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Motivation

[Witten]

Twistor String Theory: Proposed correspondence between
the open string sector of the topological B-model on |||CP3|4

and perturbative N = 4 SYM.
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These amplitudes are reproduced by nonperturbative effects
in a holomorphic Chern-Simons theory with supertwistor space
as the target space. The isometries of |||CP3|4 linearly encode
the superconformal symmetry of N = 4.

Simplicity of gauge theory amplitudes in fixed helicity basis.
The MHV n-point gluon amplitude is proportional to

holomorphic or antiholomorphic functions of the λi, depending on whether the helicities

are mostly + or mostly −.

To describe the results more precisely, we take the gauge group to be U(N) (for some

sufficiently large N as to avoid accidental equivalences of any traces that we might en-

counter). We recall that tree level diagrams in Yang-Mills theory are planar, and generate

a single-trace interaction [14]. In such a planar diagram, the n gauge bosons are attached

to the index loop in a definite cyclic order, as indicated in figure 1. If we number the

gauge bosons so that the cyclic order is simply 1, 2, 3, . . . , n, then the amplitude includes a

group theory factor I = Tr T1T2 . . . Tn. It suffices to study the amplitude with one given

cyclic order; the full amplitude is obtained from this by summing over the possible cyclic

orders, to achieve Bose symmetry. Gluon scattering amplitudes considered in this paper

are always proportional to the group theory trace I, and this factor is omitted in writing

the formulas.
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Fig. 1: n external gluons cyclically attached to the boundary of a disc, representing

the group theory structure of a Yang-Mills tree diagram.

Suppose that gauge bosons r and s (1 ≤ r < s ≤ n) have negative helicity and the

others have positive helicity. The reduced tree level amplitude for this process (with the

energy-momentum delta function and the trace I both omitted) is

A = gn−2 〈λr, λs〉4∏n
i=1〈λi, λi+1〉

. (2.14)

(Here g is the gauge coupling constant, and we set λn+1 = λ1.) Note that this amplitude

has the requisite homogeneity in each variable. It is homogeneous of degree −2 in each λi

with i %= r, s, since each λi appears twice in the denominator in (2.14). But for i = r, s, it
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where pαα̇ = λαλ̃α̇ and 〈λi,λj〉 = εαβλα
i λβ

j .



Development of MHV-formalism on gauge theory side even
for less or non-susy YM. [Cachazo-Svrček-Witten]
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Unfortunately, the correspondence doesn’t hold beyond tree
level. Contributions from closed string B-model sector and
appearance of conformal supergravity modes in the gauge the-
ory loops. [Berkovits-Witten]

But the twistor-inspired MHV-rules can be extended at loop
level for N = 4. Also for N = 1 and pure YM.
[Brandhuber-Spence-Travaglini]
[Bedford-Brandhuber-Spence-Travaglini]

What is the quantum completion of Witten’s twistor string?
Some (non-topological?) B-model extension with modified
target space?



Most obvious candidates should be theories that preserve
conformal invariance at loop level, order-by-order:UV-finite

Look at N = 2 finite theories with fundamental matter:

N = 2 Sp(Nc) gauge theory with Nf = 4

N = 2 SU(Nc) gauge theory with Nf = 2Nc

Towards this end study the range of 4d gauge theories with
less susy, which admit a tree-level twistor string description.
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N = 1 exactly marginal deformations of N = 4
[Kulaxizi-Zoubos]
 

 
[Giombi-Kulaxizi-Ricci-Robles-Llana-Trancanelli-Zoubos]
[Park-Rey]
N = 1, 2 quiver gauge theories as discrete |||CP3|4 orbifolds



Outline

Conclusions   
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   The N = 2 Sp(Nc) theory with Nf = 4

   The N = 2 SU(Nc) theory with Nf = 2Nc

Review of the N = 4 theory   



Adding four fermionic co-ordinates ψA plus conjugates turns
|||CP3 into a super-CY: |||CP3|4.

This is now a suitable target space for the B-model.

6

Review of the N = 4 theory

Witten showed that holomorphic λ dependence of the MHV
(analytic) amplitudes means they are supported on genus
zero, degree one curves in twistor space, |||CP1 ⊂ |||CP3.
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Marginal Deformations of Tree–Level N = 4 SYM from
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The topological B–model with target the supertwistor space |||CP3|4 is known to describe perturbative ampli-
tudes of N = 4 Super Yang–Mills theory. We review the extension of this correspondence to the supercon-
formal gauge theories that arise as marginal deformations of N = 4 by considering the effects of turning on
a certain closed string background, which results in non–anticommutativity in the fermionic directions of
|||CP3|4. We generalise the twistor string prescription for amplitudes to this case and illustrate it with some

simple examples.

Witten’s original formulation of twistor string theory [1] relates the perturbative expansion of N = 4
Super Yang–Mills theory to the D-instanton expansion of the topological B-model on supertwistor space
|||CP3|4. The motivation for this reformulation was the fact that certain Yang–Mills amplitudes are much

simpler than one would expect from the properties of the individual Feynman diagrams they are composed

of. Witten’s proposal led to the development of very efficient calculational tools for scattering amplitudes

in gauge theories, some aspects of which are summarised in the review papers [2, 3].

The starting point for the gauge theory/twistor string correspondence is the fact that gauge theory tree

amplitudes take a particularly simple form when written in a basis where the helicities of the external

particles are fixed. For instance, the maximally helicity violating (MHV) n–point amplitude with n − 2
positive helicity and 2 negative helicity gluons is proportional to the subamplitude

A(n) =
〈n − 1, n〉4

〈12〉〈23〉 . . . 〈n1〉
(1)

where the negative helicity gluons are labeled by n− 1 and n. Here we have decomposed the momenta of

the incoming particles in terms of commuting spinors λ, λ̃ as pαα̇ = λαλ̃α̇ and defined the holomorphic

inner product 〈ij〉 = εαβλα
i λβ

j . To recover the full amplitude for this process we have to add a colour trace

for each cyclic ordering and sum over all subamplitudes, and also incorporate a momentum conservation

delta function which we have suppressed.

The crucial property of (1) is the holomorphic dependence on the spinors λi. As discussed in [1], this

implies that MHV amplitudes are supported on genus zero, degree one curves on twistor space, which is a

copy of |||CP3 defined by the homogeneous coordinates (λα, µα̇), where the µα̇ are related to λ̃α̇ as

λ̃α̇ → i
∂

∂µα̇
, −i

∂

∂λ̃α̇
→ µα̇. (2)

Non–MHV amplitudes with q negative helicity gluons were similarly shown to be supported on curves of

degree q − 1 in twistor space.

In [1] this fact was combined with the observation that if one adds four fermionic coordinates ψA (and

their conjugates) to |||CP3, the resulting supermanifold |||CP3|4 is Calabi–Yau, in the sense of admitting a

∗ Email: kulaxizi@insti.physics.sunysb.edu
∗∗ Email: k.zoubos@qmul.ac.uk . Talk presented at the RTN meeting “Constituents, Fundamental Forces and Symmetries of the

Universe”, Corfu, Greece, Sept. 20-26, 2005.

Write null momenta in terms of pαα̇ = λαλ̃α̇. Twistor space
is a copy of |||CP3 defined by the homogeneous co-ordinates
ZI = (λα, µα̇), where



2 Preliminaries

In this section we first will derive the spacetime action of our theory starting from its N = 1
superspace formulation, and then briefly review how this gauge theory is realised within IIB string
theory as the worldvolume theory of D3–branes probing D7–branes localised on an orientifold
singularity.

[KZ—I have the feeling it might be best to swap these two sections, i.e. put the F-theory stuff first. Just so that

we don’t scare people off with all the action details from the very beginning. Also, it helps to motivate the theory a

bit.]

2.1 The space-time action

The field content of our theory can be summarised in the following table:

N = 2 Superfield Components Sp(N) Representation
V A, λa, φ,φ†, λ̄a, G Adjoint
Z ζ, ζ ′, za, z†a, ζ̄, ζ̄ ′ Antisymmetric
Q η, η′, qa, q†a, η̄, η̄′ F + F̄

where we have suppressed the flavour index X = 1 . . . 4 on the fundamental hypermultiplet.
However, as a starting point for deriving the lagrangian of the theory, we will take its formulation

in terms of N = 1 superfields. The N = 1 superspace lagrangian is then easily seen to be:

L =
1
8π

Im Tr
[
τ

(∫
d2θ WαWα + 2

∫
d2θd2θ̄ e2V Φ†e−2V Φ

)]
+

∫
d2θd2θ̄ Q†Ie−2V QI

+
∫

d2θd2θ̄ Q̃Ie2V Q̃†
I + Tr

(∫
d2θd2θ̄ e2V Z†e−2V Z +

∫
d2θd2θ̄ e−2V Z ′e2V Z ′†

)

+
√

2
(∫

d2θ(Q̃IΦQI + Tr
(
Z ′[Φ, Z]

)
) + h.c.

)
.

(1)

2.2 Review of the IIB/F-theory embedding

In order to motivate the Nf = 4 theory, it is useful to review the original context in which it
appeared, namely Sen’s explorations of F-theory on K3 at its orbifold limit, where it reduces to an
orientifold of IIB string theory on T 2.

3 Twistor strings

3.1 Review of the dual for N = 4 SYM

The fields of N =4 are (A, λI , φIJ , λ̃I , G) in the adjoint of SU(N) and so the superfield expansion
in this case is

A = A + ψIλI +
1
2!

ψIψJφIJ +
1
3!

εIJKLψIψJψK λ̃L +
1
4!

εIJKLψIψJψKψLG . (2)

As shown by Witten in [7], the string field theory of the B–model with a Calabi–Yau target space
is simply a holomorphic version of Chern–Simons theory. The extension of this to the supermanifold
case leads to the following target space action on |||CP3|4:

S =
1
2

∫

CP3|4
Ω ∧ Tr(A∂̄A+

2
3
A ∧A ∧A) , (3)

3

Via the Penrose transform the component fields get mapped to
specific helicity particles in Minkowski space:

N = 4 spectrum

7

defined on a “D5”-brane sitting at the locus ψ̄A = 0. The
superfields A can be expanded as

The B-model open string d.o.f. are described by the HCS action

S =
1
2

∫

D5
Ω ∧ Tr

(
A · ∂̄A +

2
3
A ∧A ∧A

)
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globally defined holomorphic volume form. It is thus a suitable target space for the topological string

theory known as the B–model, whose open string field theory action is given by holomorphic Chern–

Simons theory

S =
1

2

∫

D5
Ω ∧ Tr

(
A∂̄A +

2

3
A ∧A ∧A

)
(3)

and the model is actually not defined on the whole of |||CP3|4, but on a “D5–brane” which fills the whole
of the bosonic part but lies on the locus ψ̄Ā = 0. Thus the A are superfields which depend only on the

holomorphic coordinates ψA, and can be expanded in components as:

A = A + ξλ + ψIχI + ξψIφI +
1

2
ψIψJεIJK φ̃K

+
1

2
ξψIψJ εIJK χ̃K +

1

3!
ψIψJψKεIJK λ̃ +

1

3!
ξψIψJψKεIJKG .

(4)

In this expansion we have split the fermionic coordinates as ψ0 = ξ, ψI = ψA for A = 1, 2, 3 so that we
make evident only an SU(3)×U(1) out of the SU(4) symmetry. This will prove convenient for the discus-

sion of N = 1 theories later on. The component fields (A, λ, χI , φI , φ̃I , χ̃K , λ̃, G) live on |||CP3 and are

mapped through the Penrose transform to four dimensional fields of helicities (1, 1
2 , 1

2 , 0, 0,− 1
2 ,− 1

2 ,−1),

which we can combine into a vector multiplet (A, λ, λ̃, G) and three chiral multiplets ΦI = (χI , φI) (and
their conjugates Φ̃I = (φ̃I , χ̃I)), which is the field content of N = 4 SYM. Having established the equiv-
alence of the spectrum, we can now look at the interactions encoded in the action (3) and find that after

transforming to four dimensions they actually correspond to those of self–dualN = 4 SYM rather than of

the full theory.

So at first it seems that the B–model can reproduce only the self–dual part of Yang–Mills amplitudes.

However, building on work by Nair [4], Witten showed that the full N = 4 amplitudes do arise, but as
nonperturbative effects, through D1–instantons [1]. For the MHV case, these wrap holomorphic degree
one, genus zero curves in |||CP3|4 whose embedding is given by

µα̇ + xαα̇λα = 0 and ψA + θA
α λα = 0 . (5)

Thus the curves in twistor space on which the amplitudes are supported are now seen to correspond to

D1–instantons of the B–model on |||CP3|4. To get a covariant answer we have to integrate over the moduli

space given by the choices of (x, θ). We are led to the following prescription for MHV amplitudes:

A(n) =

∫
d4xd8θ w1 · w2 · · ·wn〈J1 · J2 · · · Jn〉 (6)

where the Js are currents living on the brane worldvolume whose OPEs will lead to the denominator of the
MHV amplitude and the wis are the coefficients of each field in the superfield expansion (4) and will give

the momenta in the numerator of (1). To integrate over the fermionic coordinates one uses (5) to express

(ξ, ψI ) in terms of the θs.
In trying to go beyond the case of N = 4 SYM, it is natural to look for an extension to cases with less

supersymmetry, or that lack conformal invariance. It was quickly understood that the method of Cachazo,

Svrček and Witten [5] for calculating non–MHV diagrams based on MHV vertices applies not just to

N = 4 but to a far more general class of theories. Although the methods that have since been developed
for these computations are extremely efficient (see e.g. [3] for a review and references), in the process their

relationship to string theory has become somewhat more vague. This is especially evident in the extension

to loop amplitudes, where although it is relatively straightforward to find a CSW–type prescription on the

field theory side [6], so far a clean prescription from the string theory side has not been found. Thus it is

important to search for field theories that can be described by twistor strings at the same level of detail as

theN = 4 theory.

How about interactions? These correspond to the self-dual
N = 4. The full interactions arise non-perturbatively through
D1-instantons wrapping the holomorphic genus zero, degree
one curves with |||CP3|4 embedding [Witten], [Nair]

Recover all analytic amplitudes - Extension to non-analytic
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globally defined holomorphic volume form. It is thus a suitable target space for the topological string

theory known as the B–model, whose open string field theory action is given by holomorphic Chern–

Simons theory

S =
1

2

∫

D5
Ω ∧ Tr

(
A∂̄A +

2

3
A ∧A ∧A

)
(3)

and the model is actually not defined on the whole of |||CP3|4, but on a “D5–brane” which fills the whole
of the bosonic part but lies on the locus ψ̄Ā = 0. Thus the A are superfields which depend only on the

holomorphic coordinates ψA, and can be expanded in components as:

A = A + ξλ + ψIχI + ξψIφI +
1

2
ψIψJεIJK φ̃K

+
1

2
ξψIψJ εIJK χ̃K +

1

3!
ψIψJψKεIJK λ̃ +

1

3!
ξψIψJψKεIJKG .

(4)

In this expansion we have split the fermionic coordinates as ψ0 = ξ, ψI = ψA for A = 1, 2, 3 so that we
make evident only an SU(3)×U(1) out of the SU(4) symmetry. This will prove convenient for the discus-

sion of N = 1 theories later on. The component fields (A, λ, χI , φI , φ̃I , χ̃K , λ̃, G) live on |||CP3 and are

mapped through the Penrose transform to four dimensional fields of helicities (1, 1
2 , 1

2 , 0, 0,− 1
2 ,− 1

2 ,−1),

which we can combine into a vector multiplet (A, λ, λ̃, G) and three chiral multiplets ΦI = (χI , φI) (and
their conjugates Φ̃I = (φ̃I , χ̃I)), which is the field content of N = 4 SYM. Having established the equiv-
alence of the spectrum, we can now look at the interactions encoded in the action (3) and find that after

transforming to four dimensions they actually correspond to those of self–dualN = 4 SYM rather than of

the full theory.

So at first it seems that the B–model can reproduce only the self–dual part of Yang–Mills amplitudes.

However, building on work by Nair [4], Witten showed that the full N = 4 amplitudes do arise, but as
nonperturbative effects, through D1–instantons [1]. For the MHV case, these wrap holomorphic degree
one, genus zero curves in |||CP3|4 whose embedding is given by

µα̇ + xαα̇λα = 0 and ψA + θA
α λα = 0 . (5)

Thus the curves in twistor space on which the amplitudes are supported are now seen to correspond to

D1–instantons of the B–model on |||CP3|4. To get a covariant answer we have to integrate over the moduli

space given by the choices of (x, θ). We are led to the following prescription for MHV amplitudes:

A(n) =

∫
d4xd8θ w1 · w2 · · ·wn〈J1 · J2 · · · Jn〉 (6)

where the Js are currents living on the brane worldvolume whose OPEs will lead to the denominator of the
MHV amplitude and the wis are the coefficients of each field in the superfield expansion (4) and will give

the momenta in the numerator of (1). To integrate over the fermionic coordinates one uses (5) to express

(ξ, ψI ) in terms of the θs.
In trying to go beyond the case of N = 4 SYM, it is natural to look for an extension to cases with less

supersymmetry, or that lack conformal invariance. It was quickly understood that the method of Cachazo,

Svrček and Witten [5] for calculating non–MHV diagrams based on MHV vertices applies not just to

N = 4 but to a far more general class of theories. Although the methods that have since been developed
for these computations are extremely efficient (see e.g. [3] for a review and references), in the process their

relationship to string theory has become somewhat more vague. This is especially evident in the extension

to loop amplitudes, where although it is relatively straightforward to find a CSW–type prescription on the

field theory side [6], so far a clean prescription from the string theory side has not been found. Thus it is

important to search for field theories that can be described by twistor strings at the same level of detail as

theN = 4 theory.

with the J ’s being D1-instanton world-volume currents and the
wi’s the external particle wavefunctions.

These are the same curves onto which the analytic amplitudes
are localised. By integrating over the moduli space (x, θ) we
get the amplitude prescription



The N = 2 Sp(N) theory with Nf = 4

9

[Sen], [Banks-Douglas-Seiberg],

Physical string realisation: N D3’s living at an O7 plane
with 4 D7 branes. The near horizon geometry on the D3’s
is AdS5 × S5/Z2.
[Fayyazuddin-Spalinski], [Aharony-Fayyazuddin-Maldacena]

The massless open string d.o.f can be summarised in

Component SO(1,3) SU(2)a SU(2)A U(1) Sp(N) SO(8)
A,G (2, 2) 1 1 0 N(2N + 1) 1

φ (1, 1) 1 1 +2 N(2N + 1) 1
φ† (1, 1) 1 1 −2 N(2N + 1) 1

λα,a (2, 1) 2 1 +1 N(2N + 1) 1
λ̄α̇,a (1, 2) 2 1 −1 N(2N + 1) 1
zaA (1, 1) 2 2 0 N(2N − 1) 1
ζα,A (2, 1) 1 2 −1 N(2N − 1) 1
ζ̄α̇,A (1, 2) 1 2 +1 N(2N − 1) 1
qI
a (1, 1) 2 1 0 2N 8

ηαI (2, 1) 1 1 −1 2N 8
η̄I

α̇ (1, 2) 1 1 +1 2N 8

[Gava-Narain-Sarmadi]
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The gauge theory Lagrangian is in N = 1 superfield
formulation:

The flavour symmetry group in this notation is given under
the maximal embedding U(1) × SU(4) ⊂ SO(8). An addi-
tional series of helicity-dependent rescalings leads to the self-
dual truncation:

1/12/06
(Costis)

Expansion around the ‘self-dual’ point

After having had a lot of grief with Alvarez-Gaumé and Hassan, I will be using some modified version of
their conventions, which have an important mistake. The notation is the usual unhelpful gauge theory one
but I’ll be telling you which spacetime fields correspond to which HCS one-form components at the end.
Our signature is (+−−−). The raising and lowering of the indices is performed by

ψα = εαβψβ , ψα = εαβψβ

ψ̄α̇ = εα̇β̇ψ̄β̇ , ψ̄α̇ = εα̇β̇ψ̄β̇ . (1)

We also have the following relations between the superspace variables

θ2 = θαθα = −2θ1θ2 , θαθβ = −1
2
εαβθ2

θ̄2 = θ̄α̇θ̄α̇ = 2θ̄1̇θ̄2̇ , θ̄α̇θ̄β̇ = −1
2
εα̇β̇ θ̄2 . (2)

The appropriate definitions for the ε-tensors are

εαβ = εα̇β̇ =
(

0 1
−1 0

)
, (3)

where the above satisfy εαβεβγ = δα
γ and εα̇β̇εβ̇γ̇ = δγ̇

α̇, as opposed to the conventions that we have established
for the gauge indices transforming in Sp(N) and the global SU(2) symmetries. These give rise to the following
definitions and identities

(σ̄µ)α̇α = εαβεα̇β̇σµ

ββ̇
, θσµθ̄θσν θ̄ =

1
2
θ2θ̄2ηµν

χσµψ̄ = −ψ̄σ̄µχ , (χσµψ̄)† = ψσµχ̄ . (4)

The idea is to write out the full action for Sp(Nc/2), N = 2 SYM with four massless fundamental
hypermultiplets and an additional hypermultiplet in the antisymmetric representation and then to perform
an appropriate rescaling of the fields in such a way that we can take a g = 0 limit of the theory, which yields
the so called ‘self-dual’ part. The rest of the theory is then obtained as a perturbation around that point.
The main thing about the rescalings is that they treat the helicities asymmetrically. The full Lagrangean
for the above, in terms of N = 1 superfields, is given by

L =
1
8π

Im Tr
[
τ

(∫
d2θ WαWα + 2

∫
d2θd2θ̄ e2V Φ†e−2V Φ

)]
+

∫
d2θd2θ̄ Q†Ie−2V QI

+
∫

d2θd2θ̄ Q′Ie2V Q′†
I + Tr

(∫
d2θd2θ̄ e2V Z†e−2V Z +

∫
d2θd2θ̄ e−2V Z ′e2V Z ′†

)

+
√

2
(∫

d2θ(Q′IΦQI + Tr (Z ′[Φ, Z])) + h.c.

)
.

(5)

which is the gauge invariant form of the action. I am using the fact that fields transforming in the fundamental
should have indices up, the ones in the anti-fundamental indices down and everything else has its left index
up and the right one down. One can raise and lower indices using the “NW-SE” rule with the Ω’s, the
invariant tensors of Sp(Nc/2). These are given by Ω = Ω−1 = iσ2 ⊗ 1Nc×Nc and, since the Ω’s are real, we
will have that ΩikΩkj = −δi

j .
Since we are constructing thisN = 2 action out ofN = 1 quantities, the coupling appearing in front of the

superpotential terms can, in principle, be different to the coupling of the kinetic terms for the N = 2 vector
multiplet. However, supersymmetry requires that they all be the same (see top of p. 156 of Sohnius’ review).
The N = 2 vector multiplet comprises of the N = 1 vector and chiral superfields (V,Φ), the antisymmetric
hypermultiplet of the chiral and anti-chiral (Z, Z ′†) and the four fundamental hypermultiplets of the four
chiral and four anti-chiral (Q, Q̃†) superfields respectively. The index on the latter runs over I = 1, . . . , 4,

1

is what we have so far), 8s = 41 + 4̄−1, it should be relatively clear how the groupings in eq. (7) come up.
As far as raising and lowering the M index, we don’t really understand how that works at the level of the
components (admittedly we haven’t tried very hard), so we’ll stick to the definitions of things with M index
up and down for the moment, which seem to work well.

The scalar potential (quartic) terms will then be

V = g2 Tr
(

1
2
[φ†, φ]2 +

1
4
[za

A, zA
b][z

b
B , zB

a]− [za
A, φ][φ†, zA

a]
)

− g2

(
1
2
qa

M{φ†, φ}qM
a +

1
4
qa

M [zb
A, zA

a]qM
b

)

+
g2

8
(
(qa

MqN
a)(qb

NqM
b) + (qa

Mqb
N )(qN

aqM
b)

)
,

(8)

where indices are once again implicit with Sp(N) being contracted SW-NE and SU(4) NW-SE and in the
last line the ()’s denote Sp(N) colour singlets. This allows us to finally write down the full action in its most
compact form

L =Tr
[
−1

2
GF + D̃φ†Dφ + iλ̄a "Dλa − λaλaφ† + 2g2λ̄aλ̄aφ

]
+ Tr

[
−1

2
D̃za

ADzA
a

+iζ̄A "DζA − za
A[λa, ζA] + 2g2zA

a[ζ̄A, λ̄a] + ζAζAφ− 2g2ζ̄Aζ̄Aφ†]− 1
2
D̃qa

MDqM
a

− iη̄M "DηM + qa
MλaηM − 1

2
ηMφηM + 2g2

(
η̄M λ̄aqM

a −
1
2
η̄Mφ†η̄M

)

+ g2

(
1
2
qa

M{φ†, φ}qM
a +

1
4
qa

M [zb
A, zA

a]qM
b

)
− g2

8
(
(qa

MqN
a)(qb

NqM
b) + (qa

Mqb
N )(qN

aqM
b)

)

− g2 Tr
(

1
2
[φ†, φ]2 +

1
4
[za

A, zA
b][z

b
B , zB

a]− [za
A, φ][φ†, zA

a]
)

.

(9)

The self dual truncation of the above, which we will be comparing to the twistor action, is simply

L =Tr
[
−1

2
GF + Dφ†Dφ + iλ̄a "Dλa − λaλaφ†

]

− Tr
[
1
2
DzaADzAa + iζ̄A "DζA + zaA[λa, ζA] + ζAζAφ

]

− 1
2
Dqa

MDqM
a − iη̄M "DηM + qa

MλaηM − 1
2
ηMφηM .

(10)

Next let’s also write down the twistor action of Jamestinos (JB-070207) also using the new ideas of
KZ-180207. This should be

SHCS =
∫

CP3
Ω′ ∧ Tr[G ∧ F + φ† ∧ D̄φ− λ̃a ∧ D̄λa + λa ∧ λa ∧ φ† +

1
2
zAa ∧ D̄zaA

− ζ̃A ∧ D̄ζA + zaA ∧ λa ∧ ζA + ζA ∧ ζA ∧ φ] + η̃XA ∧ D̄ηAX

− 1
2
qaAX ∧ D̄qaAX + qaAX ∧ λa ∧ ηAX − 1

2
ηAX ∧ φ ∧ ηAX ,

(11)

with
Ω′ =

1
4!

εIJKLZIdZJdZKdZL (12)

and the ‘covariant derivatives’ being defined as D̄ = ∂̄ +A∧ for fundamental fields and D̄ = ∂̄ +A∧+∧A for
matrix-valued fields. Note that Jamestinos somehow managed to miss out on one of the interaction terms
between the adjoint and anti-symmetric multiplets, namely the second one in the second row, as well as
the corresponding one in the fundamental sector. The above should be coming from the following action in
supertwistor space

S =
1
2

∫

D5
Ω ∧

(
Tr[A · ∂̄A+

2
3
A ∧A ∧A] +QX · ∂̄QX +QX ∧A ∧QX

)
, (13)
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where

Ω =
1
4!

Ω′εIJKLdψIdψJdψKdψL (4)

Ω′ =
1
4!

εIJKLZIdZJdZKdZL , (5)

3.2 Orientifolding the twistor string

Having reviewed how the spectrum and interactions of N = 4 SYM are recovered from the B–model
on |||CP3|4, we will now begin the construction of the analogous case of the Nf = 4 theory. It is
clear from the above that the problem can be split into two separate steps: First, one constructs
a B–model target space action which corresponds to the self–dual sector of the gauge theory, and
then, introducing D1–instantons wrapping appropriate curves and integrating over their moduli
space, one aims to recover the (non–self–dual) amplitudes of the theory in an MHV expansion.
In this and the following subsections we will focus on the former part (i.e. the self–dual action),
leaving the amplitudes for section 4.

To begin, we split the four fermionic coordinates ψI of |||CP3|4 as I = {a,A}, whith a = 1, 2
and A = 3, 4. We also take the gauge group to be SU(2N), so that the indices of Ai

j take
values i, j = 1 · · · 2N . Then the orientifold action is simply the combination of the following two
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(a) ψa → ψa , ψA → −ψA

(b) Ai
j → Aj

i

(6)

Considering the various components in the superfield expansion (2), it is easy to see that we
obtain the following spectrum:

(A, λa, {φ12 = φ;φ34 = φ†}, λ̃a, G) (7)

in the adjoint (symmetric) of Sp(N) and

(0, λA, {φaB;φAb}, λ̃A, 0) (8)

in the antisymmetric of Sp(N).
The superfield A decomposes into an adjoint part and an antisymmetric part as follows:

A = V + Z (9)
= (A + ψaλa + ψ1ψ2φ + ψ3ψ4φ† + εcdψ

3ψ4ψcλ̃d + ψ1ψ2ψ3ψ4G)
+ (ψAζA + ψaψBzaB + εCDψ1ψ2ψC ζ̃D) (10)

where V is a superfield in the adjoint and Z a superfield in the antisymmetric representation.

3.3 The fundamental sector

(11)
QM = ψAQAX = ψA

(
ηAX + ψaqaAX + ψ1ψ2η̃AX

)
. (12)

Since A is the SU(2)A index and we know that this should be embedded in SO(8), we choose X
to be an index of Sp(2), associated with the special embedding SO(8) ⊃ SU(2)× Sp(2). Note that
we have defined M up to correspond to AX down and vice-versa. The breaking of the SO(8) index
in the spacetime picture is going to occur in the same trivial manner as for the twistor action.

4

; a = 1, 2 , A = 3, 4

We still need to recover the fundamental d.o.f.

11

On the twistor side we perform a super-orientifold

where M is the SO(8) index,

Ω =
1
4!

Ω′εIJKLdψIdψJdψKdψL (14)

and

A = V + Z
= (A + ψaλa + ψ1ψ2φ + ψ3ψ4φ† + εcdψ

3ψ4ψcλ̃d + ψ1ψ2ψ3ψ4G)
+ (ψAζA + ψaψBzaB + εCDψ1ψ2ψC ζ̃D) (15)

QM = ψAQAX = ψA
(
ηAX + ψaqaAX + ψ1ψ2η̃AX

)
. (16)

Since A is the SU(2)A index and we know that this should be embedded in SO(8), we choose X to be an
index of Sp(2), associated with the special embedding SO(8) ⊃ SU(2) × Sp(2). Note that we have defined
M up to correspond to AX down and vice-versa. The breaking of the SO(8) index in the spacetime picture
is going to occur in the same trivial manner as for the twistor action.

4

The superfield A decomposes into an adjoint and an anti-
symmetric Sp(N) piece yielding part of the spectrum
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X is chosen to be an index of Sp(2), associated with the
maximal embedding Sp(2)× SU(2) ⊂ SO(8).

QX = ψAQAX = ψA(ηAX + ψaqaAX + ψ1ψ2η̃AX).

This is done by introducing a new “flavour” brane, sitting
at the locus ψA = 0, ψ̄a,A = 0

The full HCS action is

is what we have so far), 8s = 41 + 4̄−1, it should be relatively clear how the groupings in eq. (7) come up.
As far as raising and lowering the M index, we don’t really understand how that works at the level of the
components (admittedly we haven’t tried very hard), so we’ll stick to the definitions of things with M index
up and down for the moment, which seem to work well.

The scalar potential (quartic) terms will then be

V = g2 Tr
(

1
2
[φ†, φ]2 +

1
4
[za

A, zA
b][z

b
B , zB

a]− [za
A, φ][φ†, zA

a]
)

− g2

(
1
2
qa

M{φ†, φ}qM
a +

1
4
qa

M [zb
A, zA

a]qM
b

)

+
g2

8
(
(qa

MqN
a)(qb

NqM
b) + (qa

Mqb
N )(qN

aqM
b)

)
,

(8)

where indices are once again implicit with Sp(N) being contracted SW-NE and SU(4) NW-SE and in the
last line the ()’s denote Sp(N) colour singlets. This allows us to finally write down the full action in its most
compact form
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2
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]
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[
−1

2
D̃za
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+iζ̄A "DζA − za
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2
D̃qa
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2
ηMφηM + 2g2
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a −
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2
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)

,

(9)

where we are also using the conjugate of the covariant derivative2 D̃µ = ∂µ + iAµ.
The self dual truncation of the above, which we will be comparing to the twistor action, is simply
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and the ‘covariant derivatives’ being defined as D̄ = ∂̄ +A∧ for fundamental fields and D̄ = ∂̄ +A∧+∧A for
matrix-valued fields. Note that Jamestinos somehow managed to miss out on one of the interaction terms
between the adjoint and anti-symmetric multiplets, namely the second one in the second row, as well as
the corresponding one in the fundamental sector. The above should be coming from the following action in
supertwistor space

S =
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Ω ∧

(
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3
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, (13)

2Note that for matrix-valued fields that will become D̃µ = ∂µ + i[·, Aµ].

3

while in component form

is what we have so far), 8s = 41 + 4̄−1, it should be relatively clear how the groupings in eq. (7) come up.
As far as raising and lowering the M index, we don’t really understand how that works at the level of the
components (admittedly we haven’t tried very hard), so we’ll stick to the definitions of things with M index
up and down for the moment, which seem to work well.

The scalar potential (quartic) terms will then be

V = g2 Tr
(

1
2
[φ†, φ]2 +

1
4
[za

A, zA
b][z

b
B , zB

a]− [za
A, φ][φ†, zA

a]
)

− g2

(
1
2
qa

M{φ†, φ}qM
a +

1
4
qa

M [zb
A, zA

a]qM
b

)

+
g2

8
(
(qa

MqN
a)(qb

NqM
b) + (qa

Mqb
N )(qN

aqM
b)

)
,

(8)

where indices are once again implicit with Sp(N) being contracted SW-NE and SU(4) NW-SE and in the
last line the ()’s denote Sp(N) colour singlets. This allows us to finally write down the full action in its most
compact form

L =Tr
[
−1

2
GF + D̃φ†Dφ + iλ̄a "Dλa − λaλaφ† + 2g2λ̄aλ̄aφ

]
+ Tr

[
−1

2
D̃za

ADzA
a

+iζ̄A "DζA − za
A[λa, ζA] + 2g2zA

a[ζ̄A, λ̄a] + ζAζAφ− 2g2ζ̄Aζ̄Aφ†]− 1
2
D̃qa

MDqM
a

− iη̄M "DηM + qa
MλaηM − 1

2
ηMφηM + 2g2

(
η̄M λ̄aqM

a −
1
2
η̄Mφ†η̄M

)

+ g2

(
1
2
qa

M{φ†, φ}qM
a +

1
4
qa

M [zb
A, zA

a]qM
b

)
− g2

8
(
(qa

MqN
a)(qb

NqM
b) + (qa

Mqb
N )(qN

aqM
b)

)

− g2 Tr
(

1
2
[φ†, φ]2 +

1
4
[za

A, zA
b][z

b
B , zB

a]− [za
A, φ][φ†, zA

a]
)

,

(9)

where we are also using the conjugate of the covariant derivative2 D̃µ = ∂µ + iAµ.
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Next let’s also write down the twistor action of Jamestinos (JB-070207) also using the new ideas of
KZ-180207. This should be

SHCS =
∫

CP3
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(11)

with
Ω′ =
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εIJKLZIdZJdZKdZL (12)

and the ‘covariant derivatives’ being defined as D̄ = ∂̄ +A∧ for fundamental fields and D̄ = ∂̄ +A∧+∧A for
matrix-valued fields. Note that Jamestinos somehow managed to miss out on one of the interaction terms
between the adjoint and anti-symmetric multiplets, namely the second one in the second row, as well as
the corresponding one in the fundamental sector. The above should be coming from the following action in
supertwistor space

S =
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∫

D5
Ω ∧

(
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2Note that for matrix-valued fields that will become D̃µ = ∂µ + i[·, Aµ].
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We have recovered the spectrum. To compare interactions
derive Feynman rules for gauge theory and calculate amp-
litude ratios with the analytic ones evaluated from
Witten’s prescription on the twistor side.
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Wavefunctions: −→ −[12]〈34〉

This time we obtain

(b) = 2ig2εabε
AB 〈34〉

〈12〉
. (19)

Note here that I have made a choice of sign where the Sp(2) index is concerned. When we compare with
the twistor side there are some factors of Ω missing, which could introduce an overall sign. I take all these
indices to be down with the following convention: I replace the relevant Ω with a plus if the indices follow the
amplitude ordering and with a minus if they don’t. That is, I’m considering the Sp(N) and Sp(2) stripped
partial amplitudes.

The results match with the same normalisation number of 32i. This puts a spanner in the works, since the
fundamental fields seem to be behaving in exactly the same way as the antisymmetric guys. If I understand
things properly at the moment, this should not be that surprising: The partial amplitudes are not aware of
the way that the fields transform because the gauge indices have been stripped down. Therefore they should
only be sensitive to helicity and should be treating both kinds of matter fields in a similar manner. This is
what we are seeing both from the Feynman rules and from the resulting amplitude calculations. So I believe
that in the following we can extrapolate amplitudes that have been calculated for say η’s also to ζ’s and the
same for z’s and q’s.

Let me close with a list of the amplitudes that seem to work along with what they should be giving. I
am displaying the twistor answer but I have also explicitly checked and matched the gauge theory answer.
The relevant normalisation factor is 32i for all listed results.

〈λa, φ†, λ̄b, φ〉 =
g2

16
εab

〈23〉
〈12〉

(20)

〈λa, ζA, ζ̄B, λ̄b〉 =
g2

16
εabε

AB

(

〈34〉2

〈23〉〈14〉
+

〈34〉
〈12〉

)

(21)

〈ηA, λa, ηB, λb〉 = 0 (22)

〈za
A, zb

B, zc
C , zd

D〉 =
g2

16

(

−
〈12〉〈34〉
〈23〉〈14〉

εadεbcε
ADεBC −

〈14〉〈23〉
〈12〉〈34〉

εabεcdε
ABεCD (23)

+εabεcdε
ADεBC + εadεbcε

ABεCD
)

〈φ†, za
A, zb

B, φ〉 =
g2

16

〈13〉〈24〉
〈23〉〈14〉

εadε
AB (24)

〈φ†, qa
A, qb

B, φ〉 =
g2

16

〈13〉〈24〉
〈23〉〈14〉

εadε
AB (25)

〈za
A, ζC , ζ̄D, zb

B〉 = −
g2

16
εab

(

εABεCD 〈13〉〈34〉
〈23〉〈14〉

+ εACεBD 〈13〉
〈12〉

)

(26)

〈qa
A, qb

B, qc
C , qd

D〉 =
g2

16

(

−
〈12〉〈34〉
〈23〉〈14〉

εadεbcε
ADεBC −

〈14〉〈23〉
〈12〉〈34〉

εabεcdε
ABεCD (27)

+εabεcdε
ADεBC + εadεbcε

ABεCD
)

〈λa, λb, ζA, ζB〉 = 0 . (28)
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〈φ†, za
A, zb

B, φ〉 =
g2

16

〈13〉〈24〉
〈23〉〈14〉

εadε
AB (24)

〈φ†, qa
A, qb

B, φ〉 =
g2

16

〈13〉〈24〉
〈23〉〈14〉

εadε
AB (25)

〈za
A, ζC , ζ̄D, zb

B〉 = −
g2

16
εab

(

εABεCD 〈13〉〈34〉
〈23〉〈14〉

+ εACεBD 〈13〉
〈12〉

)

(26)

〈qa
A, qb

B, qc
C , qd

D〉 =
g2

16

(

−
〈12〉〈34〉
〈23〉〈14〉

εadεbcε
ADεBC −

〈14〉〈23〉
〈12〉〈34〉

εabεcdε
ABεCD (27)

+εabεcdε
ADεBC + εadεbcε

ABεCD
)

〈λa, λb, ζA, ζB〉 = 0 . (28)
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I have also calculated the following 5-point amplitudes, with and without external fundamental particles

〈λa, zb
B, zc

C , λd, φ†〉 =
g2

16
εBC

(

〈25〉〈35〉
〈23〉〈45〉〈15〉

εadεbc −
〈25〉〈35〉〈14〉

〈12〉〈34〉〈45〉〈15〉
εabεcd

)

(29)

〈φ, qa
A, qb

B , ηC , ηD〉 = −
g2

16
εab

(

〈13〉
〈34〉〈15〉

εADεBC −
〈13〉〈25〉

〈23〉〈45〉〈15〉
εABεCD

)

. (30)

The relevant normalisation factor is once again 32i. I think the above give some solid evidence that what
we are doing is actually correct. Let me just add that in the derivation of the above from the twistor side
the following expressions, once derived, make calculations faster

∫

d4θ ψa
i ψ1

j ψ2
j ψb

k =
1

4
εab〈ij〉〈jk〉 (31)

∫

d4θ ψA
i ψ3

j ψ4
j ψB

k =
1

4
εAB〈ij〉〈jk〉 (32)

∫

d4θ ψa
i ψb

jψ
c
kψd

l =
1

4

(

εadεbc〈ij〉〈kl〉 − εabεcd〈il〉〈jk〉
)

(33)
∫

d4θ ψA
i ψB

j ψC
k ψD

l =
1

4

(

εADεBC〈ij〉〈kl〉 − εABεCD〈il〉〈jk〉
)

. (34)

The following ε-tensor identity is also very useful, especially in the calculation of the quartic vertices
∫

d4θ ψa
i ψb

jψ
c
kψd

l = −
∫

d4θ ψa
i ψc

kψb
jψ

d
l (35)

⇒
1

4

(

εadεbc〈ij〉〈kl〉 − εabεcd〈il〉〈jk〉
)

= −
1

4

(

εadεcb〈ik〉〈jl〉 − εacεbd〈il〉〈kj〉
)

⇒ εadεbc (〈ij〉〈kl〉 − 〈ik〉〈jl〉) − εabεcd〈il〉〈jk〉 = εacεbd〈il〉〈kj〉
⇒ −(εadεbc + εabεcd)〈il〉〈jk〉 = εacεbd〈il〉〈kj〉

⇒ εadεbc + εabεcd = εacεbd . (36)

Same holds with capitals. OK, please tell me if I’ve missed out on anything. I think that we are finally done
with this calculational part and I really hope that there will be no more surprises!

8

We therefore recover the twistor result

(a) + (b) = −2ig2 〈12〉〈34〉
〈14〉〈23〉

(15)

up to a normalisation factor of 32i. In the above I have made use of the Schouten identity and
momentum conservation, in order to get the momentum structure that matches the twistor side.

The amplitude 〈ηA, λa, λ̄b, η̄B〉

This next amplitude includes some fundamental fields (fermions) and it actually ends up working in exactly
the same way as the previous one, i.e. it agrees with the twistor answer up to a normalisation factor of 32i.

1. Twistor space: We have

w1(ηA) = ψA
1 , w2(λ

a) = εdaψd
2

w3(λ̃
b) = εcbψ

3
3ψ

4
3ψ

c
3 , w4(η̃B) = ψB

4 ψ1
4ψ2

4 . (16)

The result is

g2εcbεda

∫

d8θ
ψA

1 ψd
2ψ3

3ψ
4
3ψ

c
3ψ

B
4 ψ1

4ψ
2
4

〈12〉〈23〉〈34〉〈41〉
=

g2

16
εabε

AB

(

〈34〉
〈12〉

−
〈34〉2

〈23〉〈14〉

)

. (17)

2. Spacetime: Once again we have two channels

ηA,1

λa,2 λ̄b,3

η̄B,4

Aµ

Aν

+

qc
C qd

D

ηA,1

λa,2 λ̄b,3

η̄B ,4

(a) For the t-channel we have:

Vertices:

Aµ

η̄B,4 ηA,1

−→ −iεABσµ

Aν

λa,2 λ̄b,3

−→ iεabσ̄
ν

5

• Vectors:

p

Aµ Aν −→ −ig2 ηµν

p2

where this form of the vector propagator is going to prove much more useful than the spinor helicity
one in explicit calculations.

Vertices: All the vertices can be read-off from the action by being a bit careful about all the possible
permutations between external fields that appear in more than one leg. The only thing left to do after
that is to put an extra factor of i. The discussion from the opening paragraph regarding the understanding
of the colour stripped terms is most relevant here. For the derivative couplings I am using ∂µ → −ipµ,
when the momentum is heading out of the vertex (which is pretty much always in our case). I am just
giving you the über-bitch quartic vertices here. The cubic ones will appear in the explicit examples below.

Quartics:

(qa
A, za

A)

(qb
B, zb

B)

φ

φ†

−→ ig2εabε
AB

(qa
A, za

A)

(qb
B, zb

B)

(qd
D, zd

D)

(qc
C , zc

C)

−→ i
(

2εabεcdε
ADεBC + εadεbcε

ADεBC

+2εadεbcε
ABεCD + εabεcdε

ABεCD
)

A few examples of amplitudes

Here I will write down a couple of amplitudes quite explicitly. I will first display the twistor part, which
should at least give the momentum structure consistently. In the spacetime case I will be very explicit about
what comes from where.

The amplitude 〈φ1, φ2, φ
†
3, φ

†
4〉

This is an important amplitude in checking the consistency of our conventions, because of the very simple
structure that comes out from the twistor side.

1. Twistor space: The relevant wavefunctions can always be read-off from eq.(15) and (16) of CC-020507
and are

w1(φ) = ψ1
1ψ

2
1 , w2(φ) = ψ1

2ψ
2
2

w3(φ
†) = ψ3

3ψ
4
3 , w4(φ

†) = ψ3
4ψ4

4 . (12)

The integral we have to perform will then be

g2

∫

d8θ
ψ1

1ψ
2
1ψ1

2ψ
2
2ψ

3
3ψ

4
3ψ3

4ψ
4
4

〈12〉〈23〉〈34〉〈41〉
= −

g2

16

〈12〉〈34〉
〈23〉〈14〉

. (13)

3

We find agreement for a large set of amplitudes up to the
same constant normalisation factor:

These include 4-point amplitudes with fundamental, anti-
symmetric and adjoint external particles and two 5-point.
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NB2: We are encoding part of the flavour symmetry geome-
trically. Above agreement forces us to identify SU(2) ⊂ SO(8)
with SU(2)A. Twistor strings describe theory with global
SU(2)A × Sp(2).

We have used Sp(Nc) properties while constructing the
actions but the amplitudes are colour-stripped. Expect
similar behaviour for SU(Nc).

NB4:

NB3: The pre-analytic amplitudes corresponding to interac-
tions arising only from the self-dual vertices vanish. This
could be an indication for classical integrability of the self-
dual theory.

NB1: The integration over the D1-instanton moduli space
has only included |||CP1 topologies. IRP2’s ∼ O(g3) will not
contribute to tree-level analytic amplitudes.



The N = 2 SU(Nc) theory with Nf = 2Nc

Physical string description as Nc fractional D3’s probing Nf

fractional D7’s on an R1,5 × R4/Z2 orbifold. For Nf = 2Nc

the theory becomes superconformal.
[Bertolini-Di Vecchia-Frau-Lerda-Marotta]

15

The D7’s now lie along the orbifolded co-ordinates. The
D3’s are constrained from moving in these directions.
The spectrum is

Component SO(1,3) SU(2)a SU(2)A U(1) SU(N) SU(2N)
A,G (2, 2) 1 1 0 N2 − 1 1

φ (1, 1) 1 1 +2 N2 − 1 1
φ† (1, 1) 1 1 −2 N2 − 1 1

λα,a (2, 1) 2 1 +1 N2 − 1 1
λ̄α̇,a (1, 2) 2 1 −1 N2 − 1 1

qI
a, q†aI (1, 1) 2 1 0 N,N 2N, 2N

ηI
α, η̄

′I
α (2, 1) 1 1 −1 N 2N

η̄α̇I , η′
α̇I (1, 2) 1 1 +1 N 2N



The gauge theory Lagrangian is in N = 1 notation
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27/05/07
(Costis)

The SU(Nc) case with Nf = 2Nc

I will try to give a sketch of how I think the generalisation of what we have to the case where we have SU(N)
pans out. Let me first deal with the technicalities that seem to follow seamlessly from what we have already
done and I will argue later about the physical string origin of the gauge theory. Without further delay, let
me write down the N = 2 action

L =
1
8π

Im Tr
[
τ

(∫
d2θ WαWα + 2

∫
d2θd2θ̄ e2V Φ†e−2V Φ

)]
+

∫
d2θd2θ̄ Q†Ie−2V QI

+
∫

d2θd2θ̄ Q′Ie2V Q′†
I +

√
2

∫
d2θ

(
Q′IΦQI + h.c.

)
,

(1)

where the I’s are now fundamental SU(Nf ) indices and I will from now on drop the subscripts keeping only
one parameter N . Therefore I = 1, . . . , 2N . The evaluation of the kinetic part of the action will follow
directly from the previous case by setting the anti-symmetric fields to zero and keeping in mind the new
global flavour group. After expanding the superfields and performing the Grassmann integration the result
should be

L =
1
g2

Tr
(
−1

4
F 2 + (DµA)†(DµA)− iλ σµDµλ̄− iχ̄σ̄µDµχ− i

√
2 [λ, χ]A† − i

√
2 [λ̄, χ̄]A

)

+ (Dµq)†I(Dµq)I + (Dµq̃)I(Dµq̃)†I − iψ̄I
(q)σ̄

µDµψ(q)I − iψI
(q̃)σ̄

µDµψ̄(q̃)I − i
√

2 q†Iλψ(q)I

+ i
√

2 ψ̄I
(q)λ̄qI − i

√
2 q̃I λ̄ψ̄(q̃)I + i

√
2 ψI

(q̃)λq̃†I −
√

2
(
ψI

(q̃)χqI + ψI
(q̃)Aψ(q)I + q̃Iχψ(q)I

)
− V .

(2)

Once again V denotes the scalar potential obtained by integrating out the auxiliary F - and D-terms. The
terms contributing are now

V = F †
(q)F(q) + F(q̃)F

†
(q̃) +

1
g2

F †
(A)F(A) +

1
2g2

D2 (3)

and the individual terms are given below

(F(q))i
I = −

√
2 (A†)i

j q̃
†j
I (4)

(F(q̃))I
i = −

√
2 q†Ij (A†)j

i (5)

(F(A))a = −g2
√

2 q†Ii (T a)i
j q̃

†j
I (6)

Da = −Tr
(
T a[A†, A]

)
+ g2

(
q†IT aqI − q̃IT aq̃†I

)
. (7)

The (T a)i
j ’s are the generators of the fundamental representation of SU(N). The contributions to the scalar

potential for the F -terms should read as follows

VF(q) = 2q̃IAA†q̃†I (8)

VF(q̃) = 2q†IA†AqI (9)

VF(A) = 2g2

[
(q†IqJ)(q̃J q̃†I)−

1
N

(q̃IqI)(q†J q̃†J)
]

. (10)

The expression for the D-term contribution becomes

VD =
1

2g2
Tr [A†, A]2 −

(
q†I [A†, A]qI − q̃I [A†, A]q̃†I

)

+
g2

2

(
(q†IqJ)(q†JqI) + (q̃I q̃†J)(q̃J q̃†I)− 2(q̃JqI)(q†I q̃†J)

)

− g2

2N

(
(q†IqI)(q†JqJ) + (q̃I q̃†I)(q̃

J q̃†J)− 2(q†IqI)(q̃J q̃†J)
)

,

(11)

1

with a series of helicity-asymmetric rescalings leading to the
following self-dual truncation

As you can see, we have the introduction of 1/N corrections from the fundamental fields’ coupling to the
photon, coming from

(T a)i
j(Ta)k

l = δi
lδ

k
j −

1
N

δi
jδ

k
l . (12)

These, however, are going to get removed along with the rest of the colour information during the stripping
process. Now by doing the following redefinitions and the usual stuff for the gauge field

(qI , q
†I) → (qI , q

†I)

(q̃I , q̃†I) → (iq′I ,−iq′†
I )

(ψ(q)I , ψ̄
I
(q)) → (− iηI

g1/2
√

2
, ig1/2

√
2η̄I)

(ψI
(q̃), ψ̄(q̃)I) → (

η′I

g1/2
√

2
, g1/2

√
2η̄′

I)

(A, A†) → (ig
√

2φ,− ig√
2
φ†)

(λ, λ̄, ) → (g1/2λ, g3/2λ̄, )
(χ, χ̄) → (g1/2χ, g3/2χ̄) (13)

we should arrive at the following form of the action

L =Tr
[
−1

2
GF +

1
4
g2G2 + (Dφ)†(Dφ)− iλ̄ $Dλ− iχ̄ $Dχ− [λ, χ]φ† + 2g2[λ̄, χ̄]φ

]

+ (DqI)†(DqI) + (Dq′)I(Dq′)†I − iη̄I $DηI − iη′I $Dη̄′
I − q†IληI − 2g2η̄I λ̄qI + 2g2q′I λ̄η̄′

I

+ η′Iλq′†
I − η′IχqI − η′Iφ ηI − q′IχηI − 2g2

(
q†I χ̄η̄′

I + η̄Iφ† η̄′
I + η̄I χ̄q′†

I

)
− V .

(14)

We can once again package things nicely in doublet form. Note that in this case I believe that we can
immediately perform the decomposition of the flavour index. In light of the twistor picture that I will
discuss in a second, it seems natural to choose once more the special embedding of SU(2) into SU(2N),
namely SU(2N) ⊃ SU(N)×SU(2) as can be seen form the usual tables in Slansky. Here all fields are singlets
under the SU(2)A and we therefore don’t need to initially identify these two symmetries, break or “lock”
anything1. This SU(2) should, however, be given a geometrical interpretation, the inspiration for which
comes from the Sp(N) case. With all the definitions for the SU(2)a doublets the action becomes

L =Tr
[
−1

2
GF +

1
4
g2G2 + (Dφ)†(Dφ) + iλ̄a $Dλa − λaλaφ† + 2g2λ̄aλ̄aφ

]
− η′IφηI − 2g2η̄Iφ†η̄′

I

− (D̃q†aI)(DqaI)− iη̄I $DηI − iη′I $Dη̄′
I + q†aIλaηI − η′IλaqaI + 2g2η̄I λ̄aqaI − 2g2q†aI λ̄aη̄′

I

− g2

2
Tr[φ†, φ]2 + g2q†aI{φ†, φ}qaI −

g2

2
[
(q†aIqaJ)(q†bJqbI) + (q†Ia qbJ)(q†aJqb

I)
]

+
g2

2N

[
(q†aIqbI)(q†Ja qb

J) + (q†aIqb
I)(q

†J
b qaJ)

]
.

(15)

The self-dual truncation of the above, which we will be comparing to the twistor action, is simply

L =Tr
[
−1

2
GF + Dφ†Dφ + iλ̄a $Dλa − λaλaφ†

]
−Dq†aIDqaI

− iη̄I $DηI − iη′I $Dη̄′
I − η′IφηI + q†aIλaηI − η′IλaqaI .

(16)

Finally, let’s write down the corresponding twistor action. This should be something like

SHCS =
∫

CP3
Ω′ ∧ Tr[G ∧ F + φ† ∧ D̄φ− λ̃a ∧ D̄λa + λa ∧ λa ∧ φ†]

+ η̃KA ∧ D̄ηAK + η′KA ∧ D̄η̃′
AK − q†aAK ∧ D̄qaAK

+ η′AK ∧ φ ∧ ηAK − q†aAK ∧ λa ∧ η′
AK + η′

AK ∧ λa ∧ qaAK ,

(17)

1I will come back to that in the last part of this note.
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where

Ω =
1
4!

Ω′εIJKLdψIdψJdψKdψL (4)

Ω′ =
1
4!

εIJKLZIdZJdZKdZL , (5)

3.2 Orientifolding the twistor string

Having reviewed how the spectrum and interactions of N = 4 SYM are recovered from the B–model
on |||CP3|4, we will now begin the construction of the analogous case of the Nf = 4 theory. It is
clear from the above that the problem can be split into two separate steps: First, one constructs
a B–model target space action which corresponds to the self–dual sector of the gauge theory, and
then, introducing D1–instantons wrapping appropriate curves and integrating over their moduli
space, one aims to recover the (non–self–dual) amplitudes of the theory in an MHV expansion.
In this and the following subsections we will focus on the former part (i.e. the self–dual action),
leaving the amplitudes for section 4.

To begin, we split the four fermionic coordinates ψI of |||CP3|4 as I = {a,A}, whith a = 1, 2
and A = 3, 4. We also take the gauge group to be SU(2N), so that the indices of Ai

j take
values i, j = 1 · · · 2N . Then the orientifold action is simply the combination of the following two
operations:

(a) ψa → ψa , ψA → −ψA

(b) Ai
j → Aj

i

(6)

Considering the various components in the superfield expansion (2), it is easy to see that we
obtain the following spectrum:

(A, λa, {φ12 = φ;φ34 = φ†}, λ̃a, G) (7)

in the adjoint (symmetric) of Sp(N) and

(0, λA, {φaB;φAb}, λ̃A, 0) (8)

in the antisymmetric of Sp(N).
The superfield A decomposes into an adjoint part and an antisymmetric part as follows:

A = V + Z (9)
= (A + ψaλa + ψ1ψ2φ + ψ3ψ4φ† + εcdψ

3ψ4ψcλ̃d + ψ1ψ2ψ3ψ4G)
+ (ψAζA + ψaψBzaB + εCDψ1ψ2ψC ζ̃D) (10)

where V is a superfield in the adjoint and Z a superfield in the antisymmetric representation.

3.3 The fundamental sector

(11)
QM = ψAQAX = ψA

(
ηAX + ψaqaAX + ψ1ψ2η̃AX

)
. (12)

Since A is the SU(2)A index and we know that this should be embedded in SO(8), we choose X
to be an index of Sp(2), associated with the special embedding SO(8) ⊃ SU(2)× Sp(2). Note that
we have defined M up to correspond to AX down and vice-versa. The breaking of the SO(8) index
in the spacetime picture is going to occur in the same trivial manner as for the twistor action.

4

; ψa = ψ1,2 , ψA = ψ3,4

On the twistor side we only orbifold the fermionic directions

17

where we have now made explicit use of the special embedding SU(2N) ⊃ SU(N) × SU(2) so that K =
1, . . . , N . The above should be coming from the slightly modified action in supertwistor space

S =
∫

D5
Ω ∧

(
1
2
Tr[A · ∂̄A+

2
3
A ∧A ∧A] +Q†I · ∂̄QI +Q†I ∧A ∧QI

)
, (18)

where the superfield expansion is

A = (A + ψaλa + ψ1ψ2φ + ψ3ψ4φ† + εcdψ
3ψ4ψcλ̃d + ψ1ψ2ψ3ψ4G) (19)

QI = ψAQAK = ψA
(
ηAK + ψaqaAK + ψ1ψ2η̃′

AK

)
(20)

Q†I = ψAQ†K
A = ψA

(
η′K

A + ψaq†KaA + ψ1ψ2η̃K
A

)
. (21)

Note that in the definition of the HCS action I have removed the factor of 1
2 for the fundamental fields since

these are now complex. For the same reason I also don’t think that we can avoid introducing the h.c. of Q.
This is more along the lines of what we initially were thinking about but with the insight that we get from
Sp(N) about how these fundamental fields can be introduced and what that corresponds to in the spacetime
picture.

Now the good thing about the above set-up is that it is almost identical to the Sp(N) one and we can
therefore perform a couple of consistency checks for some sample amplitudes in a simple manner. Without
wanting to go into any detail, it is straightforward to replace a couple of fields and vertices to find out that
things work out exactly in the same way, including the relative normalisation factor of 32i. I am only listing
the two amplitudes that I explicitly checked, but I think that the generalisation to all others is indeed trivial.
I only give the twistor answer

〈q†aA, qb
B , q†cC , qd

D〉 =
g2

16

(
−〈12〉〈34〉
〈23〉〈14〉εadεbcε

ADεBC − 〈14〉〈23〉
〈12〉〈34〉εabεcdε

ABεCD (22)

+εabεcdε
ADεBC + εadεbcε

ABεCD
)

〈φ, qa
A, q†bB , ηC , η′

D〉 = −g2

16
εab

(
〈13〉

〈34〉〈15〉ε
ADεBC − 〈13〉〈25〉

〈23〉〈45〉〈15〉ε
ABεCD

)
. (23)

All the above came out a bit too easy2 so please tell me if I’m missing something obvious!

Some comments and summary of open questions

Now a couple of words on the possible brane interpretation of this on both sides and how some things could
start getting clearer from the addition of this case to our study.

As far as the geometrical interpretation of the gauge theory is concerned, I am quite happy with the
one that I have briefly discussed with both of you, i.e. the story from Di Vecchia et al. hep-th/0107057,
where they show that the effective theory on N fractional D3 branes3 and 2N fractional D7 branes on an
R1,5 × R4/Z2 orbifold corresponds to the conformal point of N = 2 SQCD with gauge group SU(N) and
flavour group SU(2N). This is nice for several reasons, namely it uses the D3 and D7 intuition that we
have already explored plus it is the natural generalisation of the Seiberg-Witten story to SU(N), since for
Nf '= 2Nc the theory is non-conformal with a scale ΛSQCD being introduced etc. One caveat is that the
above is only describing the perturbative regime of the gauge theory, which however doesn’t bother us at
all. The other nice thing about it is that we can have a very clear correspondence with our orientifold
set-up. Let me try to explain how I see it a bit more thoroughly: The orientifold and the fractional brane
configurations differ only in the fact that there is no worldsheet parity operation in the latter case. We still
will take the orbifold on the x4, x5, x6, x7 plane, the D3 on x0, x1, x2, x3 and the D7 on x0, . . . , x7. All the
Lorentz symmetries pan out just like for the Sp(N) case. However, the two main differences are that there is
no symmetry enhancement on the fixed plane or “doubling” of the branes, hence SU gauge groups, and the
D3’s are also prohibited to move in the orbifold directions, which are orthogonal to themselves but parallel
to the D7’s, namely x4, . . . , x7. Motion in these directions corresponds exactly to the degrees of freedom that
give rise to the antisymmetric hypermultiplets, as is casually mentioned on page 7 of Gava-Narain plus BMN

2Except for the soddin quartics!!
3More material on fractional D3’s and the corresponding gauge theory on their worldvolume is covered in their review paper

hep-th/0112195.

3

This projects out all but the following component fields

K is an index of SU(N), coming from the following maximal
embedding SU(N)× SU(2) ⊂ SU(2N).

where we have now made explicit use of the special embedding SU(2N) ⊃ SU(N) × SU(2) so that K =
1, . . . , N . The above should be coming from the slightly modified action in supertwistor space

S =
∫

CP3|4
Ω ∧

(
1
2
Tr[A · ∂̄A+

2
3
A ∧A ∧A] +Q†I · ∂̄QI +Q†I ∧A ∧QI

)
, (18)

where the superfield expansion is

A = (A + ψaλa + ψ1ψ2φ + ψ3ψ4φ† + εcdψ
3ψ4ψcλ̃d + ψ1ψ2ψ3ψ4G) (19)

QK = ψAQAK = ψA
(
ηAK + ψaqaAK + ψ1ψ2η̃′

AK

)
(20)

Q†K = ψAQ†K
A = ψA

(
η′K

A + ψaq†KaA + ψ1ψ2η̃K
A

)
. (21)

Note that in the definition of the HCS action I have removed the factor of 1
2 for the fundamental fields since

these are now complex. For the same reason I also don’t think that we can avoid introducing the h.c. of Q.
This is more along the lines of what we initially were thinking about but with the insight that we get from
Sp(N) about how these fundamental fields can be introduced and what that corresponds to in the spacetime
picture.

Now the good thing about the above set-up is that it is almost identical to the Sp(N) one and we can
therefore perform a couple of consistency checks for some sample amplitudes in a simple manner. Without
wanting to go into any detail, it is straightforward to replace a couple of fields and vertices to find out that
things work out exactly in the same way, including the relative normalisation factor of 32i. I am only listing
the two amplitudes that I explicitly checked, but I think that the generalisation to all others is indeed trivial.
I only give the twistor answer

〈q†aA, qb
B , q†cC , qd

D〉 =
g2

16

(
−〈12〉〈34〉
〈23〉〈14〉εadεbcε

ADεBC − 〈14〉〈23〉
〈12〉〈34〉εabεcdε

ABεCD (22)

+εabεcdε
ADεBC + εadεbcε

ABεCD
)

〈φ, qa
A, q†bB , ηC , η′

D〉 = −g2

16
εab

(
〈13〉

〈34〉〈15〉ε
ADεBC − 〈13〉〈25〉

〈23〉〈45〉〈15〉ε
ABεCD

)
. (23)

All the above came out a bit too easy2 so please tell me if I’m missing something obvious!

Some comments and summary of open questions

Now a couple of words on the possible brane interpretation of this on both sides and how some things could
start getting clearer from the addition of this case to our study.

As far as the geometrical interpretation of the gauge theory is concerned, I am quite happy with the
one that I have briefly discussed with both of you, i.e. the story from Di Vecchia et al. hep-th/0107057,
where they show that the effective theory on N fractional D3 branes3 and 2N fractional D7 branes on an
R1,5 × R4/Z2 orbifold corresponds to the conformal point of N = 2 SQCD with gauge group SU(N) and
flavour group SU(2N). This is nice for several reasons, namely it has the correct spectrum (crucial!), it
uses the D3 and D7 intuition that we have already explored plus it is the natural generalisation of the
Seiberg-Witten story to SU(N), since for Nf '= 2Nc the theory is non-conformal with a scale ΛSQCD being
introduced etc. One caveat is that the above is only describing the perturbative regime of the gauge theory,
which however doesn’t bother us at all. The other nice thing about it is that we can have a very clear
correspondence with our orientifold set-up. Let me try to explain how I see it a bit more thoroughly: Even
though the Sp(N) orientifold lies along x0, . . . , x7 and the SU(N) orbifolded directions are x4, x5, x6, x7, the
branes lie along the same hypersurfaces in both cases, i.e. the D3 on x0, x1, x2, x3 and the D7 on x0, . . . , x7.
All the Lorentz symmetries pan out just like for the Sp(N) case4. However, the two main differences are that
there is no symmetry enhancement on the fixed plane, hence SU gauge groups, or “doubling” of the branes.
This last fact is due to the D3’s being prohibited to move in the orbifold directions, which are orthogonal
to themselves but parallel to the D7’s, namely x4, . . . , x7. Motion in these directions corresponds exactly to

2Except for the soddin quartics!!
3More material on fractional D3’s and the corresponding gauge theory on their worldvolume is covered in their review paper

hep-th/0112195.
4I still can’t see how we break the SO(4)E R-symmetry down to SU(2)a × SU(2)A.
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The “flavour” branes correspond to the introduction of
the superfields



The HCS action is

The SU(N) spectrum has been recovered. The colour-
stripped amplitude ratios work out in the same manner
as before with identical relative normalisation.

where we have now made explicit use of the special embedding SU(2N) ⊃ SU(N) × SU(2) so that K =
1, . . . , N . The above should be coming from the slightly modified action in supertwistor space
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(20)
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)
. (21)

Note that in the definition of the HCS action I have removed the factor of 1
2 for the fundamental fields since

these are now complex. For the same reason I also don’t think that we can avoid introducing the h.c. of Q.
This is more along the lines of what we initially were thinking about but with the insight that we get from
Sp(N) about how these fundamental fields can be introduced and what that corresponds to in the spacetime
picture.

Now the good thing about the above set-up is that it is almost identical to the Sp(N) one and we can
therefore perform a couple of consistency checks for some sample amplitudes in a simple manner. Without
wanting to go into any detail, it is straightforward to replace a couple of fields and vertices to find out that
things work out exactly in the same way, including the relative normalisation factor of 32i. I am only listing
the two amplitudes that I explicitly checked, but I think that the generalisation to all others is indeed trivial.
I only give the twistor answer
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16
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〈φ, qa
A, q†bB , ηC , η′
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16
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〈23〉〈45〉〈15〉ε
ABεCD

)
. (23)

All the above came out a bit too easy2 so please tell me if I’m missing something obvious!

Some comments and summary of open questions

Now a couple of words on the possible brane interpretation of this on both sides and how some things could
start getting clearer from the addition of this case to our study.

As far as the geometrical interpretation of the gauge theory is concerned, I am quite happy with the
one that I have briefly discussed with both of you, i.e. the story from Di Vecchia et al. hep-th/0107057,
where they show that the effective theory on N fractional D3 branes3 and 2N fractional D7 branes on an
R1,5 × R4/Z2 orbifold corresponds to the conformal point of N = 2 SQCD with gauge group SU(N) and
flavour group SU(2N). This is nice for several reasons, namely it uses the D3 and D7 intuition that we
have already explored plus it is the natural generalisation of the Seiberg-Witten story to SU(N), since for
Nf '= 2Nc the theory is non-conformal with a scale ΛSQCD being introduced etc. One caveat is that the
above is only describing the perturbative regime of the gauge theory, which however doesn’t bother us at
all. The other nice thing about it is that we can have a very clear correspondence with our orientifold
set-up. Let me try to explain how I see it a bit more thoroughly: The orientifold and the fractional brane
configurations differ only in the fact that there is no worldsheet parity operation in the latter case. We still
will take the orbifold on the x4, x5, x6, x7 plane, the D3 on x0, x1, x2, x3 and the D7 on x0, . . . , x7. All the
Lorentz symmetries pan out just like for the Sp(N) case. However, the two main differences are that there is
no symmetry enhancement on the fixed plane or “doubling” of the branes, hence SU gauge groups, and the
D3’s are also prohibited to move in the orbifold directions, which are orthogonal to themselves but parallel
to the D7’s, namely x4, . . . , x7. Motion in these directions corresponds exactly to the degrees of freedom that
give rise to the antisymmetric hypermultiplets, as is casually mentioned on page 7 of Gava-Narain plus BMN

2Except for the soddin quartics!!
3More material on fractional D3’s and the corresponding gauge theory on their worldvolume is covered in their review paper

hep-th/0112195.
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where we have now made explicit use of the special embedding SU(2N) ⊃ SU(N) × SU(2) so that K =
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these are now complex. For the same reason I also don’t think that we can avoid introducing the h.c. of Q.
This is more along the lines of what we initially were thinking about but with the insight that we get from
Sp(N) about how these fundamental fields can be introduced and what that corresponds to in the spacetime
picture.

Now the good thing about the above set-up is that it is almost identical to the Sp(N) one and we can
therefore perform a couple of consistency checks for some sample amplitudes in a simple manner. Without
wanting to go into any detail, it is straightforward to replace a couple of fields and vertices to find out that
things work out exactly in the same way, including the relative normalisation factor of 32i. I am only listing
the two amplitudes that I explicitly checked, but I think that the generalisation to all others is indeed trivial.
I only give the twistor answer
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All the above came out a bit too easy2 so please tell me if I’m missing something obvious!

Some comments and summary of open questions

Now a couple of words on the possible brane interpretation of this on both sides and how some things could
start getting clearer from the addition of this case to our study.

As far as the geometrical interpretation of the gauge theory is concerned, I am quite happy with the
one that I have briefly discussed with both of you, i.e. the story from Di Vecchia et al. hep-th/0107057,
where they show that the effective theory on N fractional D3 branes3 and 2N fractional D7 branes on an
R1,5 × R4/Z2 orbifold corresponds to the conformal point of N = 2 SQCD with gauge group SU(N) and
flavour group SU(2N). This is nice for several reasons, namely it uses the D3 and D7 intuition that we
have already explored plus it is the natural generalisation of the Seiberg-Witten story to SU(N), since for
Nf '= 2Nc the theory is non-conformal with a scale ΛSQCD being introduced etc. One caveat is that the
above is only describing the perturbative regime of the gauge theory, which however doesn’t bother us at
all. The other nice thing about it is that we can have a very clear correspondence with our orientifold
set-up. Let me try to explain how I see it a bit more thoroughly: The orientifold and the fractional brane
configurations differ only in the fact that there is no worldsheet parity operation in the latter case. We still
will take the orbifold on the x4, x5, x6, x7 plane, the D3 on x0, x1, x2, x3 and the D7 on x0, . . . , x7. All the
Lorentz symmetries pan out just like for the Sp(N) case. However, the two main differences are that there is
no symmetry enhancement on the fixed plane or “doubling” of the branes, hence SU gauge groups, and the
D3’s are also prohibited to move in the orbifold directions, which are orthogonal to themselves but parallel
to the D7’s, namely x4, . . . , x7. Motion in these directions corresponds exactly to the degrees of freedom that
give rise to the antisymmetric hypermultiplets, as is casually mentioned on page 7 of Gava-Narain plus BMN

2Except for the soddin quartics!!
3More material on fractional D3’s and the corresponding gauge theory on their worldvolume is covered in their review paper
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where we have now made explicit use of the special embedding SU(2N) ⊃ SU(N) × SU(2) so that K =
1, . . . , N . The above should be coming from the slightly modified action in supertwistor space
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Note that in the definition of the HCS action I have removed the factor of 1
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these are now complex. For the same reason I also don’t think that we can avoid introducing the h.c. of Q.
This is more along the lines of what we initially were thinking about but with the insight that we get from
Sp(N) about how these fundamental fields can be introduced and what that corresponds to in the spacetime
picture.

Now the good thing about the above set-up is that it is almost identical to the Sp(N) one and we can
therefore perform a couple of consistency checks for some sample amplitudes in a simple manner. Without
wanting to go into any detail, it is straightforward to replace a couple of fields and vertices to find out that
things work out exactly in the same way, including the relative normalisation factor of 32i. I am only listing
the two amplitudes that I explicitly checked, but I think that the generalisation to all others is indeed trivial.
I only give the twistor answer
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All the above came out a bit too easy2 so please tell me if I’m missing something obvious!

Some comments and summary of open questions

Now a couple of words on the possible brane interpretation of this on both sides and how some things could
start getting clearer from the addition of this case to our study.

As far as the geometrical interpretation of the gauge theory is concerned, I am quite happy with the
one that I have briefly discussed with both of you, i.e. the story from Di Vecchia et al. hep-th/0107057,
where they show that the effective theory on N fractional D3 branes3 and 2N fractional D7 branes on an
R1,5 × R4/Z2 orbifold corresponds to the conformal point of N = 2 SQCD with gauge group SU(N) and
flavour group SU(2N). This is nice for several reasons, namely it has the correct spectrum (crucial!), it
uses the D3 and D7 intuition that we have already explored plus it is the natural generalisation of the
Seiberg-Witten story to SU(N), since for Nf '= 2Nc the theory is non-conformal with a scale ΛSQCD being
introduced etc. One caveat is that the above is only describing the perturbative regime of the gauge theory,
which however doesn’t bother us at all. The other nice thing about it is that we can have a very clear
correspondence with our orientifold set-up. Let me try to explain how I see it a bit more thoroughly: Even
though the Sp(N) orientifold lies along x0, . . . , x7 and the SU(N) orbifolded directions are x4, x5, x6, x7, the
branes lie along the same hypersurfaces in both cases, i.e. the D3 on x0, x1, x2, x3 and the D7 on x0, . . . , x7.
All the Lorentz symmetries pan out just like for the Sp(N) case4. However, the two main differences are that
there is no symmetry enhancement on the fixed plane, hence SU gauge groups, or “doubling” of the branes.
This last fact is due to the D3’s being prohibited to move in the orbifold directions, which are orthogonal
to themselves but parallel to the D7’s, namely x4, . . . , x7. Motion in these directions corresponds exactly to

2Except for the soddin quartics!!
3More material on fractional D3’s and the corresponding gauge theory on their worldvolume is covered in their review paper

hep-th/0112195.
4I still can’t see how we break the SO(4)E R-symmetry down to SU(2)a × SU(2)A.
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NB: In this case the twistor string encodes the flavour sym-
metry on the spacetime side exactly.



Conclusions
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Exact mechanism?   
Is the flavour group for Sp(Nc) broken to SO(8)→ Sp(2)× SU(2)?   

This required the introduction of some new objects in the
B-model on |||CP3|4, which we called “flavour” branes
 

An SU(2) part of the flavour group realised geometrically 
Description of these as proper B-model states?   

 We established a correspondence between two classes of
N = 2 UV-finite gauge theories with fundamental matter
and twistor string theory

   Use this correspondence to learn something new about branes
in topological string theories.

This reinforces the belief that finite 4d gauge theories should
have a tree level twistor string description.
 


