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• Abstract

There is a very simple approach to derive the entropy of horizons,

developed by T. Padmanabhan: It is possible to interpret gravita-

tional field equations near any spherically symmetric horizon as a

thermodynamic identity T dS − dE = P dV .

We study this approach further in case of BTZ black hole in three

dimensions and show that it’s entropy correction due to gravitational

Chern-Simons term, derived in this manner, is in full agreement

with standard results.

We also observe that some class of topological black holes could be

studied in this manner very simply!
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• Introduction

Padmanabhan’s observation in 4-dimension (gr-qc/0204019) would

be a good beginning:

” ... it is possible to write Einstein’s equations for

a spherically symmetric spacetime in the form T dS −
dE = P dV near any horizon of radius a with S =

(4πa2)/4 , E = a/2 and temperature T determined

from the surface gravity at the horizon. The pressure

P is provided by the source of the Einstein’s equation

and dV is the change in the volume when the horizon

is displaced infinitesimally. ”

To be more precise let us take a look at a D-dimensional generaliza-

tion of this observation.
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• Einstein-Hilbert Theory

Consider Einstein-Hilbert gravity with arbitrary matter sector in a

D-dimensional space-time ( h̄ = c = GD = 1):

I =
1

16 π

∫
dDx

√
−g R + Imatter

R is the Ricci scaler, and cosmological constant could be included in

the matter part. The Equation of motion is:

Gµν = 8π Tµν

where Gµν = Rµν − 1
2gµνR is the Einstein tensor. Now consider a

class of static and spherically symmetric metrics:

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
D−2

where dΩ2
D−2 is the metric of (D − 2)-dimensional sphere.
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With this choice, the rr-component of the equation of motion (G r
r =

8π T r
r) becomes:

(D − 2)

2 r
f ′(r)−

(D − 2)(D − 3)

2 r2

1− f(r)

 = 8π T r
r(r)

Suppose that the function f(r) has a simple zero ar r = rH and

f ′(rH) is finite, so that space-time has a spherical horizon with radius

rH, and non-vanishing temperature T = f ′(rH)/4π. Let us evaluate

the above equation at r = rH

(D − 2)

2 rH
f ′(rH)−

(D − 2)(D − 3)

2 r2H
= 8π T r

r(rH)

and then multiply both sides by a suitable factor d V/8π where

dV = area of horizon× virtual radial displacement of the horizon

= AD−2r
(D−2)
H × drH

and AD−2 is the area of a unit (D − 2)-sphere. The result is:
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f ′(rH)

4 π
d

AD−2r
(D−2)
H

4

− d

(D − 2)AD−2r
(D−3)
H

16 π

 = T r
r(rH)dV

By identifying the radial pressure P = T r
r(rH) we can rewrite this

equation in the form of the first law of thermodynamics!

T dS − dE = P dV

where the entropy is one quarter of the horizon’s area:

S =
AD−2r

(D−2)
H

4
and the energy of horizon is given by

E =
r
(D−3)
H

ωD
; ωD ≡

16 π

(D − 2)AD−2

The meaning of this local energy is not clear, except for some simple

cases.
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As an explicit example consider the vacuum solution in a D ≥ 4

space-time (the Schwarzschild solution) for which:

T µ
ν = 0 ⇒ f(r) = 1−

ωD M

r(D−3)

where M is the mass of the black hole and rH = (ωD M)
1

(D−3). For

this solution P = 0 and the energy of horizon is E = M .

In general E is not the total mass. Adding cosmological constant or

other types of matter will change the radial pressure and the radius

of horizon, but the energy formula and the Bekenstein-Hawking

formula for entropy remain unchanged!

The familiar form of the first law could also be derived. For example,

for a charged black hole it is easy to show that

dE + P dV = dM −Φ dQ
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• Higher Order Corrections

Next development was made by A. Paranjape, S. Sarkar and T.

Padmanabhan (hep-th/0607240):

They observed that the equivalence of the equation of motion and

the thermodynamic identity T dS = dE +P dV goes beyond Einstein

gravity and is applicable even in the more general Lanczos-Lovelock

gravity as well!

For example let us look at the lowest order correction in Lanczos-

Lovelock theory.
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• Gauss-Bonnet Correction

The Einstein-Hilbert theory with Gauss-Bonnet correction in D-

dimension is given by:

I =
1

16 π

∫
dDx

√
−g

R + α

(
R2 − 4RabR

ab + RabcdR
abcd

)+ Imatter

So the Einstein equation will be modified as:

Gµν + αHµν = 8π Tµν

For a spherically symmetric metric, the rr-component of the equation

of motion, evaluated at a typical horizon r = rH is given by

(D − 2)

2 rH
f ′(rH)

1 +
2α̂

r2H

− (D − 2)(D − 3)

2 r2H

1 +
α̂

r2H

D − 5

D − 3

 = 8π T r
r(rH)

where α̂ ≡ α (D − 3)(D − 4).
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As before multiplying both sides by a suitable factor dV/8π, it be-

comes the first law of black hole thermodynamics, from which en-

tropy and energy of horizon could be read:

S =
AD−2r

(D−2)
H

4

1 +
2α̂

r2H

D − 2

D − 4



E =
r
(D−3)
H

ωD

1 +
α̂

r2H


These expressions were previously derived in literature by other ap-

proaches (for zero cosmological constant). It should be emphasized

again that these corrections are independent of matter content of

the theory or cosmological constant background!
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• Advantages

In General Relativity, mass is a global concept which is only

defined for space-times with well defined asymptotic behavior, i.e.,

asymptotically flat and asymptotically AdS spaces.

standard methods for entropy calculation (e.g., Wald formula) are

based on mass definitions, so they are not applicable for space-times

which are not asymptotically flat or AdS, or space-times with

multiple horizons such as Schwarzschild-dS.

Padmanabhan’s method is a local approach which could be applied

to each horizon in a multiple horizon space-time, without worrying

about asymptotic behavior of the space-time!
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• Other Generalizations

This approach is generalized to:

stationary axially-symmetric horizons and time dependent evolving

horizons (T. Padmanaban et al. gr-qc/0701002)

apparent horizon of FRW universe (Rong-Gen Cai et al. gr-

qc/0611071, hep-th/0609128)

the f(R) theory of gravity (Rong-Gen Cai et al. gr-qc/0612089) in

which horizon thermodynamics is a non-equilibrium one.

the BTZ black hole in 3-dimensions (M. Akbar hep-th/0702029)
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• The BTZ Black Hole

Consider the Einstein-Hilbert theory with non-zero cosmological con-

stant Λ in a (1 + 2)-dimensional space-time:

I =
1

16 π

∫
d3x

√
−g

[
R− 2Λ

]

The equation of motion is given by:

Gµν = 8π Tµν = −Λgµν

Now consider a solution of the form:

ds2 = −f(r)dt2 + f(r)−1dr2 + r2
(

dφ + N(r)dt

)2
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With a negative cosmological constant, the only black hole solution

is:

Λ = −
1

l2
⇒ f(r) = −8M +

r2

l2
+

16 J2

r2

N(r) = −
4 J

r2

where M and J are mass and angular momentum. This constant

curvature (no singularity!) geometry is called BTZ black hole. This

black hole is asymptotically AdS, and has two horizon at r± so that:

M =
r2+ + r2−

8 l2
; J =

r+ r−
4 l

Entropy of the BTZ solution, associated to it’s outer horizon is given

by Bekenstein-Hawking formula: S+ = (2πr+)/4.
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The BTZ solution is also a solution of the field equations of TMG

which is constructed by adding a gravitational Chern-Simons term

to the Einstein-Hilbert action.

IGCS = −
βS

64 π

∫
d3x εµνλ

Rabµν ωab
λ +

2

3
ωb

cµωc
aνωa

bλ


Equation of motion of TMG is given by:

Gµν + βSCµν = 8π Tµν

where the Cotton tensor is traceless and covariantly conserved:

Cµ
ν =

1
√
−g

εµρσ∇ρ

(
Rνσ −

1

4
gνσR

)

What is the entropy correction of BTZ black hole due to GCS term?

The answer is well known, so we could test Padmanabhan’s approach

once again.
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The rr-component of the equation of motion, G r
r +βSC r

r = 8π T r
r

is

f ′(r)

4 r

2 + βS r

(
4N ′ + r N ′′

)+ · · · = 8π T r
r(r)

where dots denotes all other terms in the left hand side which

have no contribution to entropy. Evaluating the above equation at

a typical horizon r = rH of BTZ black hole yields:

f ′(rH)

2 rH

1 + βS
4 J

r2H

+ · · · = 8π T r
r(rH)

where we are using N = −4 J/r2. Multiplying both sides by

2π rH drH/8π we can easily find the entropy of the horizon corrected

by GCS term:

S =
2π rH

4

1− βS
4 J

r2H


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for example entropy of outer horizon r+ become:

S+ =
2π r+

4
+ β

2π r−
4

and of inner horizon r−:

S− =
2π r−

4
+ β

2π r+
4

where β = −βS/l. These are well known results.

It is interesting to note that the same procedure can also be followed

in a positive cosmological constant background, so our entropy for-

mula is also applicable in case of Kerr-dS3 solution.
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• Topological Black Holes

Let us return to the Einstein-Hilbert gravity with arbitrary matter

sector in a D-dimensional space-time ( h̄ = c = GD = 1):

I =
1

16 π

∫
dDx

√
−g R + Imatter

Now consider a class of black holes with a non-spherical horizon with

the following metric:

ds2 = −f(r)dt2 + f(r)−1dr2 + r2 hij(y)dyidyj

where the coordinates are labeled as xµ = (t, r, yi) , i = 1, · · · , (D−2).

The horizon metric hij is a function of the coordinates yi only.
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Again, the rr-component of the equation of motion (G r
r = 8π T r

r)

becomes:

(D − 2)

2 r
f ′(r)−

(D − 2)(D − 3)

2 r2

k(h)− f(r)

 = 8π T r
r(r) ,

where

k(h) ≡
R(h)

(D − 2)(D − 3)
,

and R(h) = hijRij(h) is the Ricci tensor for the horizon metric.

k is a constant in the case of constant curvature surfaces for example.

Evaluating the above equation at r = rH, and then multiplying both

sides by a suitable factor d V/8π, we end up with the first law of

thermodynamics.
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Note that here

dV = AD−2 r
(D−2)
H × drH

as before, but AD−2 is the area of a unit (D − 2)-surface with the

metric hij(y).

Finally the entropy of this type of horizon, is also equal to one quarter

of it’s area:

S =
AD−2r

(D−2)
H

4

and it’s associated energy is given by

E =
k r

(D−3)
H

ωD
; ωD ≡

16 π

(D − 2)AD−2

So for topological black holes, the horizon’s curvature enters in the

energy formula only, and has no direct contribution to the entropy.
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As an explicit example consider some class of D-dimensional solutions

for the Einstein’s equation with a negative cosmological constant (D.

Birmingham, hep-th/9808031):

Tµν =
(D − 1)(D − 2)

16 π l2
gµν ⇒ f(r) = k −

ωD M

r(D−3)
+

r2

l2

here k is constant and M is the mass parameter:

M =
r
(D−3)
H

ωD

(
k +

r2H
l2

)

so our local energy E is just a part of the mass which is not associated

with the cosmological constant. Anyway it is easy to check that

dE + P dV = dM
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Many Thanks
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