.
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Below critical T

striking feature of QNMs: slope is positive. Intersections no longer lie along a
straight line; spacing changes.

» finite number of QNMs.

MTZ: E/M perturbations, rp=0.97, xi=1.0

omega_|

© o N e & oA b A o

KN
o

J. | | ]
0 01 02 03 04 05 06 07 08 09 1

omega_R

Contours displaying the lines Re [¢o(w)] = O (dashed lines) and Im [y (w)] = O (dotted
lines) on the complex w—plane for MTZ Black Holes and » = 0.97.
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T4 Gu T Awéna Awfma Awg“m Aw}vum
10.000 | 90.00 | 3.023 | 18.96 | —20.26 | 19.00 —20.15
5.000 20.00 | 1.434 38.91 —10.25 8.77 —10.45
2.000 2.000 | 0477 2.75 —4.21 2.70 —4.14
1.050 | 0.0525 | 0.175 0.32 —2.15 0.27 —2.16
1.000 | 0.000 | 0.160 | 0.00 —2.00 0.00 —2.00
analytical and numerical values of QNMs of EM perturbations of MTZ Black Holes.

wgum w%\fum Awgum Aw}\fum

0.973 | —1.496 - -

0.864 | —3.351 | 0.109 1.905

0.701 | —5.239 | 0.163 1.888

0.486 | —7.114 0.215 1.875

0.143 | —8.980 | 0.343 1.866

Numerical results for QNMs of EM perturbations for MTZ Black Holes with 4 = 0.97.
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Two time scales:
e oscillation time scale 7p = 1/wpr
e damping time scale 77 = 1 /wy
Above critical T" (r4 > 1), the scalar field is absorbed by the black hole and 7;
is small
.. perturbations fall off rather rapidly with time.

Below critical T' (r4 < 1), the black hole is dressed up with the scalar field and
77 IS large

.. perturbations last longer.

At critical T" (r4- = 1), we have a change of slope

» transient configuration - second order phase transition.
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CONCLUSIONS

e Quasi-normal modes are a powerful tool in understanding hydrodynamic
behavior of gauge theory fluid at strong coupling

e RHIC’s fireball can be described by a dual black hole

e RHIC and LHC may probe black holes and provide information on string
theory as well as non-perturbative QCD effects.
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