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¥ Introduction and Motivations ¥

AdS/CFT conjecture makes a correspondence between

N = 4 D = 4 U(N) SY M on R× S3

and
IIB string theory on AdS5 × S5 in the global coordinates.

As a consequence

deformations of AdS5 × S5←→gauge invariant opterators

I Identification of corresponding deformations on the two sides
is in general difficult mostly because of the strong/weak na-
ture of the duality; the weakly coupled world sheet theory, the
SUGRA limit, maps to the strong coupling limit of SYM with no
perturbative description.
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I There are some ways and limited cases where some of these

difficulties can be bypassed:

¥ There is a certain class of operators in SYM, BPS operators,

which contain informations that are protected against quantum

corrections i.e. one can do perturbative calculations with them

with results that are ”claimed to be” independent of the cou-

pling.

¥ There are cases where the correspondence can be studied be-

yond BPS limit when states/operators with large quantum numbers

are involved. This is our approach in this work.
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I Consider classical string configurations in AdS5 × S5 carrying

a number of classical charges such as energy and various spins

and angular momenta.

• In case of large R− charges (J), world sheet loop expansions

around certain classical string solutions are generically suppressed

by inverse powers of J.

In SYM this translates into the distinction of a class of SYM

operators, determined by the charges, whose couplings to the

rest of the operators are suppressed by inverse powers of J.
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The best known example in this context is the BMN case.

In the strict BMN limit, the world sheet expansion around a

certain point-like string solution in AdS5 × S5 terminates at one

loop and the corresponding class of SYM operators are identified

as the BMN operators.

The one loop action can be solved exactly and gives, as a pre-

diction of AdS/CFT, an all loop calculation for the anomalous

dimension of BMN operators in terms of an effective coupling,

λ′ ≡ λ/J2 (λ is the ’t Hooft coupling).
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• For charges only inside AdS, the world sheet loop expansions

are not suppressed and the semi classical expressions are only

reliable when λ À 1. But remarkably, for large charges, these ex-

pressions determine the qualitative relation between the charges

even for λ ¿ 1.

The best known example for this case is the folded spinning

string in AdS which corresponds to twist two operators in SYM

and, for large spin, have a logarithmic anomalous dimension.
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I In this work we are interested in string solutions with large spin

in AdS and which describe higher twist operators. These are

generalizations of previously known “Spiky Strings” [Kruczenski;

2004] to new configurations which we call “Dual Spikes”. We

study these configurations first in flat space time and then in

AdS.
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I Some references

• Gubser, Klebanov, Polyakov • Berenstein, Maldacena, Nas-
tase • Frolov, Tseytlin • Russo • Kruczenski, Tseytlin •Mikhailov
• Kazakov, Marshakov, Minahan, Zarembo

• Minahan, Zarembo • Beisert, Kristjansen, Plefke, Staudacher
• Bena, Polchinski, Roiban •Arutyunov, Frolov, Russo, Tseytlin
• Arutyunov, Frolov, Russo, Tseytlin
•Kruczenski, Ryzhov, Tseytlin • Beisert • Kruczenski

• Kruczenski • Ryang • Hofman, Maldacena • Kruczenski,
Russo, Tseytlin

• Minahan • Alishahiha, A.E.M • Smedback • Khan, Larsen
• Park, Tirziu, Tseytlin
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¥ Dual Spikes in Flat Background ¥

Start with the following ansatz for the string

t = τ, θ = ω τ + σ, r = r(σ)

(τ, σ)=WS coord’s and in target space ds2 = −dt2 + dr2 + r2dθ2

NG Lagrangian LNG = −
√

(1− ω2 r2) r′2 + r2 , (′) = ∂σ

Equations of motion are satisfied with

r′2
r2

= r2c
r2l

r2−r2l
r2c−r2

, rc = 1/ω , rl =const. from ∂θ isometry

This describes a segment of string stretching between a cusp at
rc and a lobe at rl
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with r1 = min(rl, rc) , r2 = max(rl, rc) and a = rc
rl

Eseg =
1

2π

1

rc

∫ r2

r1
drr

|r2c − r2l |√
(r2 − r2l )(r

2
c − r2)

=
1

4

rc

a2
|a2 − 1|

Jseg =
1

2π

∫ r2

r1
drr

√√√√r2 − r2l
r2c − r2

=
1

8

r2c
a2
|a2 − 1|

∆θ =
rl

rc

∫ r2

r1

dr

r

√√√√r2c − r2

r2 − r2l
=

π

2

|a− 1|
a

We now demand that 2n number of segments make up a closed

string and hence we have n number of spikes on the string

2a
|a−1| = n
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The total E and J of the closed string is

E =
rc

a
(a + 1) , J =

r2c
2a

(a + 1) , E = 2
J

rc

Therefore to each pair, (a, rc), corresponds a unique string con-

figuration provided that the periodicity condition is satisfied for

some integer n.

Two distinct cases are identified: a > 1 and a < 1
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• a > 1 results in the “Spiky Strings” found in [Kruczenski;

2004]; closed strings with n spikes n = 2,3, .... For example for

(a, rc) = (5/3,5)
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2
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• a < 1 results in “Dual Spikes”; closed strings with n spikes

n = 1,2..... For example for (a, rc) = (3/5,3)

-4 -2 2 4

-4

-2

2

4
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One can easily check that the energy determined by the pair

(a, rc) remains invariant if we switch to the pair (1/a, rc/a). This

transformation takes one from a “Spiky String” with n spikes to

a “Dual Spiky String” with n− 2 spikes or vice versa.

a → 1

a
, rc → rc

a
, n → n + 2

|1− a|
1− a

, J → J

a
, E → E

The a = 1 case describes a circular string (n → ∞) and is a

self dual configuration.
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I One can find these two sets of solutions from the Polyakov

action for strings in the target space ds2 = −dt2 + dx2 + dy2

x = rc
|a− 1|

2a
cos(

a + 1

a− 1
σ+) + rc

a + 1

2a
cos(σ−)

y = rc
|a− 1|

2a
sin(

a + 1

a− 1
σ+) + rc

a + 1

2a
sin(σ−)

t = rc
a + 1

a
τ

The transformation (a, rc) → (1/a, rc/a) amounts to yL → −yL

which is a T −Duality in the y direction.
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¥ Dual Spikes in AdS ¥

We find spiky strings in AdS3 ⊂ AdS5 with the metric

ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdθ2

The string ansatz is

t = τ , θ = ωτ + σ , ρ = ρ(σ)

The radius of AdS is chosen to be one and the dimensionless
worldsheet coupling constant is denoted by 1/

√
λ where it is

understood that λ is the ’t Hooft coupling in the dual field theory,
N = 4 SYM.

The NG Lagrangian is

LNG = −
√

λ

2π

√
(cosh2 ρ− ω2 sinh2 ρ)ρ′2 + sinh2 ρ cosh2 ρ
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The equations of motion are solved with

ρ′

sinh2ρ
=

1

2

√
cosh2ρc − 1

sinh2ρl

√√√√cosh2 2ρ− cosh2 2ρl

cosh2ρc − cosh2ρ

where

sinh2 ρc ≡ 1

ω2 − 1
(ω > 1) , ρl =Const. (∂θ isometry)

This describes a segment of string stretching between a cusp at

ρc and a lobe at ρl. The assumption ρl < ρc gives the spikes

of [Kruczenski;2004]. In the following we assume ρl > ρc which

results in dual spikes.
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Defining u = cosh2ρ, the angle covered by each segment is

∆θ =

√√√√u2
l − 1

uc − 1

∫ ul

uc

du

u2 − 1

√
u− uc√

u2
l − u2

To make a closed string we require that (ρc, ρl) are chosen such

that ∆θ = π/n. This gives a closed string with n spikes pointing

towards the origin (dual spikes) by gluing 2n number of these

segments. One can show that the gluing process gives regular

functions for ρ and θ as functions of σ̃(σ) with dσ
dσ̃ = 0 at the

position of cusps.
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For the closed string we find

∆θ =

√
u2

l − 1
√

2ul(uc − 1)
{uc + 1

ul + 1
Π(n1, p)− uc − 1

ul − 1
Π(n2, p)}

E − ωJ =
2n

2π

√
λ

2
√

ul√
uc − 1

{E(p)− uc + ul

2ul
K(p)}

J =
2n

2π

√
λ

√
uc + 1

2
√

2ul
{(1 + ul)K(p)− 2ulE(p) + (ul − 1)Π(n1, p)}

where

n1 =
ul − uc

ul + 1
, n2 =

ul − uc

ul − 1
, p =

√
ul − uc

2ul

and K(p), E(p) and Π(n, p) are the complete elliptic integrals of

first, second and third kind respectively.
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The usual Spiky Strings look like

-1 -0.5 0.5 1 1.5 2

-1.5

-1

-0.5

0.5

1

1.5

20



Whereas the Dual Spiky Strings look like
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I Some interesting limits
• ρc ¿ 1 , ρl = fixed

In this limit ∆θ À 1 and the periodicity condition can not be
satisfied. The resulting configuration is a spiral

-1.5 -1 -0.5 0.5 1 1.5 2
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• ρc < ρl ¿ 1

This limit corresponds to a small angular momentum spiky string

close to the origin and reproduces the dual spikes found in the

flat space and all the relations found there apply here.
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• ρl À 1 , ρc = fixed

This limit corresponds to spiky strings with large angular mo-

mentum and a fixed number of spikes. In this limit we have

∆θ ≈ π

2
{
√

uc + 1√
uc − 1

− 1}

J ≈ n

√
λ

4
ul

E − ωJ ≈ 2n

2π

√
λ

2E(1/
√

2)−K(1/
√

2)√
uc − 1

ul
1/2

24



We further assume that ρc À 1 (or ω ≈ 1), to avoid spirals, but

still ρc ¿ ρl such that the number of spikes doesn’t blow up and

(E−J)/n remains large. In this limit a semi classical analysis for

each spike remains valid. We will have

∆θ ≈ π e−2ρc

J ≈ n

√
λ

8
e2ρl

E − J ≈ n

√
λ

π
[2E(1/

√
2)−K(1/

√
2)] e(ρl−ρc)
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For Dual Spiky Strings and in the large angular momentum limit
we finally find

E ≈ J + 1.34
√

λ
n

2π

(
4π

n

J√
λ

)1/2

The anomalous part is similar to what is found for circular pulsating

strings.

For Spiky Strings and in the large angular momentum it was
found that [Kruczenski; 2004]

E ≈ J +
√

λ
n

2π
ln

(
4π

n

J√
λ

)

The anomalous part has the usual behavior for folded spinning

strings.
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¥ Discussion ¥

What is the corresponding operator to the “Dual Spiky String”

in SYM ?

Semi classical string configurations in AdS have led to the picture

that spikes on string represent fields in SYM.

A profile in the radius of AdS, which should generically be ac-

companied by rotation to give a string solution, are represented

by covariant derivatives D+ = D1 + iD2 which also carry spin.

The logarithmic behavior of anomalous dimension for spinning

strings is believed to be caused by the large number of derivatives

as compared to fields.
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• The large J Spiky Strings, and near the boundary of AdS, can

be considered as a number of folded spinning strings. These con-

figurations are therefore conjectured to correspond to twist n operators

with the following schematic form [Kruczenski; 2004]

OS ∼ Tr{Πn
i (D+)J/n Φi}

This can explain the logarithmic anomalous part found in the

semi classical analysis.

• The large J Dual Spiky Strings, and near the boundary, look

like portions of circular rotating strings. Moreover, the profile

in ρ in addition to rotation, induce a pulsating motion for the

string.
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In fact if we define η ≡ ω − 1 and keep η small, we will still have

a finite number of spikes and a valid semi classical limit for each

spike if we keep ηJ fixed and large. In this limit we have

E ≈ J + ηJ + 1.34

√
2

π
n λ1/4

√
ηJ

Comparing this relation with that for a pulsating string we see

that here, ηJ is replacing the oscillator number for pulsation.

For smaller η, we will have a larger ρc and hence the portion

of string near the boundary becomes more circular. This will

reduce the pulsation-like movement of the string and gives a

smaller oscillation number.
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One might then guess that the Dual Spiky Strings in AdS in the

large angular momentum limit are schematically represented by

operators of the form

ODS ∼ Tr{Πn
i (D+)J/n(D+D−)ηJ/2n Φi}

The D+ operators are responsible for the profile in ρ as well as

the rotation. The D+D−, on the other hand, contribute to the

dimension but not to the angular momentum. The fields Φ as

before represent the spikes on the string.

E ≈ J + ηJ + 1.34

√
2

π
n λ1/4

√
ηJ
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• Dual Spikes on sphere

We also found Dual Spiky Strings on sphere and found that no

large angular momentum limit for such solutions exists. This

means that a semi classical analysis for such solutions can not

be trusted. However, we found Spiral configurations in certain

limits (similar to the spirals on AdS) which have infinite winding

number around the equator of sphere. These were used to build

Single Spike configurations in [Riei, Kruczenski; 2007, Bobev,

Rashkov; 2007]. These might be considered as “Dual” config-

urations to Giant Magnons [Hofman, Maldacena; 2006] where

the winding number is replacing angular momentum as a large

charge.
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¥ Elliptic Integrals ¥

The Elliptical integrals of first, second and third kind, F , E and

Π are defined as

F (α; q) =
∫ α

0
dθ

1

(1− q sin2 θ)
1
2

E(α; q) =
∫ α

0
dθ(1− q sin2 θ)

1
2

Π(α;n, q) =
∫ α

0
dθ

1

(1− n sin2 θ)(1− q2 sin2 θ)
1
2
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