Axionic gaugings in N = 4 supergravities

Marios Petropoulos

CPHT - Ecole Polytechnique - CNRS

Fourth regional meeting in string theory
Patras 2007

based on work with Jean-Pierre Derendinger (Neuchâtel University) and Nikolaos Prezas (CERN)

Highlights

Motivations, summary and conclusions

Gauged supergravities and the embedding tensor

The non-unimodular gaugings

Higher-dimensional origin: generalized Scherk-Schwarz reduction

Why gaugings and fluxes?

Usual caveats of string compactifications:

- ▶ Supersymmetry breaking: N = 4 or $8 \rightarrow N = 1$ and 0
- Many massless neutral scalars: moduli stabilization
- ► Cosmological constant (?)

Tool for a better control of the situation: give vev's to antisymmetric-tensor fields such as NS–NS, R–R, spin connection

From the low-energy viewpoint

- ▶ Toroidal compactifications: N = 8 or N = 4 ungauged sugras with neutral scalars without potential
- ▶ Flux compactifications: N = 8 or N = 4 (or less) gauged sugras with charged scalars under (non-)Abelian gauge groups and moduli-dependent superpotential (and potential)

Two complementary approaches

"Top-down" [many groups – see M. Graña's '05 review]

- Understand the generalized geometrical tools in the (semi-)fundamental 10-dim theory in presence of fluxes
- Find admissible compactifications
- Extract the low-energy properties

"Bottom-up" [Derendinger, Kounnas, Petropoulos, Zwirner '05]

- Start with phenomenologically relevant 4-dim gauged sugras
- Translate the gauging parameters into fluxes
- Reconstruct the fundamental theory

About the bottom-up programme

- No systematic oxidation recipe
- Not all 4-dim gauged N=4 (N=8) sugras are heterotic, type-I or type-II-orientifold (M-theory) vacua
- A good picture of the landscape of gauged sugras is nevertheless necessary
- Preferably accompanied by the appropriate dictionary fluxes gauging parameters

The gauging procedure is a very powerful method, also useful for understanding the *non-geometric* string backgrounds

Here

We focus on 4-dim N = 4 theories (seeds for "realistic" vacua)

- ► Remind the basics on the gauging procedure using the embedding tensor — outstanding tool that
 - captures all consistency constraints
 - describes exhaustively the gauge algebras
 - allows for reconstructing the scalar potential
- Analyze the gauging of axionic shifts and rescalings
- Trace its 10-dim origin not straightforward
 - requires a generalized Scherk–Schwarz with shift by the scaling symmetries
 - relies on a duality between massive vectors and massive two-forms due to the appearance of Stückelberg-like terms generated by the axionic gauging

The outcome

This analysis closes the chapter of characterizing a whole class of heterotic gaugings in terms of NS–NS and spin-connection fluxes

It calls for further investigation of other classes of gaugings related to the previous by duality transformations

- The embedding-tensor formalism is duality-covariant: it captures the effective dynamics of duality-related backgrounds
- ► The bottom-up approach
 - shows that 4-dim physics needs not delving into the microscopic details of the fundamental theory
 - ▶ is an appropriate tool for the study of non-geometric setups
- What are the geometrical features of the fundamental theory on the top that translate into the consistency constraints imposed to the embedding tensor from the bottom?

Highlights

Motivations, summary and conclusions

Gauged supergravities and the embedding tensor

The non-unimodular gaugings

Higher-dimensional origin: generalized Scherk-Schwarz reduction

Ungauged 4-dim N = 4 *supergravity*

Spectrum, interactions and symmetries

- ▶ 1 gravitational and *n* vector multiplets
- Bosonic content of the multiplets
 - gravitational multiplet: 1 graviton, 6 graviphotons, 2 real scalars combined into the axion-dilaton $\tau = \chi + i \exp{-2\phi}$
 - vector multiplet: 1 vector, 6 real scalars
- Gauge group: $U(1)^{6+n}$
- ► All scalars are neutral and non-minimally coupled to the vectors: interaction terms of the type f (scalars) F²
- ► There is *no* scalar potential
- The elimination of the auxiliary fields generates the scalar manifold:

$$\mathcal{M} = \frac{SL(2, \mathbb{R})}{U(1)} \times \frac{SO(6, n)}{SO(6) \times SO(n)}$$

- ▶ The $SL(2, \mathbb{R}) \times SO(6, n) \subset Sp(12 + 2n, \mathbb{R})$ is realized as a U-duality symmetry of the *full* theory [Gaillard, Zumino '81]
- ▶ The $SO(1,1) \times SO(6,n)$ is realized off-shell in heterotic
 - the SO(1,1) does not mix electric and magnetic gauge fields
 - genuine electric-magnetic duality transformations relate different Lagrangians with equivalent field equations and each Lagrangian corresponds to a choice of "symplectic frame"

Putting electric and magnetic duals together

- The $2 \times (6+n)$ fields $(\{\mathbf{A}^{M+}\}, \{\mathbf{A}^{M-}\})$, M = 1, ..., 6+n form a $(\mathbf{2}, \mathbf{Vec})$ of $SL(2, \mathbb{R}) \times SO(6, n)$
- ► A Lagrangian exists that captures their dynamics without altering the number of propagating degrees of freedom extra 2-form auxiliary fields [de Wit, Samtleben, Trigiante '02 –]

Gauging: deformation compatible with supersymmetry

Promotion of a subgroup of the U-duality group to a local gauge symmetry supported by (part of) the existing $U(1)^{n+6}$ vectors

- ▶ The generators of the duality group are
 - 1. $T^{MN} = -T^{NM}$, $M, \ldots = 1, \ldots, 6 + n$ generate the SO(6, n)
 - 2. $S^{\beta\gamma}=S^{\gamma\beta},\ \beta,\ldots=+,-$ generate the $SL(2,\mathbb{R})$
- ▶ The generators of the gauge algebra are

$$\Xi_{lpha L} = rac{1}{2} \left(\Theta_{lpha LMN} \ T^{MN} + \Theta_{lpha Leta \gamma} \ S^{eta \gamma}
ight)$$

where $\{\Theta_{\alpha LMN}, \Theta_{\alpha L\beta\gamma}\} \in (\mathbf{2}, \mathbf{Vec} \times \mathbf{Adj}) + (\mathbf{2} \times \mathbf{3}, \mathbf{Vec})$ of $SL(2, \mathbb{R}) \times SO(6, n)$ is the *embedding tensor*

▶ At most 6 + n Ξ 's are independent and the Θ 's are subject to constraints

Consistency constraints for the embedding tensor

Gauge invariance and supersymmetry [linear constraints]

This reduces the embedding tensor to $(2, Ant_{[3]}) + (2, Vec)$:

$$\Xi_{\alpha L} = \frac{1}{2} \left(\textit{f}_{\alpha LMN} \; \textit{T}^{MN} + \eta_{LQ} \, \xi_{\alpha P} \; \textit{T}^{QP} + \varepsilon^{\gamma \beta} \, \xi_{\beta L} \, \textit{S}_{\gamma \alpha} \right)$$

The fundamental of $Sp(12 + 2n, \mathbb{R})$ must contain the adjoint of the gauge algebra and the latter must close [quadratic constraints]

(i)
$$\eta^{MN} \xi_{\alpha M} \xi_{\beta N} = 0$$

(ii)
$$\eta^{MN} \xi_{(\alpha M} f_{\beta)NIJ} = 0$$

(iii)
$$\epsilon^{\alpha\beta} \left(\xi_{\alpha I} \, \xi_{\beta J} + \eta^{MN} \, \xi_{\alpha M} \, f_{\beta NIJ} \right) = 0$$

$$\begin{array}{ll} \text{(iv)} & \eta^{MN} \, f_{\alpha MI[J} \, f_{\beta KL]N} - \frac{1}{2} \xi_{\alpha[J} \, f_{\beta KL]I} - \frac{1}{6} \epsilon_{\alpha \beta} \, \epsilon^{\gamma \delta} \, \xi_{\gamma I} \, f_{\delta JKL} \, + \\ & \frac{1}{2} \eta^{MN} \, \xi_{\alpha M} \, f_{\beta N[JK} \, \eta_{L]I} + \frac{1}{6} f_{\alpha JKL} \, \xi_{\beta I} = 0 \, \, \text{(Jacobi-like)} \end{array}$$

Important remarks

- f's and ξ 's are the gauging parameters which determine
 - the algebra and its commutators
 - the scalar potential
 - the mass matrices
 - . . .
- $f_{\alpha JKL}$ are not necessarily structure constants

Examples

Gaugings with non-vanishing $f_{\alpha LMN}$ only

- ▶ Pure SO(6, n) gaugings, extensively studied in the literature
- ► Large variety of gauge algebras as e.g. *flat algebras* related to unimodular Scherk–Schwarz reductions

Gaugings with non-vanishing $\xi_{\alpha L}$

- Only some isolated examples have been studied that fall in this class [Villadoro, Zwirner '04; Schön and Weidner '06]
- Their systematic analysis is the subject of the next chapters

Lagrangian formulation – including electric and magnetic

An explicit Lagrangian is associated with any consistent gauging and its bosonic sector has three parts [Schön and Weidner '06]

- $ightharpoonup \mathcal{L}_{kin}$ Einstein term and kinetic terms for vectors and scalars
- $ightharpoonup \mathcal{L}_{top}$ auxiliary-field contributions necessary to maintain the correct number of propagating vectors
- $\mathcal{L}_{pot} = -\frac{e}{16} \left(f_{\alpha MNP} f_{\beta QRS} M^{\alpha \beta} \left(\frac{1}{3} M^{MQ} M^{NR} M^{PS} + \left(\frac{2}{3} \eta^{MQ} M^{MQ} \right) \eta^{NR} \eta^{PS} \right) \frac{4}{9} f_{\alpha MNP} f_{\beta QRS} \epsilon^{\alpha \beta} M^{MNPQRS} + 3\xi_{\alpha}^{M} \xi_{\beta}^{N} M^{\alpha \beta} M_{MN} \right) \text{the scalar potential}$
 - ► $M^{\alpha\beta}$ are the components of $\frac{1}{|m\tau}\begin{pmatrix} 1 & -\text{Re}\tau \\ -\text{Re}\tau & |\tau|^2 \end{pmatrix}$
 - ► *M^{MQ}* and *M^{MNPQRS}* are constructed similarly with the remaining 6*n* scalars

Highlights

Motivations, summary and conclusions

Gauged supergravities and the embedding tensor

The non-unimodular gaugings

Higher-dimensional origin: generalized Scherk-Schwarz reduction

The axionic transformations and their gaugings

The axionic transformations are generated by the $SL(2, \mathbb{R})$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathit{SL}(2,\mathbb{R}) \text{ acts on the axion-dilaton as } \tau \to \tfrac{a\tau+b}{c\tau+d}$$

- ► $S^{--} = \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}$ generates the *electric-magnetic duality*
- ► $S^{++} = \begin{pmatrix} 0 & -2 \\ 0 & 0 \end{pmatrix}$ generates the axionic shifts $\tau \to \tau + b$
- $lacksquare S^{+-}=egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}$ generates the axionic rescalings $au o a^2 au$

Gauging the axionic symmetries [see the embedding tensor]

- lacktriangleright requires an embedding tensor with $\xi_{lpha M}
 eq 0$
- ightharpoonup is necessarily accompanied by a partial gauging of SO(6, n)

Aim: gauge the axionic shifts S^{++} and rescalings S^{+-} but not the electric–magnetic duality transformation S^{--} – "electric gaugings"

- We must set $\xi_{-I} = 0$ [see embedding tensor]
- Our further choice: $f_{-LMN} = 0$ (not compulsory)
- ► The constraints are ("+" index dropped)

(i)
$$\eta^{MN} \xi_M \xi_N = 0$$

(ii)
$$\eta^{MN} \xi_M f_{NIJ} = 0$$

(iv)
$$\eta^{MN} f_{MI[J} f_{KL]N} = \frac{2}{3} f_{[IJK} \xi_{L]}$$

Solution: non-unimodular gaugings captured by $\{\lambda_i, i = 1, ..., 6\}$

- ▶ We focus on n = 6: 12 vectors in total
- ▶ Light-cone-like convention: $\{I\} \equiv \{i, i'\}, \ \eta = \begin{pmatrix} 0 & \mathbb{I}_6 \\ \mathbb{I}_6 & 0 \end{pmatrix}$
- lacksquare $\xi_i=\lambda_i,\ \xi_{i'}=0\ ext{and}\ f_{ijj'}=-\lambda_{[i}\,\delta_{j]i'}$

Remarks

- ► Here *all* other *f* 's vanish: f_{ijk} , $f_{ii'j'}$, $f_{i'j'k'}$
- ▶ The f's are not Lie-algebra structure constants

The gauge algebra [see embedding tensor] has 8 independent generators out of 2×12 : $\{Y, \Xi, \Xi_{i'}\}$

-
$$\Xi_{-i} = -\frac{\lambda_i}{2}S^{++} \equiv \lambda_i Y$$

$$-\Xi_{-i'}=0$$

-
$$\Xi_{+i} = -\frac{\lambda_i}{2} \left(T^j_{\ j} + S^{+-} \right) \equiv \lambda_i \Xi$$

$$-\Xi_{+i'} = -\lambda_i T^j_{i'} \equiv \Xi_{i'}$$

Axionic symmetries are gauged along with 6 $\{\Xi_{i'}\}\subset SO(6,6)$

Commutation relations for $\{Y, \Xi, \Xi_{i'}\} \subset SL(2, \mathbb{R}) \times SO(6, 6)$

- $[\Xi_{i'}, \Xi_{j'}] = 0$
- $-[Y,\Xi_{j'}]=0$
- $[\Xi_{i'}, \Xi] = \Xi_{i'}$
- $[Y, \Xi] = -Y$

More remarks and summary

- ▶ $\{Y, \Xi, \Xi_{i'}\}$ is *non-flat* in contrast to the algebras obtained by standard Scherk–Schwarz reductions [see latter]
- ▶ $\{Y, \Xi\}$ is the non-semi-simple subalgebra $A_{2,2} \subset SL(2, \mathbb{R})$ of axionic rescalings and axionic shifts
- $\{Y, \Xi_{i'}\}$ spans an Abelian 7-dim ideal
- More general electric gaugings with $f_{ijk} \neq 0$ allow for non-Abelian extensions

The dynamics of non-unimodular gaugings

The 12 *vectors*

4 inert and 2+6 embedded in $SL(2,\mathbb{R})\times SO(6,6)$ as generators of local symmetries – enter in covariant derivatives acting on scalars

The
$$36 = 21 + 15$$
 scalars of $\frac{SO(6,6)}{SO(6) \times SO(6)}$

▶ The usual coset parameterization is

$$M^{MN} = \begin{pmatrix} h^{ij} & -h^{ik} b_{kj} \\ b_{ik} h^{kj} & h_{ij} - b_{ik} h^{k\ell} b_{\ell j} \end{pmatrix}$$

lacktriangle The gauging at hand generates $\mathcal{L}_{\mathsf{pot}}$

$$\frac{1}{16} {\rm e}^{2\phi} \lambda_i \left(8 h^{ij} - h^{ij} \; h^{k\ell} \; b_{\ell m} \; h^{mn} \; b_{nk} + 2 h^{ik} \; b_{km} \; h^{mn} \; b_{nr} \; h^{rj} \right) \lambda_j$$

The axion-dilaton

The kinetic term is

$$e^{-1}\mathcal{L}_{\mathsf{kin:axion-dilaton}} = -D_{\mu}\,\phi D^{\mu}\phi - rac{1}{4}\mathrm{e}^{4\phi}D_{\mu}\chi\,D^{\mu}\chi$$
 $-D_{\mu}\phi = \partial_{\mu}\phi - rac{1}{2}Y_{\mu}$

D_μχ = ∂_μχ + X_μ + Y_μχ
 Physical vectors involve electric and magnetic potentials:

$$Y_u = \lambda_i A_u^{i+} \quad X_u = \lambda_i A_u^{i-}$$

- $Y_u \leftrightarrow Y$ (axion rescalings: $\chi \to a^2 \chi$, $\phi \to \phi \log a$)
- $ightharpoonup X_u \leftrightarrow \Xi$ (axion shifts: $\chi \to \chi + b$)
- ▶ The axion can be gauged away $-X_{\mu}$ acquires a mass in this process via its Stückelberg coupling to χ

Trading massive X_{μ} for massive $C_{\nu\rho}$ [Townsend, Pilch, van Niewenhuizen '84; Quevedo '95]

Start with a massive vector:

$$\mathcal{L} = -rac{1}{4g^2}\left(\partial_\mu X_
u - \partial_
u X_\mu
ight)\left(\partial^\mu X^
u - \partial^
u X^\mu
ight) + rac{1}{2}m^2 X_\mu X^\mu$$

 $ightharpoonup \mathcal{L}$ is obtained by integrating the auxiliary two-form in

$$\tilde{\mathcal{L}} = 2C_{\mu\nu}\,\partial^{\mu}X^{\nu} + g^2C_{\mu\nu}\,C^{\mu\nu} + \frac{1}{2}m^2X_{\mu}X^{\mu}$$

- lacktriangle Integrating by parts $ilde{\mathcal{L}}$ makes X_μ auxiliary and $\mathcal{C}_{\mu
 u}$ dynamical
- ▶ Integrating out X_{μ} yields a massive-two-form Lagrangian:

$$ilde{\mathcal{L}} = -rac{2}{m^2}\partial_\mu C^{\mu
u}\,\partial^\lambda C_{\lambda
u} + g^2 C_{\mu
u}\,C^{\mu
u}$$

The final bosonic content of the non-unimodular gauging

- ▶ The dilaton
- \blacktriangleright 4 + 1 + 6 vectors with Abelian algebra
 - 4 inert
 - 1 ...
 - 1 associated with the axionic rescalings of SL(2, ℝ)
 6 associated with MASA transformations of SO(6, 6)
- ▶ 1 massive two-form
- ▶ 36 scalars
 - with scalar potential
 - \triangleright and minimal couplings to the 1+6 vectors

Highlights

Motivations, summary and conclusions

Gauged supergravities and the embedding tensor

The non-unimodular gaugings

Higher-dimensional origin: generalized Scherk-Schwarz reduction

Heterotic 10-dim pure supergravity

The SO(1, 1) *symmetry*

▶ Action for the bosonic sector (H = dB)

$$\int_{M_4} \mathrm{d}x \int_{K_6} \mathrm{d}y \, \sqrt{-G} \, \mathrm{e}^{-\Phi} \left(R + G^{MN} \, \partial_M \Phi \, \partial_N \Phi - \frac{1}{12} H_{MNK} H^{MNK} \right)$$

▶ Invariance under *SO*(1, 1)

$$\Phi o \Phi + 4\lambda$$
, $G_{MN} o \mathrm{e}^\lambda G_{MN}$, $B_{MN} o \mathrm{e}^\lambda B_{MN}$

Dimensional reduction

- ▶ *K*₆ is compact: infinitude of modes
- ▶ Reduction: effective theory on M_4 for a *finite* subset
- ▶ Data: K_6 plus an ansatz for the y-dependance of all fields
- Necessary consistency: L independent of y

Ordinary vs. Scherk–Schwarz reduction

Standard reduction on flat torus

- ► Ansatz: no *y*-dependance
- Bosonic spectrum: 1 graviton, 6 + 6 Abelian vectors,
 36 scalars, 1 dilaton, 1 axion (dual to the NS-NS form) all massless

Ordinary vs. Scherk–Schwarz reduction

Scherk-Schwarz reduction [Scherk, Schwarz '79; long literature]

- Ansatz: y-dependance compatible with internal symmetries
- Introduction of geometric (spin connection) fluxes $\gamma^i_{\ jk}$
 - $\qquad \qquad \mathsf{d}\theta^i = -\gamma^i{}_{ik}\,\theta^j \wedge \theta^k \\$
 - ▶ Bianchi–Jacobi $\gamma^{i}_{j[k} \gamma^{j}_{\ell m]} = 0$
 - $f_{jk}^{\ \ i} = 2\gamma^i_{\ jk}$ structure constants of a locally group manifold
 - $ightharpoonup \gamma^{i}_{ij} = 0$: unimodularity property
- Results: non-Abelian vectors, massive scalars and vectors, spontaneous breaking of supersymmetry
- **Example:** twisted tori leading to gaugings in SO(6,6)

External Scherk-Schwarz reduction

Using the "duality" SO(1,1) 10-dim symmetry

- Ansatz: $\Phi(x, y) = \Phi(x) + 4\lambda_i y^i$ (SO(1, 1)-shift) $G_{MN}(x, y) = e^{\lambda_i y^i} G_{MN}(x) B_{MN}(x, y) = e^{\lambda_i y^i} B_{MN}(x)$
- Decomposition:

-
$$G_{MN} \rightarrow g_{\mu\nu}$$
, $A_{\mu k}$, h_{ij}
- $B_{MN} \rightarrow B_{\mu\nu}$, $B_{\mu k}$, b_{ij}
- $\phi = \Phi - \frac{1}{2} \log \det \mathbf{h}$

The ansatz is consistent and various couplings emerge

- ▶ A_{uk} and B_{uk} carry Abelian gauge symmetry
- \blacktriangleright h_{ii} charged under A_{uk}
- ▶ b_{ij} charged under $B_{\mu k}$ and Stückelberg-coupled to $A_{\mu k}$
- ϕ Stückelberg-coupled to $A_{\mu k}$
- scalar potential for h_{ij} and b_{ij}

Contact with axionic gaugings

After field redefinitions and integrations one vector drops and the two-form becomes massive due to the Stückelberg couplings

- Indicative of the gauging of a shift symmetry
- ▶ The reduced theory is the gauged N = 4 supergravity studied in the last chapter: exact matching of the Lagrangians
- ▶ The specific choice of generalized Scherk–Schwarz allows to
 - 1. turn on the gauging parameters ξ_i as SO(1,1)-shift parameters λ_i along the torus one-cycles
 - 2. gauge the $SL(2, \mathbb{R})$ axionic shifts and rescalings in 4-dim
 - 3. evade unimodularity (here $f_{ij}^{\ \ j}=-\frac{5}{2}\lambda_i$): non-unimodular geometric fluxes

All this elegantly demonstrates the power of the gauging procedure for describing diverse flux compactifications

Last slide

Further gaugings further fluxes

- f_{+IJK} , ξ_{+L} : 232 electric parameters
 - f_{+ijk} NS-NS, $f_{+ijk'}$ spin-connection [studied here in relation with axionic symmetries; Kaloper, Myers '99 in the unimodular case; . . .]
 - $f_{+ij'k'}$ T-dual NS-NS, $f_{+i'j'k'}$ T-dual spin-connection: "non-geometric" [Hull *et al.* '05; Shelton, Taylor, Wecht '05; ...]
- f_{-IJK} , ξ_{-L} : 232 magnetic-dual parameters
 - f_{-ijk} NS-NS, $f_{-ijk'}$ spin-connection
 - $f_{-ij'k'}$ T-dual NS-NS, $f_{-i'j'k'}$ T-dual spin-connection

The number of degrees of freedom does not change – the algebra, its $SL(2,\mathbb{R}) \times SO(6,n)$ embedding and the higher-dimensional setup do