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SUPERSYMMETRIC SOLUTIONS
Applications

e M-theory

e String theory, duality
e Branes, Black holes

e Compactifications

e Spinorial geometry, special geomet-
ric structures

e AdS/CFT, gravity/Yang-Mills corre-

spondences



Topics

e SUGRA Killing spinor equations
e Holonomy vs gauge symmetry
e Spinorial geometry

e All supersymmetric backgrounds of

type I SUGRA
o N =231

e Conclusions



KILLING SPINOR EQUATIONS (KSE)

A parallel transport equation for the
supercovariant connection D

0P ul =Dge=V e+ Y4, Fle=0
and possibly algebraic equations
oA = Ale, Fle =0

where V is the Levi-Civita connection,
Yi(e, F') a Clifford algebra element

N(e, F) =Y Spyle, F)rH
k

e frame and F' fluxes, € spinor, I' gamma
matrices.

e NV no of linearly independent solu-
tions €.

Can the KSE be solved without any
assumptions on the metric and fluxes?



REDUCED SUPERSYMMETRY

Holonomy
Hull, Duff, Liu, Tsimpis, GP

For generic D=11 and IIB backgrounds

hol(D) C SL(32,R)
because R takes values in s[(32, R)
For N-susy backgrounds

hol(D) C SL(32 — N,R) x @R
= Stab(e) C SL(32,R)

The consequences are

e There may be backgrounds for any
N, however see preons (N = 31)

e Any subbundle K of the Spin bundle
S can be Killing



Gauge Symmetry G
The gauge symmetry GG of the KSE
are the (local) transformations such that

g~ 'Dle, F)g = D(ef, FY)

D=11 SUCRA: G = Spin(10,1)
[IBSUGRA: G = Spin(9,1)xU(1)

e Backgrounds related by a gauge trans-
formation are identified

e The geometry of backgrounds is (non-
uniquely) characterized by the sta-
bility subgroup stab(e) of the KS in
G

e (G CC hol(D), e.g. 2 generic spinors
in D=11 and I1B have stab(e) = {1}



e Lor one spinor
D=11: stab = SU(5), Spin(7) x R’
Bryant, Figueroa-O’Farril
[1B: stab = Spin(7) x R®, SU(4) x
R8, (9

Can extended gauge symmetries help?



Spin(9,1) SPINORS

ConsiderU =C < eq,...,e5 >,€1,...,€5
orthonormal w.r.t <, >.

Dirac spinors: A, = A" (U)

Weyl Spinors: AT = A®(U), A, =
AT,

Gamma matrices on Ag:

Fon=—es An+esam,
I'sn=-es An+e5am
I'im=e; An+e;an, 1 =1,...,4
Ls51in =te; A —ie;m .
The Dirac inner product:
D(n,8) =<Ton,0 >

A Majorana inner product:

B(n,8) =< B(n"),0 > | B = Tyg7s9



The Majorana reality condition can
be chosen as

n=—T0B(n") =Terson”™ .

(' = I'g7q9 is the charge conjugation
matrix.
Example

For Weyl spinor al + bejo34, a,b € C,
the reality condition gives

n=al+a‘ez3y .
Two Majorana spinors: 1+ e1934 and
11 — 1€e1934.
o stab(1 + ego34) = Spin(7) x R®
o stab(1+e1234,i(1—€1234)) = SU(4) X
R8
e A, has an oscillator basis, u = 0,1,...,4

17 eluzeu/\lj eluyzelu/\ey/\l,



SPINORIAL GEOMETRY

Gillard, Gran, GP

The ingredients of the spinorial method

to classity supergravity backgrounds are

e Gauge symmetry of KSE
Effective for backgrounds with small
and large number of susies

e Spinors in terms of forms
Convenient notation

e An oscillator basis in the space of
SPINOTS

Allows to extract the geometric in-
formation from the KSE



TYPE 1 SUPERGRAVITY

Gran, Lohrmann, GP
Gran, Roest, Sloane, GP
Gravitino

. 1
DGZV€:V€+§H€:O

H torsion, and

N

hol(V) = G = Spin(9,1)
In addition
Ve=0= Re=0
So either

R=0
and M is a group Manifold (dH = 0),

or

stab(e) #£ {1}



e All the parallel spinors can be deter-
mined

e The parallel spinors are singlets of
subgroups of Spin(9,1).

e There are similarities with the paral-
lel spinors on Riemannian manifolds,

e.g. CY.

| L | Stab(ey, . .., €r) | €
8
1 Spin(7) x R 1 + e1234
8
2 su() x R 1
8
3 Sp2) x R 1, i(ers + e34)
8
4 | (SU@) % SU@) x R 1, e
g
5 SU(2) x R L, ez, e13+en
g
6 U(l) x R 1, e12, €13
8
8 R 1, eis, ei3, €1
2 Gy 1+ e1234, €15 + €a345
4 SU(3) 1, es
8 SU(2) L, €13, €15, €5
16 1 AT

Table 1: In the columns are the number, isotropy groups and representatives
of parallel spinors, respectively.



e There are compact K and non-compact
K x R® isotropy groups stab(e).

e Some stab(e) are different from those
that appear in the Berger list for Rie-
mannian manifolds.



Dilatino

1
d®6—§H€:O

Some of the parallel spinors may not
solve the dilatino KSE. Having solved
the gravitino KSE to solve the dilatino
KSE., the gauge group that can be used
is

Y(P)={l € Spin(9,1)| ¢P CP}
P is the space of parallel spinors.

e Killing spinors or their normals are
represented by orbits of subgroups of
>(P) in P. All Killing spinors are
determined.

e Killing spinors may have trivial isotropy
group in X(P).



| L | Stab(eq, . . ., €r) (P) |
1 Spin(7) x RS Spin(1,1)
2 su) x R Spin(1,1) x U(1)
3 sp2) x R Spin(1,1) x SU(2)
1| (sU@) x SU@) x R | Spin(1, 1) x Sp(1) x Sp(1)
5 su@) xR Spin(1,1) x Sp(2)
6 v1) x R Spin(1,1) x SU(4)
8 RS Spin(1,1) x Spin(8)
2 Go Spin(2,1)
1 SU(3) Spin(3,1) x U(1)
8 SU(2) Spin(5,1) x SU(2)
16 {1} Spin(9,1)

Table 2:

In the columns are the numbers of parallel spinors, their isotropy
groups and the X(P) groups, respectively.

e The >(P) groups are a product of a
Spin group and a R-symmetry group,
reminiscent of lower-dimensional su-
pergravities.



There are backgrounds for any N

| L] Y(P) \ N
1 Spin(1,1) 1(1)
2 Spin(1,1) x U(1) 1(1), 2(1)
3 Spin(1,1) x SU(2) 1(1), 2(1), 3(1)
4 | Spin(1,1) x Sp(1) x Sp(1) 1(1), 2(1), 3(1), 4(1)
5 Spin(1,1) x Sp(2) 1(1), 2(1), 3(1), 4(1), 5(1)
6 Spin(1,1) x SU(4) 1(1), 2(1), 3(1), 4(1), 5(1), 6(1)
8 Spin(1,1) x Spin(8) 1(1), 2(1), 3(1), 4(1), 5(1), 6(1), 7(1), 8(1)
2 Spin(2,1) 1(1), 2(1)
4 Spin(3,1) x U(1) 1(1), 2(2), 3(2), 4(1)
8 Spin(5,1) x SU(2) 1(1), 2(2), 3(3), 4(6), 5(3), 6(2), 7(1), 8(1)
16 Spin(9,1) 1(1), 2(2), 3(1), 4(2), 5(1), 6(1),
8(2), 10(1), 12(1), 14(1), 16(1)

Table 3: In the columns are the ¥(P) groups that arise from the solution
of the gravitino and dilatino Killing spinor equations and the number N
of supersymmetries, respectively. The number in parenthesis indicates the
different cases that arise in the dilatino Killing spinor equation for a given
N.

o [f N = 16, then the spacetime is lo-
cally isometric to R



Geometry of N=L Backgrounds

Gran, Lohrmann, GP

(i). stab(e) compact

e The spacetime admits 1 timelike, and
2 (G2), 3 (SU(3)) and 5 (SU(2))

spacelike V-parallel one-forms.

e The commutator [X, Y] of any two
X, Y, V-parallel vector fields, and so
Killing, is also V-parallel.

e The commutator is determined by H
Two assumptions

e The parallel spinors are Killing

e The @—parallel vectors constructed
from Killing spinor bilinears span a
Lie algebra b of a group H.



The spacetime is a principal bundle
M = P(H, B, m) equipped with a in-
stanton-like connection A with curva-
ture F.

The metric and H of the background
can be written as

ds® = ng AN + 7*d5?

1 2 -
H = 21\ A AN’ + STlabA FP+ ol
The base space B admits an integrable,

conformally balanced K-structure, com-

patible with a connection, V, with skew-
symmetric torsion associated with the

pair (ds”, H).



In addition

dH = 1, F*NF’ + 7*dH

i.e. part of dH is specified by the first
Pontrjagin form of P



Go
h=sl(2,R) or RD u(l) ® u(l)

H = —g(d% *p) 0+ Hdep + %05 A @)

Ivanov, et al

~

r = 0 it b abelian, and r = 1 it § non-
abelian, where

~

Op = *(*dp A p)

is the Lee form of the Go-invariant form

Q.
In addition, A , is a Bh-valued, go C
A%(R") instanton

AN
~

hol(V) C G9



SU(3)

h = R®3u(l), R ® su(2), sl(2,R) @
u(1), croy A

If h abelian, hol(V) C SU(3) and A
an abelian su(3) C A?(RY) Donaldson
connection (B Hermitian).

AN

~

if h non-abelian, hol(V) C U(3) and
A is a h-valued u(3) € A*(RY) Donald-
son connection

SU(2)

h =R u(l), sl(2,R) B su(2), crog

hol(V) C SU(2) and A\ a h-valued,

instanton on B



(ii) stab(e) = K x R® non-compact
The metric and torsion are
ds® = 2¢Te™ + 5Z-jeiej
H:e+/\d6_+6_/\(p+a)
1 .
+ — 3 Hijre' Nel A %

where p € £ and o € ¢+

e All H is determined in terms of ge-
ometry apart from p.

e M/ admits a single @—parallel null
vector field, and so Killing, with non-
vanishing rotation.

e [f the rotation vanishes, the space-
time 1s a pp-wave propagating i a
manifold B with skew-symmetric tor-
sion and a K -structure.



SU(4) x R®: Dilatino KSE
Gran, Roest, Sloane, GP

V-Parallel forms

e , e ANwr, e ANAY

wr hermitian form, x (4,0)-form. This
is equivalent to hol(V) C SU(4) x R®.
SU(4) x RS de~ N Staby, €

N1 |spinM @R NI £0| {1} | 1+ eiss
N =2 a@) o, R [ AMD=0] {1} |

0
0

Table 4: The differences in the geometry of N =1 and N = 2 backgrounds
are in the non-vanishing components of de~ and N (I).

The remaining conditions of the di-
latino Killing spinor equation are

(@2); + (N - (Rex)): — (6

1
—§H__|_Z':O , 8+CI>:O .



~ R% Dilatino KSE
V-parallel forms

e , e A
sU@2) x R de~ N 9
N=1 spin(7) @, R N(I),N(J), N(L) _
. N(Q),N(T),N(U) #0
N=2 su() @, R N(I) = 0,N(J),N(J), -
. N(Q),N(T),N(U) #0
N=3 sp(2) @, R N(I) =N(J) = 0,N(L), 0., = 0.,
| N@N@).ND) 0
N=4 |su@aoesu2)e,R | NO=NI)=N(L)=0 | 6,=0,, =0.,
i N(Q),N(T),N(U) #
N=5 su2) @, R N(I) =N(J)=N(L) = 0., = 0., =
N(Q) = 0,N(T), N'(U) #0 0, = 0.,
N=6 u(t) @, R N =N =NL)= | 6,=6, =
N(Q) = (T) = OvN(U> 7£ 0 ewL er - ewT
N=7 R’ NI =NI)=N(L)= |6, =0,, =0, =
N@Q) =N(T)=NU)=0 | oy = b, = b,
N=3% R’ Hi =0

Table 5: As in previous cases, the differences in the geometry of descendants,
N < L, are in the non-vanishing components of de~, and N (I), N(J),
N(L), N(Q), N(T) and N(U) and the relation between the Lee forms. —
indicates that there is no relation between the Lee forms. It is assumed that
the remaining conditions of the dilatino Killing spinor equation of N = 1
supersymmetric backgrounds are valid.



Holonomy Reduction
Consider SU(4)xR®. Field equations,

dH =0, hol(V)C SU(4) xR’
imply that

1+ +
T = H+Z-jw[‘76 . T =04+Pe"
=N, Ty = 2dP — O,

are @—parallel. The consequences for
K x R® cases are

e The existence of descendants requires

that hol(V) C stab(e).

AN

o [f hol(V) = stab(e), then the grav-
itino KSE imply the dilatino ones
and all parallel are Killing L = V.

For compact stability subgroups there
are descendants with hol(V) = stab(e).



N=31 is not 1IB

Gran, Gutowski, Roest, GP

Preons are solutions that preserve 31
supersymmetries in type 11.

31 spinors span a hyperplane and have
a unique normal v w.r.t. a suitable in-
ner product in the space ot 11B spinors.

The gauge symmetry can be used to
choose the normal v as

stab(v) spinor v

Spin(7) x R®  (a +1ib)(e5 + €12345)
SU4) x B® | (a+ib)es + (c+id)e1ozys
Go a(e5 + 612345) + b(é’l -+ 6234)

Choose the Killing spinors orthogonal
to v. Then

./467“:0, Tzl,gl



implies that
P=G=0

The remaining KSE are linear over the
complex numbers and so the number of
Killing spinors preserved is even. So
there are no 11B preons.

e There are no IIA preons

Bandos, Azcarraga, Varela



N=31 D=11

Gran, Gutowski, Roest, GP

In D=11 SUGRA there are two types
on normals to the hyperplanes of 31 Killing
SpINOTS

The gauge symmetry can be used to
choose the normal v as

stab(v) spinor v
(Spin(7) x R8) X R| 14 e1934
SU(5) L + 12345

Choose the Killing spinors € orthogo-
nal to v. In this case

hol(D) = r¥!
But the integrability condition
Re =0



the Bianchi and Field equations imply
that

R =0

So there are no M-preons.



SUMMARY

e The KSE of type I supergravity back-
orounds has been solved in ALL cases,
and the geometry has been under-
stood.

e There are no type II backgrounds with
N=31 supersymmetries. There is a
classification for N=32.

eIn D =11, the N = 32 backgrounds
have been classified. There are no
N=31 backgrounds.



