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SUPERSYMMETRIC SOLUTIONS

Applications

•M-theory

• String theory, duality

• Branes, Black holes

• Compactifications

• Spinorial geometry, special geomet-
ric structures

• AdS/CFT, gravity/Yang-Mills corre-
spondences



Topics

• SUGRA Killing spinor equations

• Holonomy vs gauge symmetry

• Spinorial geometry

• All supersymmetric backgrounds of
type I SUGRA

• N = 31

• Conclusions



KILLING SPINOR EQUATIONS (KSE)

A parallel transport equation for the
supercovariant connection D
δψA| = DAε = ∇Aε + ΣA(e, F )ε = 0

and possibly algebraic equations

δλ| = A(e, F )ε = 0

where ∇ is the Levi-Civita connection,

Σ(e, F ) a Clifford algebra element

Σ(e, F ) =
∑

k

Σ[k](e, F )Γ[k]

e frame and F fluxes, ε spinor, Γ gamma
matrices.

• N no of linearly independent solu-
tions ε.

Can the KSE be solved without any
assumptions on the metric and fluxes?



REDUCED SUPERSYMMETRY

Holonomy
Hull, Duff, Liu, Tsimpis, GP

For generic D=11 and IIB backgrounds

hol(D) ⊆ SL(32,R)

because R takes values in sl(32,R)

For N -susy backgrounds

hol(D) ⊆ SL(32−N,R)n⊕NR
32−N

= Stab(ε) ⊂ SL(32,R)

The consequences are

• There may be backgrounds for any
N , however see preons (N = 31)

• Any subbundle K of the Spin bundle
S can be Killing



Gauge Symmetry G
The gauge symmetry G of the KSE

are the (local) transformations such that

g−1D(e, F )g = D(eg, F g)

D=11 SUGRA: G = Spin(10, 1)
IIB SUGRA: G = Spin(9, 1)×U(1)

• Backgrounds related by a gauge trans-
formation are identified

• The geometry of backgrounds is (non-
uniquely) characterized by the sta-
bility subgroup stab(ε) of the KS in
G

• G ⊂⊂ hol(D), e.g. 2 generic spinors
in D=11 and IIB have stab(ε) = {1}



• For one spinor

D=11: stab = SU(5), Spin(7)n R9

Bryant, Figueroa-O’Farrill

IIB: stab = Spin(7)n R8, SU(4)n
R8, G2

Can extended gauge symmetries help?



Spin(9,1) SPINORS

Consider U = C < e1, . . . , e5 >, e1, . . . , e5
orthonormal w.r.t <,>.

Dirac spinors: ∆c = Λ∗(U)
Weyl Spinors: ∆+

c = Λev(U), ∆−c =
Λod(U).

Gamma matrices on ∆c:

Γ0η = −e5 ∧ η + e5yη ,
Γ5η = e5 ∧ η + e5yη
Γiη = ei ∧ η + eiyη , i = 1, . . . , 4
Γ5+iη = iei ∧ η − ieiyη .

The Dirac inner product:

D(η, θ) =< Γ0η, θ >

A Majorana inner product:

B(η, θ) =< B(η∗), θ > , B = Γ06789



The Majorana reality condition can
be chosen as

η = −Γ0B(η∗) = Γ6789η
∗ .

C = Γ6789 is the charge conjugation
matrix.

Example
For Weyl spinor a1 + be1234, a, b ∈ C,

the reality condition gives

η = a1 + a∗e1234 .

Two Majorana spinors: 1 + e1234 and
i1− ie1234.

• stab(1 + e1234) = Spin(7)n R8

• stab(1+e1234, i(1−e1234)) = SU(4)n
R8

• ∆c has an oscillator basis, µ = 0, 1, . . . , 4

1, eµ = eµ ∧ 1, eµν = eµ ∧ eν ∧ 1, . . .



SPINORIAL GEOMETRY
Gillard, Gran, GP

The ingredients of the spinorial method

to classify supergravity backgrounds are

• Gauge symmetry of KSE

Effective for backgrounds with small
and large number of susies

• Spinors in terms of forms

Convenient notation

• An oscillator basis in the space of
spinors

Allows to extract the geometric in-
formation from the KSE



TYPE I SUPERGRAVITY
Gran, Lohrmann, GP

Gran, Roest, Sloane, GP

Gravitino

Dε = ∇̂ε = ∇ε +
1

2
Hε = 0

H torsion, and

hol(∇̂) = G = Spin(9, 1)

In addition

∇̂ε = 0 ⇒ R̂ε = 0

So either

R̂ = 0

and M is a group Manifold (dH = 0),
or

stab(ε) 6= {1}



• All the parallel spinors can be deter-
mined

• The parallel spinors are singlets of
subgroups of Spin(9, 1).

• There are similarities with the paral-
lel spinors on Riemannian manifolds,
e.g. CY.

L Stab(ε1, . . . , εL) ε

1 Spin(7)nR8

1 + e1234

2 SU(4)nR8

1

3 Sp(2)nR8

1, i(e12 + e34)

4 (SU(2)× SU(2))nR8

1, e12

5 SU(2)nR8

1, e12, e13 + e24

6 U(1)nR8

1, e12, e13

8 R8

1, e12, e13, e14

2 G2 1 + e1234, e15 + e2345

4 SU(3) 1, e15

8 SU(2) 1, e12, e15, e25

16 {1} ∆+

Table 1: In the columns are the number, isotropy groups and representatives
of parallel spinors, respectively.



• There are compact K and non-compact
K n R8 isotropy groups stab(ε).

• Some stab(ε) are different from those
that appear in the Berger list for Rie-
mannian manifolds.



Dilatino

dΦε− 1

2
Hε = 0

Some of the parallel spinors may not
solve the dilatino KSE. Having solved
the gravitino KSE to solve the dilatino
KSE, the gauge group that can be used
is

Σ(P) = {` ∈ Spin(9, 1)| `P ⊆ P}
P is the space of parallel spinors.

• Killing spinors or their normals are
represented by orbits of subgroups of
Σ(P) in P . All Killing spinors are
determined.

• Killing spinors may have trivial isotropy
group in Σ(P).



L Stab(ε1, . . . , εL) Σ(P)

1 Spin(7)nR8

Spin(1, 1)

2 SU(4)nR8

Spin(1, 1)× U(1)

3 Sp(2)nR8

Spin(1, 1)× SU(2)

4 (SU(2)× SU(2))nR8

Spin(1, 1)× Sp(1)× Sp(1)

5 SU(2)nR8

Spin(1, 1)× Sp(2)

6 U(1)nR8

Spin(1, 1)× SU(4)

8 R8

Spin(1, 1)× Spin(8)
2 G2 Spin(2, 1)
4 SU(3) Spin(3, 1)× U(1)
8 SU(2) Spin(5, 1)× SU(2)
16 {1} Spin(9, 1)

Table 2: In the columns are the numbers of parallel spinors, their isotropy
groups and the Σ(P) groups, respectively.

• The Σ(P) groups are a product of a
Spin group and a R-symmetry group,
reminiscent of lower-dimensional su-
pergravities.



There are backgrounds for any N
L Σ(P) N

1 Spin(1, 1) 1(1)
2 Spin(1, 1)× U(1) 1(1), 2(1)
3 Spin(1, 1)× SU(2) 1(1), 2(1), 3(1)
4 Spin(1, 1)× Sp(1)× Sp(1) 1(1), 2(1), 3(1), 4(1)
5 Spin(1, 1)× Sp(2) 1(1), 2(1), 3(1), 4(1), 5(1)
6 Spin(1, 1)× SU(4) 1(1), 2(1), 3(1), 4(1), 5(1), 6(1)
8 Spin(1, 1)× Spin(8) 1(1), 2(1), 3(1), 4(1), 5(1), 6(1), 7(1), 8(1)

2 Spin(2, 1) 1(1), 2(1)
4 Spin(3, 1)× U(1) 1(1), 2(2), 3(2), 4(1)
8 Spin(5, 1)× SU(2) 1(1), 2(2), 3(3), 4(6), 5(3), 6(2), 7(1), 8(1)
16 Spin(9, 1) 1(1), 2(2), 3(1), 4(2), 5(1), 6(1),

8(2), 10(1), 12(1), 14(1), 16(1)

Table 3: In the columns are the Σ(P) groups that arise from the solution
of the gravitino and dilatino Killing spinor equations and the number N
of supersymmetries, respectively. The number in parenthesis indicates the
different cases that arise in the dilatino Killing spinor equation for a given
N .

• If N = 16, then the spacetime is lo-
cally isometric to R9,1



Geometry of N=L Backgrounds
Gran, Lohrmann, GP

(i). stab(ε) compact

• The spacetime admits 1 timelike, and
2 (G2), 3 (SU(3)) and 5 (SU(2))
spacelike ∇̂-parallel one-forms.

• The commutator [X,Y ] of any two
X,Y , ∇̂-parallel vector fields, and so
Killing, is also ∇̂-parallel.

• The commutator is determined by H

Two assumptions

• The parallel spinors are Killing

• The ∇̂-parallel vectors constructed
from Killing spinor bilinears span a
Lie algebra h of a group H.



The spacetime is a principal bundle
M = P (H, B, π) equipped with a in-
stanton-like connection λ with curva-
ture F .

The metric and H of the background
can be written as

ds2 = ηabλ
aλb + π∗ds̃2

H =
1

3
ηabλ

a ∧ dλb +
2

3
ηabλ ∧ Fb + π∗H̃

The base space B admits an integrable,
conformally balanced K-structure, com-

patible with a connection, ˆ̃∇, with skew-
symmetric torsion associated with the
pair (ds̃2, H̃).



In addition

dH = ηabFa ∧ Fb + π∗dH̃

i.e. part of dH is specified by the first
Pontrjagin form of P



G2
h= sl(2,R) or R⊕ u(1)⊕ u(1)

H̃ = −r

6
(dϕ, ?ϕ)ϕ + ?dϕ + ?(θ̃ϕ ∧ ϕ)

Ivanov, et al

θ̃ϕ = 2dΦ ,

d ? ϕ = −θ̃ϕ ∧ ?ϕ

r = 0 if h abelian, and r = 1 if h non-
abelian, where

θ̃ϕ = ?(?dϕ ∧ ϕ)

is the Lee form of the G2-invariant form
ϕ.

In addition, λ , is a h-valued, g2 ⊂
Λ2(R7) instanton

hol( ˆ̃∇) ⊆ G2



SU(3)
h = R ⊕3 u(1), R ⊕ su(2), sl(2,R) ⊕

u(1), cw4

If h abelian, hol( ˆ̃∇) ⊆ SU(3) and λ
an abelian su(3) ⊂ Λ2(R6) Donaldson
connection (B Hermitian).

if h non-abelian, hol( ˆ̃∇) ⊆ U(3) and
λ is a h-valued u(3) ⊂ Λ2(R6) Donald-
son connection

SU(2)
h = R⊕5 u(1), sl(2,R)⊕ su(2), cw6

hol( ˆ̃∇) ⊆ SU(2) and λ a h-valued,
instanton on B



(ii) stab(ε) = K n R8 non-compact
The metric and torsion are

ds2 = 2e+e− + δije
iej

H = e+ ∧ de− + e− ∧ (ρ + σ)

+
1

3!
Hijke

i ∧ ej ∧ ek

where ρ ∈ k and σ ∈ k⊥.

• All H is determined in terms of ge-
ometry apart from ρ.

•M admits a single ∇̂-parallel null
vector field, and so Killing, with non-
vanishing rotation.

• If the rotation vanishes, the space-
time is a pp-wave propagating in a
manifold B with skew-symmetric tor-
sion and a K-structure.



SU(4)n R8: Dilatino KSE
Gran, Roest, Sloane, GP

∇̂-Parallel forms

e− , e− ∧ ωI , e− ∧ χ

ωI hermitian form, χ (4, 0)-form. This
is equivalent to hol(∇̂) ⊆ SU(4)n R8.

SU(4)nR8

de− N StabΣ ε

N = 1 spin(7)⊕sR8

N (I) 6= 0 {1} 1 + e1234

N = 2 su(4)⊕sR8

N (I) = 0 {1} 1

Table 4: The differences in the geometry of N = 1 and N = 2 backgrounds
are in the non-vanishing components of de− and N (I).

The remaining conditions of the di-
latino Killing spinor equation are

(dΦ)i +
1

8
(N · (Re χ))i −

1

2
(θωI)i

−1

2
H−+i = 0 , ∂+Φ = 0 .



R8: Dilatino KSE
∇̂-parallel forms

e− , e− ∧ ψ

SU(2)nR8

de− N θ

N = 1 spin(7)⊕sR8

N (I),N (J),N (L) −
N (Q),N (T ),N (U) 6= 0

N = 2 su(4)⊕sR8

N (I) = 0,N (J),N (J), −
N (Q),N (T ),N (U) 6= 0

N = 3 sp(2)⊕sR8

N (I) = N (J) = 0,N (L), θωI
= θωJ

N (Q),N (T ),N (U) 6= 0

N = 4 (su(2)⊕ su(2))⊕sR8

N (I) = N (J) = N (L) = 0 θωI
= θωJ

= θωL

N (Q),N (T ),N (U) 6= 0

N = 5 su(2)⊕sR8

N (I) = N (J) = N (L) = θωI
= θωJ

=
N (Q) = 0,N (T ),N (U) 6= 0 θωL

= θωQ

N = 6 u(1)⊕sR8

N (I) = N (J) = N (L) = θωI
= θωJ

=
N (Q) = N (T ) = 0,N (U) 6= 0 θωL

= θωQ
= θωT

N = 7 R8

N (I) = N (J) = N (L) = θωI
= θωJ

= θωL
=

N (Q) = N (T ) = N (U) = 0 θωQ
= θωT

= θωU

N = 8 R8

Hijk = 0

Table 5: As in previous cases, the differences in the geometry of descendants,
N < L, are in the non-vanishing components of de−, and N (I), N (J),
N (L), N (Q), N (T ) and N (U) and the relation between the Lee forms. −
indicates that there is no relation between the Lee forms. It is assumed that
the remaining conditions of the dilatino Killing spinor equation of N = 1
supersymmetric backgrounds are valid.



Holonomy Reduction
Consider SU(4)nR8. Field equations,

dH = 0 , hol(∇̂) ⊆ SU(4)n R8

imply that

τ1 = H+ijω
ij
I e+ , τ2 = ∂+Φe+ ,

τ3 = N , τ4 = 2dΦ− θωI

are ∇̂-parallel. The consequences for
K n R8 cases are

• The existence of descendants requires
that hol(∇̂) ⊂ stab(ε).

• If hol(∇̂) = stab(ε), then the grav-
itino KSE imply the dilatino ones
and all parallel are Killing L = N .

For compact stability subgroups there
are descendants with hol(∇̂) = stab(ε).



N=31 is not IIB
Gran, Gutowski, Roest, GP

Preons are solutions that preserve 31
supersymmetries in type II.

31 spinors span a hyperplane and have
a unique normal ν w.r.t. a suitable in-
ner product in the space of IIB spinors.

The gauge symmetry can be used to
choose the normal ν as

stab(ν) spinor ν

Spin(7)n R8 (a + ib)(e5 + e12345)

SU(4)n R8 (a + ib)e5 + (c + id)e12345
G2 a(e5 + e12345) + b(e1 + e234)

Choose the Killing spinors orthogonal
to ν. Then

Aεr = 0 , r = 1, . . . 31



implies that

P = G = 0

The remaining KSE are linear over the
complex numbers and so the number of
Killing spinors preserved is even. So
there are no IIB preons.

• There are no IIA preons

Bandos, Azcarraga, Varela



N=31 D=11
Gran, Gutowski, Roest, GP

In D=11 SUGRA there are two types
on normals to the hyperplanes of 31 Killing
spinors

The gauge symmetry can be used to
choose the normal ν as

stab(ν) spinor ν

(Spin(7)n R8)× R 1 + e1234
SU(5) 1 + e12345

Choose the Killing spinors ε orthogo-
nal to ν. In this case

hol(D) = R31

But the integrability condition

Rε = 0



the Bianchi and Field equations imply
that

R = 0

So there are no M-preons.



SUMMARY

• The KSE of type I supergravity back-
grounds has been solved in ALL cases,
and the geometry has been under-
stood.

• There are no type II backgrounds with
N=31 supersymmetries. There is a
classification for N=32.

• In D = 11, the N = 32 backgrounds
have been classified. There are no
N=31 backgrounds.


