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Part |: Strong QED
or QED in a Strong Magnetic Field

» Introduction



In a strong magnetic field,
QED,
in addition to the familiar weak coupling phase,
has a nonperturbative strong coupling phase
characterized by
Dynamical Chiral Symmetry Breaking (DxSB)



Consequences of DxSB in Strong QED:

» Bound state formation in strong QED

» Historically: Explanation for multiple correlated and narrow peak structure in e"e™
spectra observed in heavy ion collisions at GSI
3 Strong and rapidly varying EM field in the neighborhood of colliding heavy ions



Consequences of DxSB in Strong QED:

» Electroweak standard model in a strong magnetic field

» Strong magnetic field induces a transition from broken to sym. phase in EWSM
» One obtains W and Z condensate solution (finite mass gap)

» T, for symmetry restoration is lower than the one without magnetic field
(T. = 1TeV)



Consequences of DxSB in Strong QED/QCD:

» Astrophysics of compact stars

» Neutron stars (Quark Matter under extreme conditions 7', i, B)
3 B ~ 10" GauB leading to exotic phases of quark matter (e.g. color superconductive phases etc.)



Theory of Magnetic Catalysis of DySB

— Miransky et al. 1993-2003



Theory of Magnetic Catalysis of DySB

e As in non-relativistic QM, B # 0 » Landau levels
« In a strong magnetic field a Lowest Landau Level ( LLL ) approximation is justified

»>p» Effective Quantum Field Theory in the LLL



Properties of the effective Field Theory in the LLL

Starting with a chiral invariant theory including massless particles

|. Dynamical mass generation « xSB » Bound state formation (i) # 0

Solving the corresponding Schwinger-Dyson Eq. (Gap Eq.)

» In the quenched/ladder approximation (i.e. neglecting the effects of dynamical fermions )

1/2
Mayn. = CVeBexp (—g (%) ) = My, < |eB]

» Numerical calculation of (1)) in 3-dim. strong QED
— Farakos, Mavromatos et al. (1999)



Properties of the effective Field Theory in the LLL

[I. Dimensional reduction D — D —2

Dynamics of 4-dim. QED in a strong B field ~ Dynamics of 2-dim. Schwinger model

. . 2
e In ordinary Schwinger model — Photon mass mi =L

g
|eB|£
2r w

e In Strong QED in the LLL approximation — Photon mass M3 =



Characteristics of Fermions and Photons in LLL
e QED Lagrangian density
1 - .
L= _ZF“”FW + Yy* (10, + eA,) ¢ with A, =a,+ A;f’t'

¢ In the symmetric gauge

. B .
A;lf = 5 (O,ZL’Q, —Z1, 0) = B = Be;

Using Schwinger proper time formalism

»>» Full fermion and photon propagators



Characteristics of Fermions and Photons in LLL

Fermion propagator in a constant magnetic field

eB
SF(x7y) = exXp (%Eabxayb) SF(x - y)a aab - 17 2
~ S . Dy(eB,k
SF(k”?kJ-) =€ |7 Z(_l) kﬁ _ m(2 _ 2|2B’n7 k|| = (k07 k?}) & kJ_ - (kla k2)
n=0

~ n labels the Landau levels

~ Dy, (eB, k) are some Laguerre polynomials

» Inthe IR region, with |k |, k.| < \/|eB], the physics is dominated by the dynamics in
the LLL withn =0

Higher Landau levels with n > 0 decouple in this approximation



Full Fermion propagator in LLL approximation

Sr(z,y) = S)(x) —y)P(x1,y1)

» the longitudinal part

T R 1o 1
5||(X||—Y||)=/(27r)26k“( Y Tk —m 0=

(1 — i”yl’y2sign(eB))

» the transverse part

B leB]|

ieB eB
P(XJ_,YJ_) — exp < ab_a, b | ‘

9 €E Ty —(XJ__YJ_)2)7 aab:172

2T 4



Full Photon propagator in LLL approximation

Il
jpag g v
Dy (q) = -
q? +qHH <qJ_7q||>

2
H(qi,qﬁ) 20&‘65;|Nf _mTé\ 1 (\/1— Y+ )_1 7 )= q2||
Expanding TI(q?, qﬁ) for y<land y > 1
2 2 aleB|N; _ al 2 2
(a) H(ql’q”) ~ +We 2[eB] fOI’ |q||| < mdyn. < ‘BB‘
yn
2aleB|N; _ @
(b) (q7, af) ~ Tf 2es] for My, < |qf| < |eB
2aleB|Ny

For regime (b) I1(q%, qf) has a pole at qf = 0 »>» Finite photon mass M2 =

s



Part I1: NC-QED vs. Strong QED intheLLL

< Miransky et al., PRD (2004-05)
< A Jafari Salimand N.S, PRD (2006)

» New Development



The Claim

»>» Effective action of strong QED in LLL ~ Action of noncommutative QED <<«



Noncommutative (NC) QED

» Action of NC-QED

(ﬂ&“mw%:—i/d%P@*FW“+/d%¢&w*@D—nww@)

» Noncommutative x-product

1O 0 0
) wate) = fla+ € o (5 ol Jata+ Q)

£=¢=0
3~ Field strength tensor
Fu = 0,A, — 0,A, +ie[A,, A,
» To prove their claim:

Compare action of NC-QED with the effective action of Strong QED in LLLA



Effective action of QED in LLL approximation

» Full effective action for A= A, - 4*

A A
I[A] = i—%o LT[ AJ; A Q =T[4

» n-point vertex function of A

L,[A] = /d4x1 coodie, [Axr) Sp(ar, 1) Als) Sp(wa, x3) - - - A2,) Sp(n, 21)]

In LLL approximation (LLLA):

Sr(x;, x;) is the full fermion propagator in LLLA between the insertion points z; and z;

H 7
Integrating over x', »>»



n-point vertex function of strong QED in the LLLA

ﬂﬁLzﬂflégkgy/d%lfxy~d%ﬂUO%@!—ﬂﬁA@lxg 56— xh At D)

with the smeared gauge field

VZ

Az) =41 Aj(z)  and A (x) = eTH 4 (z)

Full effective action
Adding up the n-point vertex functions »>» Full effective action T’ = '@ 4 (M
» The tree level part
r® = /&M@W% F,, =0,A, —0,A,

» The one-loop part
ileB|N;

r®— _
2

/fxﬁﬂomOv(%—wAD)



Properties of the effective action of strong QED in the LLLA

_i|eB|Nf

ro = -2 / &z Try (Oln (in - (9 —ieA)))),

» The ordinary product of functions = Noncommutative * -product
» 'V is invariant under NC-U(1) gauge symmetry
A () — U(z) « Au(z) » U™ () + ~ Uw) + 8,0 (@), p=0,3
(&
» Smeared gauge field

A||(£B) = G%A”(x)

»>p» The additional form factor leads to a removal of NC UV /IR mixing

Here, in contrast to the ordinary NCFT a natural cutoff, A 5 o< \/|eB| appears »>»NO UV /IR mixing

QED in the regime of LLL dominance = Modified Noncommutative QED



Part I11: NC-anomaliesand LLL anomaly

< F. Ardalan, H. Arfaei and N.S,, 1JMPA (2006)
<N.S and A. Jafari Salim, PRD (2006)

» NC-Anomalies



Noncommutative ABJ Anomalies

» Noether Theorem

» Two currents corresponding to one global U,4(1) transformation
0 yRe’ 5 U5 o 5
JHS = P« (449, 3% =% % (1"7°) 5y ¥°

Two classical conservation laws » Two anomaly equations at the quantum level

D" = 0 9,545 = 0
Dqu,S = Acov. 7& aujliﬁ = Ai'rw.

» The integrated form of these two anomalies are equal
Due to the properties of x- product

/de Acow. = /de Ainy.

Integration over NC-coordinates



Noncommutative ABJ Anomalies

- Covariant anomaly «<i« Planar diagrams (— F. Ardalan and N.S. 2001 )

62

D, J" = — oz b < F

- Invariant anomaly <<« Nonplanar diagrams (— F. Ardalan and N.S 2002 )

Using e.g. Pauli-Villars Regularization

%L(jg(Q)): lim —

2 10)242 4 -
€ e_% d*p (g— )sm(q AD) =~
M—oco 167T2

Fu
(2m)s# @—» qAp

F‘W(p) + ...



Noncommutative ABJ Anomalies (Nonplanar anomaly)

) ) e2 _(M0)%a? d4p
@) = Jim — e [ R -

M—oco

For large but finite cutoff A/:

» The result is affected by NC UV /IR -Mixing
— F. Ardalan and N.S. (2001-02)

)sin(qu) 2
qAp

8, md — 0 (09)? > 5= UV limit
. i P K P (09 < 5 IRlimit

with generalized +'-product ( H. Liu et al., Garousi, - -- 2001-2003 )

: eLV ¢
sm( w0

2 06 ¢

f@) + g(z) = flz +§)

(e,uu 0 o)

2 9&u 9¢y

) g(fv+0’

£=(=0

F#V(p) + ...



Noncommutative ABJ Anomalies (Nonplanar anomaly)

: : e i [ d'p sin(g A p)
w0 = i, g T [ Gtla - p S0

» In the limit A/ — oo, anomaly ¢, (jt(¢)) =0 exceptwhen g, =0

_0n0%ad

e =1, for q =0= Finite nonplanar anomaly

— A. Armoni, S Theisen and E. Lopez (2003)



Noncommutative ABJ Anomalies (Nonplanar anomaly)

» According to the above results

=0 UV limit

Whereas Acon. # 0, ~ Aina. o
7 { # 0 IR limit

This result seems to be in conflict with our previous statement

/de Acov. = /de Ainy.



Noncommutative ABJ Anomalies (Nonplanar anomaly)

» To solve this apparent puzzle, perform UV + IR regularization
This makes the role played by q; = 0 more precise
— F. Ardalan, H. Arfael and N.S. (2005)

> UV: Point splitting » UV cutoff: the point-split parameter ¢
> |IR: Compactified NC coordinates around a circle with radius R » IR cutoff: R

(0,5"°) = lim lim ---

e—0 R—oo



» After taking the UV limit «

Unintegrated nonplanar anomaly includes only the zero modes of the FT of F = F F

+R

‘ _ 1 L
Aino. = (0,5 (2)) ~ FO (q1 = 0,%x)) = @n)e /R Py F (71, %))

It vanishes in the limit R — oo
Ai'rw. =0

» The integrated form of the anomaly remains finite in the limit R — oo <

/d2fEJ_ Amy, - /d2xj_ Acov,

Zero charge density «<<«»>» Finitetotal charge




Part I11: NC-anomaliesand LLL anomaly
< N.S and A. Jafari Salim, PRD (2006)

» LLL Anomaly



LLL Anomaly

» Consider the axial vector current 7/ (z) = 1 (x)y*~v°¢(z) of the original QED

» Caculate (7)) = (¢(x)y"~°¢(x)) perturbatively by replacing

Fermion Propagators = Fermion propagatorsin LLL

» We arrive first at

(T3'(q) = —€/d493 d'y e tr (v S (x) — y))P(xi,y 1) Aly) Si(yy —x)) Py, x1))

»>p--- andthenat LLL Anomaly
ieN¢leB|sign(eB) _ ai
q#<\75u(q)> = fl 2LT2g ( ) e 2Bl 612abqa14b(q||7 qJ.)? a, b= O, 3

o2
» Here, the factor ¢ 70 isthe expected form factor of A

@ v
efmAb(q) — GWAI,({E)



Comparing LLL anomaly and NC nonplanar anomaly
Observations:

I. LLL anomaly is comparable with nonplanar anomaly !!!
»>p LLL Anomaly

ieN¢leB|sign(eB)

(5 (9)) = 2 e g Ay(qpar),  a,b=0,3

»>» Nonplanar anomaly

, . ie?  _0)%a? d*p sin(g Ap) =,
e L T A

Il. QED in a strong magnetic field has a natural cutoff Ay = veB ~ (M)~ in NCFT
[ll. LLL anomaly is first order in A, »» Anomaly of a 2-dim Schwinger model

w(it(@) = L Aa),  ab=0,1

This is the consequence of dimensional reduction D — D — 2 in LLL



Comparing LLL anomaly and NC nonplanar anomaly

» LLL anomaly is comparable with nonplanar anomaly !!!
Remember: The unintegrated form of the nonplanar NC anomaly vanishes everywhere, but its integrated

form is non-vanishing

Questions

» Integrated and unintegrated LLL anomalies?
» What is the role played by q; = 0 in LLL anomaly?

»>p Compactification of x; around a circle with radius R



Results

» Unintegrated form

- Nonplanar (NC) anomaly, for finite IR cutoff R, involves only the zero modes
of ¥ = 77 F,, F*? in NC-directions and vanishes in the decompactification limit

R — o0

- LLL anomaly, for finite IR cutoff R, involves nonzero and zero modes of
F = €2%F, in transverse directions to B, but in the decompactification limit
R — oo only the nonzero modes survive

» Integrated form

- Nonplanar (NC) anomaly involves only the zero modes is finite

- LLL anomaly involves nonzero and zero modes is finite



Summary

» Effective action of QED in the LLL corresponds to a modified NC-QED
» No UV/IR mixing appears in this modified NC theory

» The LLL anomaly is comparable with the nonplanar anomaly of ordinary NC-QED
» The LLL anomaly is also comparable with the anomaly of a 2-dim Schwinger model



