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Motivation

In gravitational theories that contain matter fields, such as -but not only- supergravity theories,
the boundary conditions are usually determined uniquely by the requirement of finite
conserved charges at infinity.

In such theories there are well known results on the (non-perturbative) stability of
supersymmetric solutions [Witten ’81, Gibbons-Hall-Warner ’83], as well as on the stability of
non-supersymmetric solutions of supersymmetric theories and even solutions of
non-supersymmetric theories [Boucher ’84, Townsend ’84, Skenderis-Townsend ’99].

There are certain theories of gravity, however, admitting an AdS vacuum where the
requirement of finiteness for the conserved charges does not uniquely determine the
boundary conditions for some of the fields.

Such theories have been collectively called ‘designer gravities’ [Hertog-Horowitz ’04], but
include very familiar theories such as N = 8 gauged supergravity in four dimensions, where
all 70 scalars and 28 gauge fields admit generalized boundary conditions, as well as N = 8
gauged supergravity in five dimensions, where the 20 scalars parameterizing the Coulomb
branch of the dual N = 4 Super-Yang-Mills admit generalized boundary conditions.
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Motivation (cont.)

In gauged supergravities that arise from a dimensional reduction of string/M-theory and have
a known CFT dual these generalized boundary conditions correspond to multi-trace
deformations of the dual CFT [Witten ’01, Berkooz-Sever-Shomer ’01].

The stability/instability of asymptotically AdS solutions of such theories with generalized
(generically supersymmetry breaking) boundary conditions on the matter fields is
holographically dual to the stability/instability of the dual CFT under the corresponding
multi-trace deformations.

The stability/instability of AdS under generalized boundary conditions has been recently
addressed from the gravity point of view [Hertog-Horowitz ’04, Hertog-Hollands ’05,
Amsel-Marolf ’06, Amsel-Hertog-Hollands-Marolf ’07] by generalizing the spinorial arguments
of the old stability theorems. Here we will address this question -holographically- from the
perspective of the dual CFT and find agreement with the spinorial arguments.
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Background independent variational problem on a non-compact space

As a first step in constructing a background independent formulation of the variational
problem of a diffeomorphism invariant theory on a non-compact manifold,Md+1, we write the
metric onMd+1 in the form

ds2 = dr2 + γij(r, x)dxidxj , i, j = 1, . . . d,

where r is the Gaussian normal to the boundary ∂Md+1 located at r →∞ and γij is the
induced metric on the hypersurfaces Σr of constant r.

One then formulates the variational problem on a regulating surface Σro , ro <∞, and the
limit ro →∞ is taken in the end.

However, since the regulator Σro breaks the diffemorphisms r → r + δr, this procedure is ill
defined! For example, for a scalar field φ the variation of the action takes the form

δS =

Z
Mro

dd+1x(eom) +

Z
Σro

ddxδφπφ,

where πφ is the scalar radial canonical momentum, the radial coordinate being the
Hamiltonian ‘time’, and the boundary term has no well defined transformation under radial
shifts.

Suitable boundary terms must then be added to the action such that full diffeomorphism
invariance -on the regulating surface- is restored (at least asymptotically as ro →∞) and the
limit ro →∞ makes sense.
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Constructing the boundary terms

A systematic method to construct the relevant boundary terms for a general manifoldMd+1

is an interesting open problem! (e.g. asymptotically flat manifolds, linear dilaton, KS)

For asymptotically locally AdS manifolds -in which case the radial translations correspond to
Weyl transformations on the boundary- and for a two-derivative action, it has been shown that
full diffeomorphism invariance completely determines the boundary terms [I. P., K. Skenderis
’05], which turn out to be precisely the standard counterterms necessary to remove the
divergences of the on-shell action!
The procedure [I. P., K. Skenderis ’04, ’05] can be summarized in the following steps:

The leading asymptotic form of the scalar, φ ∼ e−∆−r/lφ−(x), implies that the generator of radial
translations to leading asymptotic order is nothing but the dilatation operator δD ≡ −∆−

R
φδ/δφ:

∂r =

Z
Σr

d
d
xφ̇

δ

δφ
∼

1

l
δD.

A formal expansion of the canonical momentum (=
√

γφ̇ for a minimally coupled scalar) in
eigenfunctions of the dilatation operator:

πφ =
√

γ(π(∆−) + · · · + π(∆+) + · · · ),

where δDπ(n) = −nπ(n), is inserted into the (radial Hamiltonian) equations of motion, which
determine all terms π(n) for n < ∆+ - but not π(∆+)- as local functions of φ.
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Constructing the boundary terms (cont.)

Defining then

δSct ≡ −
X

n<∆+

Z
Σr

d
d
x
√

γδφπ(n),

and bπ(∆+) = limr→∞ e∆+r/lπ(∆+), one has

δ(S + Sct) =

Z
∂M

d
d
xδφ−bπ(∆+).

The RHS is now a class function since

δD(
√

γδφπ(∆+)) = (d − ∆− − ∆+)
√

γδφπ(∆+) = 0.

I. Papadimitriou (DESY Theory) AdS boundary conditions, stability and M-theory... MIDEAST 2007 7 / 20



Constructing the boundary terms (cont.)

Defining then

δSct ≡ −
X

n<∆+

Z
Σr

d
d
x
√

γδφπ(n),

and bπ(∆+) = limr→∞ e∆+r/lπ(∆+), one has

δ(S + Sct) =

Z
∂M

d
d
xδφ−bπ(∆+).

The RHS is now a class function since

δD(
√

γδφπ(∆+)) = (d − ∆− − ∆+)
√

γδφπ(∆+) = 0.

I. Papadimitriou (DESY Theory) AdS boundary conditions, stability and M-theory... MIDEAST 2007 7 / 20



Boundary conditions

A boundary condition is a choice of a function J(φ−, bπ(∆+)) of the two independent modes
that are kept fixed on the boundary.

To impose the boundary condition J(φ−, bπ(∆+)) = J(x) on the boundary, we need to add a
suitable (finite) boundary term, SJ [φ−, bπ(∆+)] such that δ(S + Sct + SJ ) ∝ δJ(φ−, bπ(∆+)).

The three inequivalent boundary conditions are:

J(φ−, bπ(∆+)) SJ [φ−, bπ(∆+)]

Dirichlet J+ = φ− S+ = 0

Neumann J− = −bπ(∆+) S− = −
R

∂M ddx
√

g(0)φ−bπ(∆+)

Mixed Jf− = −bπ(∆+) − f ′(φ−) Sf− = S− +
R

∂M ddx
√

g(0)(f(φ−) − φ−f ′(φ−))
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The AdS/CFT dictionary

The (renormalized) on-shell action, I[J ] is a functional of the source J(x) and involves three
pieces: the bulk action, S, the covariant boundary counterterms, Sct, and the boundary term,
SJ , defining the boundary condition. i.e. I[J ] = (S + Sct + SJ )|φ.

Dirichlet Neumann Mixed

J J+ ≡ φ− J− ≡ −bπ(∆+) Jf− ≡ −bπ(∆+) − f ′(φ−)

σ bπ(∆+) φ− φ−

W [J ] I+[J+] I−[J−] If− [Jf− ]

Γ[σ] I−[−bπ(∆+)] I+[φ−] I+[φ−] +
R

∂M ddx
√

g(0)f(φ−)

〈T i
i 〉 −(d − ∆+)Jσ −(d − ∆−)Jσ −(d − ∆−)Jσ − d

“
f(σ) − ∆−

d σf ′(σ)
”

Conformal mixed boundary conditions: f(φ−) ∝ φ
d/∆−
−
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Dirichlet Neumann Mixed

J J+ ≡ φ− J− ≡ −bπ(∆+) Jf− ≡ −bπ(∆+) − f ′(φ−)

σ bπ(∆+) φ− φ−

W [J ] I+[J+] I−[J−] If− [Jf− ]

Γ[σ] I−[−bπ(∆+)] I+[φ−] I+[φ−] +
R

∂M ddx
√

g(0)f(φ−)

〈T i
i 〉 −(d − ∆+)Jσ −(d − ∆−)Jσ −(d − ∆−)Jσ − d

“
f(σ) − ∆−

d σf ′(σ)
”

Conformal mixed boundary conditions: f(φ−) ∝ φ
d/∆−
−
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Multi-trace deformations

Large N factorization implies that under the deformation

Sf [φ] = S[φ] + N2
Z

ddxf(O)

of the CFT action by a function f(O) of the local, single-trace and gauge-invariant operator
O(x), the generating functional w[J ] ≡ N−2W [J ] and the effective action Γ̄[σ] = N−2Γ[σ]
transform as:

Undeformed Deformed

Source J = − δΓ̄[σ]
δσ Jf = J − f ′(σ)

VEV σ ≡ 〈O〉J = δw[J ]
δJ σf = σ

Gen. functional w[J ] wf [Jf ] = w[J ] +
R

ddx
`
f(σ) − σf ′(σ)

´˛̨
σ=δw/δJ

Eff. action Γ̄[σ] Γ̄f [σ] = Γ̄[σ] +
R

ddxf(σ)
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Stability (perturbative)

The mass of scalar fluctuations around the AdS vacuum must satisfy the BF bound
−(d/2)2 ≤ m2l2 [Breitenlohner-Freedman ’82].

Unitarity (well-defined symplectic form) implies that Neumann or Mixed boundary conditions
can be imposed only if the mass satisfies −(d/2)2 ≤ m2l2 ≤ −(d/2)2 + 1
[Breitenlohner-Freedman ’82, Balasubramanian-Kraus-Lawrence ’98, Klebanov-Witten ’99].
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Stability (non-perturbative)

When only Dirichlet boundary conditions are allowed, non-perturbative stability follows from
the old positivity theorems [Gibbons-Hull-Warner ’83 (true supergravity), Boucher ’84 (D=4,
no supersymmetry), Townsend ’84 (general D, no supersymmetry)].

When Mixed boundary conditions are perturbatively allowed, non-perturbative stability for the
unique supersymmetric boundary conditions (generically a particular conformal Mixed
boundary condition) still follows from the old stability theorems.
When Mixed boundary conditions are perturbatively allowed, the recent analysis in the
context of designer gravity has shown that non-perturbative stability for a generic Mixed
boundary condition defined by the function f(φ−) requires (for minimally coupled scalars):

1 The bulk scalar potential V (φ) should be globally expressible in terms of an ‘auxiliary’ function
(‘superpotential’) W−(φ) as

V (φ) =
1

2

 
W
′2
− −

dκ2

d − 1
W

2
−

!
.

2 f(φ−) must be bounded from below.
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Dual field theory perspective

In theories with a known field theory dual, the question of stability/instability with generalized
boundary conditions can be addressed by studying the quantum effective action for the dual
deforming operator.

This effective action admits a derivative expansion away from the conformal vacuum of zero
VEV. For conformal boundary conditions this can be seen as follows:

For |p| << σ ≡ 〈O∆− 〉, the two-point function of the dual operator O∆− is dominated by a
massless Goldstone pole due to the spontaneously broken scale invariance:

〈O∆− (p)O∆− (−p)〉 ∼
1

p2
.

For |p| >> σ, conformal invariance is restored and hence

〈O∆− (p)O∆− (−p)〉 ∼ |p|2∆−−d
,

This small momentum behavior of the two-point function implies, via the Legendre transform of the
generating functional, that the effective action admits a derivative expansion provided σ 6= 0. Near
σ = 0, however, this derivative expansion breaks down.

The effective action of the dual field theory can be computed holographically. This is
practically possible due to the fact that the effective action admits a derivative expansion.
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The holographic effective action

The holographic effective action is just the on-shell action with the appropriate boundary
terms.

To determine the regularized on-shell action Ir one solves the Hamilton-Jacobi equation that
is obtained by inserting the canonical momenta

πij =
δIr

δγij
, πφ =

δIr

δφ
,

into the Hamiltonian and momentum constraints

H = 0, 2Diπ
i
j = πφ∂jφ.

Since the effective action admits a derivative expansion away from the conformal point, we
can insert the ansatz for the 2-derivative regularized effective action:

Ir =

Z
Σr

ddx
√

γ

„
W (φ) + Z(φ)R[γ] +

1

2
M(φ)γij∂iφ∂jφ

«
,

into the Hamiltonian constraint (momentum constraint trivial) to obtain a set of ODEs for
W (φ), Z(φ) and M(φ).
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The holographic effective action (cont.)

The renormalized effective action then takes the form

Γf− [φ−] =

Z
d

d
x
p

g(0)

8<:c−φ

d−2
∆−
−

 
R[g(0)] +

(d − 1)(d − 2)

∆2
−

φ
−2
− ∂

i
φ−∂jφ−

!
+ Veff (φ−)

9=; ,

where the effective potential is Veff(φ−) = ξφ
d/∆−
− + f(φ−) and c−, ξ are constants.

To determine c− and ξ one needs to compute exactly the effective potential on Sd and Rd

respectively.

This can be done by solving the Hamilton-Jacobi equation exactly in the ‘minisuperspace
approximation’ where the scalar is independent of the transverse coordinates xi and the
induced metric on Σr takes the form γij = exp(2A(r))g(0)ij(x), where g(0)ij(x) is the metric
either on Sd or on Rd.

This ‘minisuperspace approximation’ is equivalent to looking for Sd- or Rd-sliced domain
walls. Requiring that these domain walls are regular in the interior generically determines the
parameters c− and ξ.

Finding these exact domain wall solutions - which are required to determine the effective
action - is in general a rather difficult task. It is only for very special bulk scalar potentials that
one is able to solve the relevant equations exactly.
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approximation’ where the scalar is independent of the transverse coordinates xi and the
induced metric on Σr takes the form γij = exp(2A(r))g(0)ij(x), where g(0)ij(x) is the metric
either on Sd or on Rd.

This ‘minisuperspace approximation’ is equivalent to looking for Sd- or Rd-sliced domain
walls. Requiring that these domain walls are regular in the interior generically determines the
parameters c− and ξ.

Finding these exact domain wall solutions - which are required to determine the effective
action - is in general a rather difficult task. It is only for very special bulk scalar potentials that
one is able to solve the relevant equations exactly.
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Stability from holography

How does this reproduce the stability conditions?

Existence of a real solution W (φ) implies the BF bound.

Global existence of such a solution coincides (in the case of minimally coupled scalars) with
the condition of [Amsel-Hertog-Hollands-Marolf ’07] that the potential be expressible in terms
of the auxiliary function W−(φ).

The condition that the derivative expansion of the effective action breaks down for small VEV,
where conformal invariance is restored, implies the unitarity bound ∆− ≥ (d− 2)/2 or
m2l2 ≤ −(d/2)2 + 1, which is precisely the condition for mixed boundary conditions to be
admissible.

For mixed boundary conditions, where the dual operator has dimension ∆−, the freedom of
adding further local finite counterterms corresponds to the freedom of defining what one calls
the ‘undeformed’ theory. Since ξ is determined dynamically, one can always define the
undeformed theory such that the term ξφ

d/∆−
− is removed from the effective potential. It is

then clear that the boundedness from below of the effective potential is equivalent to the
boundedness from below of f(φ−), which is precisely the condition for stability discussed by
[Hertog-Hollands ’05].
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The conformal scalar

A system for which all domain walls with constant curvature slicings can be found exactly
-and hence the exact effective potential be computed- is a scalar conformally coupled to
gravity and with a conformally invariant self interaction:

S =

Z
dd+1x

√
g

„
−

1

2κ2
R−

d(d− 1)

2κ2l2
+

1

2
∂µφ∂µφ +

d− 1

8d
Rφ2 +

λ

2
φ

2(d+1)
(d−1)

«
,

where λ is an arbitrary dimensionless coupling.

There is a field redefinition [Henneaux-Martinez-Troncoso-Zanelli ’02,
Martinez-Troncoso-Zanelli ’04, I.P. ’07] which brings this action into that of a minimally
coupled scalar with a rather complicated scalar potential.

For d = 3 and λ = κ2/6l2 this potential takes the simple form

V (φ̃) = −
3

κ2l2
cosh

“p
2/3κφ̃

”
,

which arises from a consistent truncation of D = 4 N = 8 gauged supergravity [Duff-Liu ’99,
I.P. ’06] and hence it can be uplifted to 11-dimensional supergravity [I.P. ’06].
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A non-perturbative instability

From the exact effective potential we read off the parameters

c− =
(d− 1)2

16d(d− 2)
√

λ
, ξ =

(d− 1)

2d

√
λ.

For conformal boundary conditions defined by

f(φ−) = −α
(d− 1)

2d
φ

2d
(d−1)

− ,

where α is a dimensionless parameter, the effective potential on Sd, depending on whether
α <

√
λ (long dashes), α =

√
λ (short dashes), or α >

√
λ, looks like:

Φ-

Vk
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Instantons

This non-perturbative instability is manifested by the existence of instanton solutions
satisfying these conformal boundary conditions [S. de Haro, I. P., A. C. Petkou ’06, I. P. ’07].

These instantons are the most general solutions of the equations of motion such that the
metric is exact AdS:

ds2 =
l2

z2
(dz2 + d~z2).

The instanton solutions take the form

φ2/(d−1) =
(d− 1)

l
p
|λ|

„
bz

−sgn(λ)b2 + (z + a)2 + (~z − ~z0)2

«
,

where a, b, ~zo are constants of integration.

Smoothness of the solution requires a > b > 0, or α =
p
|λ|a/b >

p
|λ|, which is precisely

the condition that the effective potential is unbounded from below!

The vacuum decay rate can be computed by evaluating the on-shell action.
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Summary

The stability properties of ‘designer gravities’ can be studied systematically and
non-perturbatively by holographic methods.

We applied these methods to a single scalar field conformally coupled to gravity and with a
conformal self-interaction and demonstrated the existence of a non-perturbative instability
that occurs along a line conformal boundary conditions.

The onset of this instability coincides with the appearance of instanton solutions which
mediate the decay of the unstable vacuum.

We have shown that in four dimensions the conformal scalar can be embedded in N = 8
gauged supergravity and hence embedded into 11-dimensional supergravity. In this case the
instability we have found occurs along a line of marginal multi-trace deformations of the dual
N = 8 SCFT in three dimensions.
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