Induced Cosmology in
Wo -Scale Effective Theories of Superstrings

Hervé Partouche
(Ecole Polytechnique, FRANCE)
Work done with costar Kounnas

$$
\begin{aligned}
& \text { arxiv: 0706.0728 } \\
& \text { arxiv: } 0705.3200
\end{aligned}
$$

Fourth Regional Meeting in String Theory Patras, 14 June of
$N=1$ string Theory in $4 D$ Classically:. S , $L_{a}^{\text {complex structure }}$ Stabilized

- Suse spontaneously
- Flat

$$
\cdot m=e^{\alpha} \Phi
$$

Goldstino's
Super part her
Quantum + Thermal Corrections

$$
\begin{gathered}
S_{\text {off }}^{\prime}=\frac{1}{\dot{4}} \int d t a^{3}\left[\frac{3}{N}\left(\frac{\dot{a}}{\alpha}\right)^{2}-\frac{3 R N}{a^{2}}-\frac{1}{2 N} \dot{\Phi}^{2}-\frac{1}{2 N} \dot{x}^{2}\right. \\
\left.+N V-\frac{1}{2 N}(\rho+P)+\frac{N}{2}(\rho-P)\right] \\
d s^{2}=-N^{2} d t^{2}+a^{2} d R_{3}^{2} \\
k
\end{gathered}
$$

$$
\begin{array}{rlrl}
3\left(\frac{\dot{a}}{a}\right)^{2}= & -\frac{3 k}{a^{2}}+\frac{1}{2} \dot{\Phi}^{2}+\frac{1}{2} \dot{x}^{2}+V & & \\
& m^{4}, & m^{4} \log \frac{m^{2}}{\mu^{2}} & T^{4} f\left(\frac{m_{i}}{T}\right) \\
& m^{2}, & m^{2} \log \frac{m^{2}}{\mu^{2}} & T^{2} M^{2} \\
& m^{0}, m^{0} \log \frac{m^{2}}{\mu^{2}} &
\end{array}
$$

Critical Trajectory:

$$
\begin{aligned}
m & \equiv e^{\alpha \Phi} \\
& =\frac{1}{\gamma^{\prime} a}=\frac{T}{\xi}=\frac{\gamma}{\gamma^{\prime}} \mu
\end{aligned}
$$

$$
\left(\frac{\dot{a}}{a}\right)=\alpha \dot{\Phi}
$$

$$
\begin{aligned}
& 3\left(\frac{\dot{a}}{a}\right)^{2}=\frac{\lambda}{7}-\frac{\hat{k}}{a^{2}}+\frac{c_{R}}{a^{4}}+\underbrace{\frac{c_{n}}{a^{6}}}_{\Uparrow} \\
& \text { constant on shell only } \dot{x}^{2}
\end{aligned}
$$

- λ : de Sitter or Anti de Sitter \hat{k}, C_{R} : positive due to other Moduli
$N B:$ We are more interested in

$$
\lambda, \quad \hat{h}, \quad C_{k}>0
$$

Rescale $\quad a \rightarrow \sqrt{k} a \Rightarrow \hat{k}^{k}=1$

Pure de Sitter
$\left(\frac{\dot{a}}{a}\right)^{2}=\lambda-\frac{1}{a^{2}}$ ie $C_{R}=C_{M}=0$ $a(t)=\frac{1}{\sqrt{\lambda}} \cosh (\sqrt{\lambda} t)$

$$
\begin{aligned}
& a_{E}(\tau)=\frac{1}{\sqrt{\lambda}} \cos (\sqrt{\lambda} \tau) \\
& d s_{E}^{2}=\frac{1}{\lambda}\left[d(\sqrt{\lambda} \tau)^{2}+\cos ^{2}(\sqrt{\lambda} \tau) d Q_{3}^{2}\right]
\end{aligned}
$$

Vilenkin's Scenario $\left[82^{\prime}\right]=$

"Creation from Nothing"
S^{3} of finite $\frac{1}{\sqrt{\lambda}}$ radius

Switch on Radiation:

$$
\begin{aligned}
& \left(\frac{a}{a}\right)^{2}=\lambda-\frac{1}{a^{2}}+\frac{\delta_{T}^{2}}{4 \lambda a^{4}} \\
& a_{c}(t)=\mathcal{N} \sqrt{\varepsilon+\cosh ^{2}(\sqrt{\lambda} t)} \\
& \frac{\left(1-\delta_{T}^{2}\right)^{1 / 4}}{\sqrt{\lambda}} \quad \delta_{T}^{2} \leqslant 1 \quad \frac{1}{2}\left(\frac{1}{\sqrt{1-\delta_{T}^{2}}}-1\right)
\end{aligned}
$$

- Sarangi and The
- Brustein and Alwis
- At $t=0, \quad t=-i \tau$

$$
a_{E}(\tau)=\mathcal{P} \sqrt{\varepsilon+\frac{\cos ^{2}(\sqrt{\lambda} \tau)}{\sin ^{2}\left(\sqrt{\lambda} \tau+\frac{\pi}{2}\right)}}
$$

- At $\sqrt{\lambda} \tau=-\frac{\pi}{2}, \sqrt{\lambda} c+\frac{\pi}{2}=i \sqrt{\lambda} t$

$$
a_{5}(t)=\mathcal{N} \sqrt{\varepsilon-\sinh ^{2}(\sqrt{\lambda} t)}
$$

δ^{2} no: "reaction from "almost nothing" $\quad \delta_{T}^{2} \rightarrow 1$: static

Switch on Moduli Kinetic Energy:

$$
\begin{aligned}
& \left(\frac{\dot{a}}{a}\right)^{2}=N^{2}\left[\lambda-\frac{1}{a^{2}}+\frac{\delta_{T}^{2}}{4 \lambda a^{4}}+\frac{4}{27} \frac{\delta_{M}^{2}}{\lambda^{2} a^{6}}\right] \\
& d s^{2}=-N^{2} d \tilde{t}^{2}+a^{2} d Q_{3}^{2} \\
& N^{2}(\tilde{E})=\frac{1}{1+\frac{k}{\lambda a^{2}}}=1-\frac{k}{\lambda a^{2}}+\frac{k^{2}}{\lambda^{2} a^{4}}-\cdots \\
& k^{3}+k^{2}+\frac{\delta_{T}^{2}}{4} k-\frac{4}{27} \delta_{M}^{2}=0 \\
& \left(\frac{\dot{a}}{a}\right)^{2}=\lambda-\frac{1+k}{a^{2}}+\frac{\delta_{T}^{2}+4 k+4 k^{2}}{4 \lambda a^{4}} \\
& a_{c}(\tilde{E})=N \sqrt[N]{\varepsilon+\cosh ^{2}(\sqrt{\lambda} \tilde{E})} \\
& a_{S}(\tilde{E})=\mathbb{N} \sqrt{\varepsilon-\sinh ^{2}(\sqrt{\lambda} \tilde{E})} \\
& a_{E}(\tilde{E})=\mathbb{N} \sqrt{\varepsilon+\cos ^{2}(\sqrt{\lambda} \tilde{E})} \\
& \left.\sqrt{\frac{1+k}{2}(1-\Delta)^{1 / 4}} \frac{1}{\sqrt{1-\Delta}}-1\right) \\
& \Delta=\frac{4 k^{2}+k+\delta_{T}^{2}}{(1+k)^{2}} \leqslant 1
\end{aligned}
$$

We may proffer :

$$
\begin{gathered}
d J^{2}=-{\underset{I I I}{ }}^{N^{2}(\tilde{t}) d \tilde{t}^{2}} a^{2} d Q_{3}^{2} \\
a_{c}=N \sqrt{\varepsilon+\cosh ^{2}(\sqrt{\lambda} \tilde{E}(t))} \\
\text { where } t=\int_{0}^{r} d v \sqrt{\frac{\cosh ^{2}(\sqrt{\lambda} v)+\varepsilon}{\cosh ^{2}(\sqrt{\lambda} v)+\varepsilon+\tilde{\varepsilon}}} \\
\frac{k}{(1+k) \sqrt{1-\Delta}}
\end{gathered}
$$

Idem for a_{s} and a_{E}.

Parameterize with $T_{ \pm}$instead of $\delta_{T}^{2}, \delta_{M}^{2}: a_{+} T_{+}=a_{-} T_{-}$

$$
=\xi / \gamma^{\prime}
$$

$$
\begin{aligned}
T_{ \pm} & =T_{m} \frac{\sqrt{\delta_{1}}}{\sqrt{(1+k)(1 \pm \sqrt{1-\Delta})}} \\
a_{c} & =\frac{1}{\sqrt{\delta} \sqrt{\frac{2 \lambda}{\delta_{T}}}} \sqrt{1+\frac{T_{2}^{2}-T_{+}^{2}}{T_{-}^{2}+T_{+}^{2}}} \cosh (2 \sqrt{\lambda} \tilde{E}(t)) \\
a_{s} & =\frac{1}{\sqrt{2 \lambda(1-c t)}} \sqrt{1+\frac{T_{+}^{2}-T_{-}^{2}}{T_{+}^{2}+T_{-}^{2}} \cosh (2 v \tilde{x}((t))} \\
\left(T_{+} \leftrightarrow T_{-}\right) & \Leftrightarrow\left(a_{c} \leftrightarrow a_{s}\right) \longleftrightarrow(t>0 \leftrightarrow t<\theta)
\end{aligned}
$$

$$
\begin{aligned}
& S_{\text {Radiation }}=\frac{S_{T}^{2}}{4 \lambda a^{4}}=\frac{\pi^{4}}{15}\left(n_{\text {of }}^{B}+\frac{7}{8} n_{\text {\& }}^{F}\right) T_{\| \|}^{1} \\
& T_{m}=\frac{45}{\pi^{4}}\left(\frac{\lambda}{T_{4}^{B}+\frac{7}{8} n_{\text {eff }}^{f}}\right)^{1 / 4}
\end{aligned}
$$

Transition
Probability:

$$
\begin{gathered}
p=e^{-2 S_{E_{a f f}}} \\
S_{E g f}=\frac{-1}{2} \int d \tilde{z} N_{E} a_{E}^{3}\left[\frac{1}{N_{E}^{2}}\left(\frac{\dot{a}_{\epsilon}}{a_{\epsilon}}\right)^{2}+\frac{1}{a_{E}^{2}}-\lambda-\frac{\delta_{T}^{2}}{4 \lambda a^{4}}-\frac{\dot{x}_{E}^{2}}{6 N_{\epsilon}^{2}}\right] \\
=-\int_{-\frac{\pi}{2 \sqrt{\lambda}}}^{0} d \tilde{\tau} N_{E} a_{E}^{3}\left[\frac{1}{a_{E}^{2}}-\lambda-\frac{\delta_{T}^{2}}{4 \lambda a^{4}}\right] \\
\frac{\cos ^{2}(\sqrt{\lambda} \tilde{c})+\varepsilon}{\cos ^{2}(\sqrt{\lambda} \tilde{\tau})+\varepsilon+\tilde{\varepsilon}}
\end{gathered}
$$

non trivial if $\frac{\dot{X}_{E}^{2}}{6 N_{E}^{2}}=\frac{4}{27 \lambda^{2}} \frac{\delta_{M}^{2}}{a_{E}^{6}}$
$\neq 0$

$$
=-\frac{1}{3^{5 / 4} \lambda}\left(4-3 \delta_{T}^{2}\right)^{1 / 4} \sqrt{\sin \frac{\theta+\pi}{3}}\left(E(\mu)-\frac{\sqrt{4-3 \delta_{1}^{2}} \cos \frac{\theta}{3}-1+\frac{3}{2} \delta_{T}^{2}}{\sqrt{3} \sqrt{4-3 \delta_{T}^{2}} \sin \frac{\theta+\pi}{3}} K(\mu)\right)
$$

where $\mu=\sqrt{\frac{\sin \frac{\theta}{3}}{\sin \frac{\theta+\pi}{3}}}, \theta=\arccos \left(\frac{16 \delta_{M}^{2}+9 \delta_{T}^{2}-8}{\left(4-3 \delta_{T}^{2}\right)^{3 / 2}}\right)$

Brustein and Alwis for Pure Thermal case

- A $p \mathscr{\text { constant }}$
- \rightarrow P : Big Crunch favored
- Big Bang Branch grows up
cl:
Viable "Big Bang
Branch" followed
by In flation.

Inflationary Space
Viable "Big Bang / Big Crunch" Cosmology created from "almost nothing"

Conclusions :

- Superstrings with
$A_{1}=1$ Suss spontaneously
Flat background
- One-loop radiative corrections Thermal effects
induce (for $\lambda, \hat{k}, C_{R}>0$)
i) Inflation created from "almost nothing"
ii) Big Bang $\xrightarrow[\text { hansition over }]{\text { halation }}$ In
ivi) Bey Bong / Bey Crunch evolution
- Generic.

No fine - tuning

