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• Hervé Partouche, hep-th : 0705.3206 and hep-th : 0706.0728,
[In effective supergravities from Strings]

• Nicolaos Toumbas and Jan Troost, hep-th : 0704.1996
[In Suprerstrings with broken SUSY]



1. Introduction

In the framework of superstring compactifi-
cations there are always moduli - fields cou-
pled in a very special way to the gravitational
and matter sector of the effective N = 1 four-
dimensional supergravity.

The gravitational and the scalar field part of
the N = 1 effective Lagrangian has the generic
form

L =
√

− det g




1

2
R− gµν Kı̄ ∂µφı∂νφ̄̄ − V (φı)




Kı̄ is the metric of the scalar manifold

V is the scalar potential of the N = 1 SUGRA.



We will work always in gravitational mass
units with

M =
1√

8πGN
= 2.4× 1018GeV.

What will be crucial in this work is the non-
triviality of the scalar kinetic terms Kı̄ −→
which will provide us with new accelerating
cosmological solutions once the

i) Radiative
and
ii) Temperature

corrections are taken into account.



Superstrirg vacua with spontaneously broken
supersymmetry and consistent at the classi-
cal level with a flat space-time define a very
large class of “no-scale” supergravity models.

Among them, a class of potential candidates
exist which extend in low energies the physics
of the standard model at O(1) TeV energy
scale.

This class of models contains an enormous
number of consistent string vacua, that are
constructed via freely acting orbifolds, “geo-
metrical fluxes”, in Heterotic or Type IIA,B
orientifold compactification, or in type IIA
or IIB compactification, with geometrical or
non-geometrical fluxes RR-fluxes or else.



• Generalization of the Scherk–Schwarz gaug-
ing to superstring theory.

Rohm, 84; Kounnas, Porrati, 88
Ferrara, Kounnas, Porrati, Zwirner, 89

Kounnas, Rostand, 90
Kiritsis, Kounnas, Petropoulos, Rizos, 99

Antoniadis, Dudas, Sagnotti, 99
Antoniadis, Derendinger, Kounnas, 99

Derendinger, Kounnas, Petropoulos,
Zwirner, 04

Derendinger, Kounnas, Petropoulos, 05,06,
• Simultaneous presence of NS, RR H3, F 3.

Frey, Polchinski, 02
Giddings, Kachru, Polchinski, 02

Kachru, Schulz, Trivedi, 03
Kachru, Schulz, Tripathy, Trivedi, 03
Derendinger, Kounnas, Petropoulos,

Zwirner,04, . . .



Thanks to the supersymmetric “no-scale” stru-
cture, and despite the plethora of this type of
string vacua, an interesting universal scaling
property emerges, that we will try to explore
in this work.

Namely, we will study in more detail, the non-
trivial cosmological implications due to the
existence (at the classical level) of some spe-
cial moduli fields.

One of these special moduli, Φ, is the super-
partner of the Goldstino. It defines the field-
dependence of the gravitino mass-term :

m(Φ) = C eαΦ,
and couples to the trace of the energy mo-
mentum tensor of a sub-sector of the theory.



Other special moduli are those with non-trivial
Φ-dependent kinetic terms. These moduli ap-
pear naturally in all string compactifications.

In order to be more explicit let us consider
as example the type IIB orientifold with D3-
branes and non-trivial NS and RR three form
fluxes H3 and F 3.

Due to the presence of non trivial fluxes, a
well known superpotential W (S, UA) is induced
that stabilizes the complex structure moduli
UA and the coupling constant modulus S.

The remaining h1,1 - moduli TA are still flat
directions at the classical level.



The Kälher potential is also well known and
is given by the intersection numbers dabc of
the Calabi-Yau manifold:

K = − log dabc(Ta + T̄a)(Tb + T̄b)(Tc + T̄c)

The superpotental W is constant.

The potential of the effective N = 1 “no-scale”
supergravity is identically zero with a non-
trivial gravitino mass

m2 = |W |2eK

This generic “no-scale” structure emerges in
all type IIB orientifold compactifications with
fluxes.



Keeping for simplicity the direction Ta = γaT
and freezing all other directions the Kälher
potential take the well known SU(1, 1) form

K = −3 log(T + T̄ )

giving rise to kinetic term and gravitino mass
term

gµν 3
∂µT∂νT̄

(T + T̄ )2
, m2 = C eK =

C

(T + T̄ )3

Freezing further the ImT and defining the
field Φ:

e2αΦ = m2 =
c

(T + T̄ )3

gµν 3
∂µT∂νT̄

(T + T̄ )2
= gµν

α2

3
∂µΦ∂νΦ .

The choice α2 = 3/2 normalize canonically
the kinetic terms of the modulus Φ.



The other extra moduli we will consider here
are those with kinetic terms that scale with
the inverse volume of the T -moduli :

Ks = gµν cs
∂µΦs∂νΦs

(T + T̄ )3
= gµν

1

2
e2αΦ ∂µΦs∂νΦs

Moduli with this scaling property appear in a
very large class of string compactifications.

i) All moduli fields leaving in the parallel space
of D3-branes.
ii) All moduli coming from the twisted sectors
in Z3 - orbifold compactifications in heterotic
string. (After the non-perturbative stabiliza-
tion of S due to gaugino condensation and
flux-corrections.) Kounnas Porrati, 87

Ferrara Kounnas Porrati, 87
Derendinger, Kounnas, Petropoulos, 05, 06,

. . .



2. Gravitational, Moduli and
Thermal Equations

Consider the system of the moduli fields Φ, Φs,
taken together with all other relevant degrees
of freedom of the theory which can be param-
eterized by an effective pressure P (T ) and en-
ergy density ρ(T ).

We are interested for the gravitational solu-
tions that are based on isotropic and homo-
geneous FRW space time metrics:

ds2 = −dt2 + a(t)2dΩ2
3.

Ω3 denotes a 3-dimensional closed space with
constant curvature k, e.g 3-dimensional sphere.

The two independent gravitational equations
of the system are:



i) The “Hubble” equation

3H2 = −3k

a2+ρ(T )+
1

2
Φ̇2+

1

2
e2αΦΦ̇2

s+V (Φ), H =



ȧ

a




ii) The equation of the variation with respect
to the scale factor a, modulo the “Hubble”
equation:

Ḣ + 3H2 = −2k

a2 +
1

2
(ρ− P ) + V +

1

2
a
∂V

∂a

*** In the literature the term a ∂V
∂a is fre-

quently neglected.

This term will play a crucial role in the deriva-
tion of the inflationary solutions under inves-
tigation.



The moduli field equations:

Φ̈ + 3HΦ̇ +
∂

∂Φ


V − P − 1

2
e2αΦΦ̇2

s


 = 0

Φ̈s + (3H + 2αΦ̇) Φ̇s = 0

The Φs equation can be solved immediately

Ks ≡ 1

2
e2αΦΦ̇2

s = cs
e−2αΦ

a6

The total energy conservation of the system
is the remaining independent equation of the
system

d

dt


ρ +

1

2
Φ̇2 + Ks + V (Φ)




+3H

ρ + P + Φ̇2 + 2Ks


 = 0.



Some useful relations that are valid for the
thermal quantities ρ(T ) and P (T ):

i) The entropy equation

T
∂ P

∂T
= ρ + P

ii) Scaling equations

mi

∂

∂mi
+ T

∂

∂T


 P ≡ 4P,


mi

∂

∂mi
+ T

∂

∂T


 ρ ≡ 4ρ

i) and ii) imply:

mi
∂

∂mi
P = − (ρ− 3P ).



In the special case of Φ-dependent masses,

mi = Ci eαΦ,

we obtain a very fundamental equation in-
volving the modulus field Φ,

−∂ P

∂Φ
= α (ρ− 3P )

The above equation shows clearly that Φ cou-
ples to the (sub-)trace of the energy momen-
tum tensor of the thermal system ρ, P .



3) Radiative and the Thermal Corrections

To proceed further, it is necessary to analyze
the structure of the scalar potential V and
the thermal functions ρ, P . More precisely,
we had to specify their dependence on Φ, T, a.

Although this analysis looks hopeless in a
generic field theory, it is perfectly under con-
trol in string effective no-scale supegravity
theories.

Classically, the potential V is zero along the
moduli directions Φ and Φs.

At the quantum level V receives radiative and
thermal corrections that are given in terms of
the effective potential V (Φ, a; mi) and in terms
of the thermal function −P (Φ, T ; mi).



i) Effective Potential

V = V0 +
1

64π2 StrM0 Λ4 log
Λ2

µ2

+
1

32π2 StrM2 Λ2 +
1

64π2 StrM4 log
M2

µ2 + . . .

Λ is an ultraviolet cut-off
µ stands for the renormalization scale

StrMn ≡ ∑

i
(−)2Ji(2Ji + 1) mn

i

Weighted sum over the field-dependent masses
mi, and the spin-statistic of particles Ji.

V0 ≡ 0 in “no-scale” supergravity.



StrM0 = (nB − nF ) ≡ 0

The Λ4 term is absent in SUSY theories.

The Λ2 term is always proportional to the
gravitino mass-term m(Φ)2

StrM2 = C2 m(Φ)2

C2 is a field independent number. It depends
only on the geometry of the kinetic terms but
not on the details of the superpotential.

The StrM4 term has logarithmic µ infrared
behavior.



In the infrared regularization method adapted
in string theory, the scale µ2 turns out to be
proportional to the curvature of the three di-
mensional space.

µ =
1

γa

The numerical coefficient γ is chosen accord-
ing to the Renormalization Group Equation
arguments.

Another choice for the infrared scale µ would
be the temperature scale, µ = ηT .

Both choices are physically equivalent. The
curvature choice looks more natural and has
the advantage to be valid even in the absence
of the thermal bath.



The StrM4 can be expanded in powers of grav-
itino mass m(Φ)

1

64π2StrM4 = C4 m4 + C2m
2 + C0

Including the logarithmic terms and the con-
tribution from StrM2, the total effective po-
tential is organized in powers of m(Φ):

V = V4(Φ, a) + V2(Φ, a) + V0(Φ, a)

Vn(Φ, a) = mn(Φ) [ Cn + Qn log (m(Φ)γa)]

V ′n ≡
∂Vn(φ, a)

∂Φ
= α( nVn + mnQn),

a
∂Vn(φ, a)

∂a
= α mnQn.



ii) Thermal Potential

At finite temperature the effective potential
receivesextra contributions from the thermal
fluctuations of the bosonic and fermionic states.

VTotal = V (Φ, a; mi) − P (T, mi)

The general expressions of the energy density
ρ(T ) and pressure P (T ) are

ρ(T ) =
∑

i
T 4fρ



mi

T


 P (T ) =

∑

i
T 4fP



mi

T




For massless degrees of freedom,

ρ = 3P =
π4

15


nB +

7

8
nF


 T 4 .



There are three distinct sub-sectors of states:

i) A sub-sector of massless states with.

ρ− 3P = 0 −→ ∂P/∂φ = 0

ii) A sub-sector of states with non vanishing
masses independent of m(Φ) → ∂P/∂φ = 0
• If mi is below T

P (T ) = P (T, mi = 0)+mi
∂P

∂mi
= cp T 4−∑

ci m2
i T 2

• If mi is above T , then the contribution of the
particular degrees of freedom is exponentially
suppressed and decouples from the thermal
system.



iii) A sub-sector with non vanishing masses
proportional to m(Φ).

∂P

∂Φ
= −α(ρ− 3P ) .

According to the scaling with respect to T
and m(Φ), we can separate

ρ = ρ4 + ρ2 , P = P4 + P2 ,


 m(Φ)

∂

∂m(Φ)
+ T

∂

∂T


 (ρn, Pn) = n (ρn, Pn) .

ρ4, P4 receive contributions from themassless
states of the i)-sector, the T 4 part of the ii)-
sector and from all states of the iii)-sector.



ρ4 = T 4




π4

8
n∗ +

∑

i
fρ



mi(Φ)

T







P4 = T 4




π4

24
n∗ +

∑

i
fP



mi(Φ)

T







ρ2 and P2 arise from the T 2 part of ρ, P of the
ii)-sector:

ρ2 = P2 = −∑
ci m2

i T 2 ≡ −M2 T 2 .



4) Critical Solution

The fundamental ingredients in our analysis
are the scaling properties of the total effective
potential at finite temperature.

Independently of the complication appearing
in the radiative and temperature corrected
effective potential the scaling violating terms
are under control. Their structure suggests
to search for a solution where all the scales of
the system m(Φ), T and µ = (1/γa) have similar
evolution in time.

m(Φ) =
1

γa
→ H = −αΦ̇, ξ m(Φ) = T .



The Φ-equation

Φ̈ + 3HΦ̇ +
∂

∂Φ


V − P − 1

2
e2αΦΦ̇2

s


 = 0 ,

on the critical trajectory becomes

Ḣ +3H2 = α2

(4C4 + Q4)m

4 + (2C2 + Q2)m
2 + Q0




+α2

(r4 − 3p4)ξ

4m4 − 2Csγ
6m4


 .

∂Vn

∂Φ
= αmn(nCn + Qn),

P4 = p4T
4, ρ4 = r4T

4 Ks = Cs
γ2

a4



The gravity equation

Ḣ + 3H2 = −2k

a2 +
1

2
(ρ− P ) + V +

1

2
a
∂V

∂a
,

on the critical trajectory takes the form

Ḣ + 3H2 = −2kγ2m2 +
1

2
(r4 − p4)ξ

4m4

+(C4m
4 + C2m

2 + C0) +
1

2
(Q4m

4 + Q2m
2 + Q0) .

The compatibility of the Φ-equation and the
gravity equation along the critical trajectory
implies an identification of the coefficients of
the monomials in m.

i) The constant terms

C0 =
2α2 − 1

2
Q0 ,

→ determination of γ



ii) The m2 terms, → determination of k:

k = −2α2 − 1

4γ2 (2C2 + Q2) .

iii) The m4 terms relate ξ to the constant Cs

appearing in Ks

Cs =
1

γ6




4α2 − 1

2α2 C4 +
2α2 − 1

4α2 (Q4 + r4ξ
4)




− 1

γ6




6α2 − 1

4α2 p4ξ
4




.

The Hubble equation,

3H2 = −3k

a2 + ρ +
1

2
Φ̇2 +

1

2
e2αΦΦ̇2

s + V .

in the background of the critical solution :






6α2 − 1

6α2




3H2 = ρ + V +
1

2
e2αΦΦ̇2

s −
3k

a2

The dilatation factor in frond of 3H2,
can be absorbed by a redefinition of :
CR, λ and k̂ −→

3H2 = 3λ− 3k̂

a2 +
CR

a4 ,

3λ =
2α2 − 1

6α2 − 1
3α2Q0 ,

k̂ =
α2

γ2




2

6α2 − 1
ξ2M2 − C2 −

3

2

2α2 − 1

6α2 − 1
Q2




,

CR =
3

2γ4



(r4 − p4) ξ4 + 2C4 +

2α2 − 1

6α2 − 1
Q4




.



The lesson of this exercise is that :

• the cosmological constant scale, λ

• the curvature scale, k̂

are both generated by “the scaling violating
terms” of the thermal effective potential.

• In the absence of the scaling violating terms
(or when these terms are negligible),
the “no-scale modulus Φ couples to the total
trace of the energy momentum tensor.

• This special case was studied in 1986 by I.
Antoniadis and C. Kounnas. They found that
the critical trajectory is the only stable solu-
tion under any field fluctuation.



In that case, λ = k̂ = 0, the critical trajectory
is an attractor at late times giving rise to a
radiation evolving universe with :

a2 ∼ t, T 2 ∼ m2
Φ ∼ 1/t, V ∼ 1/t2.

In the general case λ 6= 0, k̂ 6= 0, the time evo-
lution of a, T and Φ is similar to

the radiation-deformed de Sitter Solutions!

H.Firouzjahi, S.Sarangi, S.H.H.Tye, 04 ;
S.Sarangi, S.H.H.Tye, 05;

R. Brustein, S.P. de Alvis, 06;
C. Kounnas, H. Partouche, 07; . . .



a2
+ =

1

λ


ch2



√

λ t

 + ε2ρ




a2− =
1

λ


−sh2



√

λ t

 + ε2ρ




The cosmological solutions a− and a+

are connected by a Φ-Gravitational Instanton

a2
E =

1

λ


cos2



√

λ τ

 + ε2ρ




with a transition probability ( a− → a+ )

< Ψ−||Ψ+ >= P ∼ e


 2
3λ − χρ

λ2




• χρ is proportional to the number of the
effective marginal and/or thermal degrees of
freedom at the temperature scale T0, defined
at the transition point.

C. Kounnas, H. Partouche, 07



• Ψ± is the wave-function of the universe.

J.B. Hartle, S.W. Hawking, 83;
A. Vilenkin, 82, 83;

A.D. Linde, 84;
H.Firouzjahi, S.Sarangi, S.H.H.Tye, 04;

S.Sarangi, S.H.H.Tye, 05;
R. Brustein, S.P. de Alvis, 06;

C. Kounnas, H. Partouche, 07; . . . . . . ;

5. String Perspectives and Conclusion

At classical string level it seems difficult to
construct exact cosmological string solutions
and is even more difficult to obtain de Sitter
like inflationary solutions even in lower than
four dimensions.



• Consider for instance the euclidian version
of S3 which is an exact conformal field theory
base on SU(2)k WZW model.

However, the SU(2)k WZW model does not
admit any real-time analytic continuation due
to the existence of a non-trivial torsion Hijk
which becomes imaginary!!

I.Antoniadis, C.Bachas, A.Sagnotti, 90;
P.K Townsend 01;

J. Sonner, P.K Townsend 06;
C.Bachas, C.Kounnas,

D.Orlando, M.Petropoulos 07;
. . .
• The only known cosmological
solution based on an exact conformal field
theory is that of SL(2, R)/U(1)−|k| ×K.



Its euclidian version is also well defined by
the parafermionic T-fold.

C.Kounnas, D.Luest 92;
L.Coralba, M.S.Costa, C.Kounnas 02;
C.Kounnas, N.Toumbas, J.Troost O7;

. . .
• In all String cosmological models with a
well define euclidian version,
(like for instance the SL(2, R)/U(1)−|k| ×K),
the super-string analog of:
“the Stringy wave function of the universe”
can be unambiguously defined.

Furthermore the transition probabilities
can be evaluated at the string level.

C.Kounnas, N.Toumbas, J.Troost O7.



Concluding Remark

• Our proposal however goes even beyond the
scope of the above statement; namely towards
to :

The plausible existence of cosmological
super-string solutions (Inflationary or not)

which are generated dynamically
at the quantum sting level

from a flat classical space-time and
spontaneously broken supersymmetry

(no-scale radiative-induced cosmology).


