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1. Introduction

The AdS/CFT correspondence relates the de-

con�ned `gluon plasma' phase to black branes

and black holes in the bulk.

To see this recall that a nonzero Polyakov loop

implies existence of a cigar shaped string world

sheet about the time circle: the Euclidean sig-

nature of a horizon.

In this talk we will use computations in the �eld

theory decon�ned phase to make predictions

for classical black hole physics in the bulk dual
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In general, of course, we understand classical

gravity better than strongly interacting decon-

�ned dynamics.

However in the large N and long wavelength

limit, the decon�ned phase is well described, in

a statistically averaged sense, by the relativistic

Navier Stokes equations.

As we will see below, it is almost trivial to con-

struct and systematically study simple classes

of solutions to these 
uid dynamic equations,

and thereby obtain rather nontrivial informa-

tion about the structure of bulk black holes.
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2.a d=3. Thermodynamics

Consider N = 4 Yang Mills theory at t'Hooft

coupling g2Y MN = λ, compacti�ed on a Scherk

Schwarz circle of radius R. At distance � R
this system is described by a con�ning pure 3d

Yang Mills theory (Witten).

At large λ this theory admits a dual descrip-

tion as IIB supergravity on a space that is

asymptotically AdS5 compacti�ed on a Scherk

Schwarz circle (Witten).

The background dual to the vacuum is the so

called AdS soliton (double analytically contin-

ued non extremal brane background).

6



At �nite temperature the bulk geometry is asymp-

totically AdS5 on a Scherk Schwarz torus.

There exist an in�nite number of such back-

grounds. The two relevant for our discussion

are (Euclidean) the thermal AdS-soliton and

the Euclidean non extremal D3 brane.

Thermal AdS at T = 1/β has lower free en-

ergy than the black brane when β > 2πR, but

has larger free energy when β < 2πR. Con-

sequently, the system undergoes a decon�ning

phase transition at β = 2πR
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The low temperature phase or thermal soliton

phase is dual to a gas of glueballs.

The high temperature or black brane phase has

a free energy density of order N2. It is dual to

the decon�ned gluon plasma. Its equation of

state is

P = −f =
N2

210πTc

(
(2πT )4 − (2πTc)

4
)

.

where Tc = 1/2πR.

Note that the free energy, and hence the pres-

sure, of the decon�ned phase vanishes at the

phase transition temperature.
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2.b: Domain Wall

In this talk we will be interested in �nite lumps

of 
uid. An understanding of the the bound-

aries of these lumps is crucial to controling

their dynamics.

Luckily, it turned out to be possible to con-

struct a static gravitational solution dual to

the simplest 
uid con�guration with a bound-

ary. In this solution the plasma at T = Tc �lls

the half space x > 0, smoothly interpolating

to the vacuum across a domain wall at x = 0

whose thickness is of order �−1gap.
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The domain wall gravitational solution has been

found numerically. It may be used to read of

the properties - e.g. the surface tension - of

the domain wall. The latter turns out to be a

positive number of order N2

R2

The Scherk Schwarz circle is of �nite size at

the horizon in the bulk of the plasma, but

shrinks to zero size at the plasma's edge.

Consequently, the horizon topology of the bulk

solution dual to a lump of plasma, is given by

the Scherk Schwarz S1 trivially �bered over the

spatial regions occupied by 
uid, subject to the

constraint that the S1 vanishes at boundaries.

10



2.c: Equations of Fluid Dynamics

Lumps of plasma with boundaries obey the

Relativistic Navier Stokes equations

∇µTµν

Tµν = T
µν
perfect

+ T
µν
dissipative

+ T
µν
surface

T
µν
perfect

= (ρ+ P )uµuν + Pgµν

T
µν
surface

= σfµfν − gµν
√

∂f _∂fδ(f)

Where the surface is f = 0 and the pressure

P is the pressure given as a function of density

from the equation of state.
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The dissipative term is more complicated

T
µν
dissipative

= −ζθPµν − 2ησµν + qµuν + uµqν

where

aµ = uν∇νuµ,

θ = ∇µuµ,

Pµν = gµν + uνuµ,

σµν =
1

2

(
Pµλ∇λuν + P νλ∇λuµ

)
−

1

d− 1
θPµν,

ωµν =
1

2

(
Pµλ∇λuν − P νλ∇λuµ

)
.

The various viscosity and conductivity param-

eters in this equation have all be determined

from gravity- however we will not need them

in what follows.
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2.d: Rigid Rotation

We say the 
uid undergoes `rigid rotation' if

ur = 0, uθ = ωr, ρ = ρ(r).

Perhaps unsurprisingly, it turns out such so-

lutions to ∂µTµν = 0 at vanishing values of

viscosities and conductivities, also satisfy the

same equations at arbitrary values of these pa-

rameters

As a consequence all rigidly rotating solutions

are easy to �nd explicitly. In the bulk

(ρ(r)− ρ0)
(
1− ω2r2

)2
= constant.
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Matching the bulk solution above with bound-

ary conditions yields two classes of solutions-

spinning plasma balls and plasma rings.

Plasmaballs and plasmarings are, respectively,

disk and annulus shaped con�gurations of ro-

tating 
uid, each of which appear in 2 pa-

rameter families. The two parameters may be

thought of as the outer radius and angular ve-

locity of the solutions.

The pressure in each of these solutions is posi-

tive at the outer boundary (to balance the sur-

face tension) but decreases due to the centrifu-

gal force upon moving radially inwards towards

the center.
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In plasmaring solutions, the pressure is nega-

tive at inner boundary, to balance the negative

surface tension. This second boundary condi-

tion determines rin = rin(rout, ω).

Upon varying parameters over all allowed val-

ues we �nd

Â

B̂

D̂

Ẽ

L̃

Ô
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In the region B above we have 3 distinct so-

lutions. We plot the entropy versus angular

momentum, at a particular �xed value of en-

ergy, for these solutions in colours : Ball, Small

Ring, Large Ring.
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Thus the `small ring' is always entropically dis-

favoured: upon increasing angular momentum

we have a `phase transition' from the ball to

the big ring

This suggests that the small ring is dynamically

unstable towards rotationally invariant density


uctuations, while the big ring and ball are sta-

ble to the same 
uctuations.

We suspect that the big ring solution is also

unstable to density 
uctuations that break ro-

tational invariance. The end point of this `Rayleigh'

instability could be a necklace of rotating droplets.
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2.e Bulk Duals

It is easy to compute the horizon topologies of

the bulk black objects dual to our solutions.

Trivially �bering an S1 over a disk, subject

to the condition that the S1 vanishes at the

boundary of the disk, yields an S3. Thus plas-

maballs are dual to rotating black holes.

Fibering the S1 over an annuls yields S1 × S2.

Consequently, the plasmaring is dual to a black

ring.
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Unfortunately, �nite energy black hole and black

ring solutions have not yet been constructed in

Scherk Schwarz compacti�ed AdS5.

However the corresponding solutions have been

constructed and studied in detail in 
at 5 di-

mensional space, which form a useful compar-

ison point for our results.

The existence and stability curves for black

holes and black rings in 
at space turn out to

be qualitatively - and in some respects quanti-

tatively - strikingly similar to our graphs above.
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3: d=4

While rotating black holes and black rings have

been very well studied in 5 dimensional grav-

itational theories, d = 6,7... is relatively un-

charted territory.

The only gravitational results that I am aware

of, regarding the possible allowed topologies

in black solutions to Einstein's equations, take

the form of a complicated mathematical con-

dition on the horizon topology. This condi-

tion turns out to be satis�ed by all `product of

sphere' topologies
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In, e.g. d = 6, this theorem is consistent with

the existence of the horizon topologies S4, S3×
S1 and S2×S2 (S1×S1×S1×S1 is a marginal

case of the theorem).

It is natural to ask if all these topologies, or

only some of them, appear as stationary solu-

tions to Einstein's equations in Scherk-Shwarz

compacti�ed AdS6, where our 
uid dynamic

picture makes the analysis easy.

The computations may be performed in direct

analogy with those described above. I present

the results.
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Fluid solutions that preserve the rotational in-

variance about an axis, to the relevant 4 di-

mensional Navier Stokes equations, occur in 2

di�erent topological classes - balls and dough-

nuts or rings. Upon in-

creasing the angular velocity, ordinary balls turn

into...

22



Pinched balls

Upon further increasing ω, our solutions pinch

o� (undergoing a smooth topology changng

trainsition into...
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Plasmadongughts
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It is easy to check that the balls and rings are

dual to bulk solutions with horizon topology S4

and S3 × S1 respectively.

A hollow ball of 
uid - which would have mapped

to horizon topology S2 × S2 - never occurs.

This seems intuitively reasonable. The rota-

tional centrifugal force pushes 
uid away from

an axis rather than a point - favouring a dough-

nut over a hollow ball
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The intuition of the previous slide suggests

that we might a qualitatively kind of solution

in d = 5. In this dimension the most general

rotation has two orthogonal rotational axes.

Spinning up this solution along any one of these

axes should produce a solution whose with dual

horizon topology S4 × S1, while spinning the


uid up along both axes might produce a 
uid

lump with dual horizon topology S3 × S1 × S1

We are in the process of performing a detailed

analysis to check if this intuition is borne out
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2. Validity of the Fluid Dynamics

The equations of 
uid dynamics, applied to our

system, are approximate in three distinct ways.

First they keep track only of average values

of the local density, velocity etc, but ignore


uctuations.

Fluctuations however turn out to be of order

1/N2. This is dual to the fact that quantum


uctuations of the metric are of order 1

N2
. Ig-

noring 
uid 
uctuations is the same as the clas-

sical approximation in bulk physics, and is jus-

ti�ed at large N .
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Second they ignore glueball production in `gluon'

collisions.

However glueball production rates are O( 1

N2
).

Intuitively this is because gluon collisions pro-

duce glueballs only when a gluon meets its

colour antipartner.

Glueball production in gluon collisions is dual

to the production of gravitons via Hawking ra-

diation. The e�ect of each of these processes

on, respectively, 
uid dynamics and classical

black hole physics, may be ignored over time

scales of unit order, in the large N limit.
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Third, the Navier Stokes equations (and our

treatment of domain walls) are simply the �rst

terms in a derivative expansion.

Higher derivative terms suppressed by powers

of the mean free path ∼ O(�−1gap), and are negli-

gible only on solutions that vary on scales large

compared to this number. These conditions

are met for our solutions provided all charges

are large.

In the bulk dual, it is clear that it is permiss-

able to integrate out all other �elds of 10d

supergravity to obtain an approximately local

theory of quasinormal modes only for wave-

lengths much larger than �gap.
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Fourth, we have modeled the 
uid surface sim-

ply by a constant surface tension, that we have

read o� from the domain wall gravity solution.

This approximation is valid only when the 
uid

temperature at every boundary is near to Tc,

and when the `curvature' of the boundary is

small in units of �gap.

These conditions are also met on our solutions,

provided all charges are large.
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5. Concluding comments

Dual geometries to `con�ning' theories are `capped

o�' in the IR. A point in the IR casts a shadow

of size �−1gap on the boundary. In particular an

IR black hole of size R � �−1gap maps to lump of

decon�ned 
uid of size ∼ R on the boundary.

Thus our use of the AdS/CFT correspondence

provides an approximately local 
uid dynamical

description of black hole horizon physics. This

is reminicent of the `membrane paradigm' and

may be the precise version of this claim for

black holes in asymptotically AdS like spaces.
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In this talk I have only applied the 
uid picture

to the study of stationary gravitational black

holes.

However more general 
uid processes will also

have bulk duals. It would be really fun - and

may be possible - to study, for example, black

hole collisions, using 
uid dynamics.

Of course one might also consider trying to re-

verse the 
ow of information. Could plasmar-

ings appear in a modi�ed RHIC experiment?

Will they absorb particles like black rings will....

There may be fun things in store for us.
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