COSMOLOGICAL SLINGSHOT SENARIO

ALEX KEHAGIAS (NTU ATHENS)

ín collaboratíon wíth Crístíano Germaní Nícolas Grandí

hep-th/0611246, hep-th/0706.0023

based on mírage cosmology work in collaboration with Elías Kírítsís

hep-th/9910174

Patra June 2007

OVERVIEW

• Inflation vs Slingshot

- · Cosmology of Slingshot
- Comparison with other proposals
- Conclusion

Inflation explains:

Homogeneity problem
 Isotropy problem
 Horizon problem
 Flatness
 Structure formation
 Monopole, gravitino, etc. problems

Any theory alternative to Inflation should at least solve the problems Inflation does....

and consistent with WMAP

Inflation seems to work quit well, so why we should look for alternatives?

<u>Motivation</u>

- If an alternative succeed, this will open a new avenue to cosmology
- If it fails, it will provide additional support and indirect demonstration of the advantages of inflation.

Proposals:

- Pre-Big-Bang
- Ekpyrotic
- Cyclic
- String-Gas
- •
- Slingshot

SLINGSHOTSENARIO

Símilar to D3/anti-D3 brane Inflation

But in slingshot

NO anti-D3 and NO inflation!

A probe D3 (our Universe) is moving in the background sourced by ND3's.

Cosmologícal Problems

• Isotropy of CMB \rightarrow horizon problem

Standard GR

Isotropy

Friedmann equation

Inflation mirage

H ² =
$$\frac{8\pi G}{3} \left[\frac{\rho_m}{a^3} + \frac{\rho_r}{a^4} + \frac{\sigma_0}{a^6} + \dots \rho_1 \right] + \frac{\widetilde{\rho_{mir}}}{a^8}$$

matter radiation shear In GR at small scales <u>shear</u> dominates and FRW becomes highly unstable.

Solution

Slíngshot	Inflation
 Scale factor a has a mínímum before shear domination mírage matter 	Once vacuum energy domínates, a rapíd and long expansíon washes out all other contríbutíons.
líke a ⁻⁸ so shear never domínates	

Curvature Problem

$$\Omega_k \Big|_{BBN} < 10^{-8}$$

If radiation dominates GR

$$\Omega_k \Big|_{Planck} < 10^{-60}$$

Solution

GENERAL SETUP:

D3-brane in the background sourced by ND3's. In the static limit, there exists a gravitational attraction and a RR-gauge field repulsion

6 transverse directions

no force condition (BPS states)

D-branes are dynamical objects (they can fluctuate)

Dynamics described by the DBI action:

 $S = -T_3 \int d^4 x \ e^{-\varphi} \sqrt{-\det(g_{ind})} - T_3 \int C_4$

 φ = the dílaton, C₄ = RR-4-form potentíal, g_{ind} is the induced metric from the background.

The background for the slingshot is the Klebanov-Strassler throat of a CY_3 . The near-horizon geometry of N coincident D3 branes at the tip of a cone preserving N=1 susy is $AdS_{3}XT^{1,1}$ and the metric is

$$ds^{2} = \frac{r^{2}}{L^{2}} \left(-d\eta^{2} + d\overline{x}^{2} \right) + \frac{L^{2}}{r^{2}} \left(dr^{2} + r^{2} ds_{T^{1,1}} \right)$$

 $T^{1,1}$ is like $S^2 X S^3$. At the tip of the cone, $S^3 \rightarrow 0$. One may deform the geometry such that the manifold closed off smoothly at some $r=r_{R}$.

The conifold can be described by 4 complex coordinates Wi with one complex condition

$$\sum_{i=1}^{4} W_i^2 = z$$

z=0 Síngular conífold z = 0 deformed conifold

z is a dynamical field; the complex structure modulus. It is a flat direction if there are no fluxes. In the presence of fluxes acquires a potential and can be stabilized by H_3 (NS-NS) and F_3 (R-R) fluxes. With

$$(\frac{\mathcal{M}_{s}}{2\pi})^{2} \int_{\mathcal{A}} \mathcal{F}_{3} = \mathcal{M}, \qquad (\frac{\mathcal{M}_{s}}{2\pi})^{2} \int_{\mathcal{A}} \mathcal{H}_{3} = -\mathcal{K}$$

z is stabilized to $z = e^{-2\pi \kappa/g_s M} = a_0^3$

 $a_0 = r_{IR}/L$ the warp factor at the bottom of the throat.

However, r is not a "good" global coordinate. It can be cut off at $r=r_{uv}$ and glued back to CY_3 . This construction looks very much the same with RS1 where the IR brane corresponds to $r=r_{IR}$ and the UV one to $r=r_{uv}$.

13

Local geometry of the KS throat has metric:

$$ds^{2} = h^{-1/2}(t) \eta_{\mu\nu} dx^{\mu} dx^{\nu} + h^{1/2}(t) ds_{6}^{2}$$

$$ds_{6}^{2} = \frac{1}{2} z^{2/3} \kappa(t) \left[\frac{1}{3\kappa^{3}(t)} \left[dt^{2} + (g^{5})^{2} \right] + \cosh^{2}[t/2] \left[(g^{3})^{2} + (g^{4})^{2} \right] + \sinh^{2}[t/2] \left[(g^{1})^{2} + (g^{2})^{2} \right] \right]$$

$$\kappa(t) = \frac{\left(sinh(2t) - 2t \right)^{1/3}}{2^{1/3} sinh(t)}$$

$$h(t) = 2^{2/3} m^{2} z^{-4/3} I(t)$$

$$I(t) = \int_{t}^{\infty} dx \frac{x Coth(x) - 1}{sinh^{2}(x)} \left[sinh(2x) - 2x \right]^{1/3}$$

límíts:

Small τ

$$ds^{2} \approx \frac{z^{2/3}}{2^{1/3} a_{0}^{1/2} g_{s} \mathcal{M} \alpha'} \eta_{\mu \nu} dx^{\mu} dx^{\nu} + a_{0}^{1/2} 6^{-1/3} (g_{s} \mathcal{M} \alpha') \\ \left(\frac{1}{2} d\tau^{2} + \frac{1}{2} (g^{5})^{2} + (g^{3})^{2} + (g^{4})^{2} + \frac{1}{4} \tau^{2} \left[(g^{1})^{2} + (g^{2})^{2} \right] \right) \\ a_{0} \approx .71805$$

Large τ (Klebanov-Tseytlín)

$$dS^{2} \approx \frac{r^{2}}{L^{2}\sqrt{\ln(r/r_{s})}}dx^{\mu}dx_{\mu} + \frac{L^{2}\sqrt{\ln(r/r_{s})}}{r^{2}}dS_{T^{1,1}}^{2}$$

Dynamics described by the DBI action in the KS throat. Complicated dynamics which however simplifies considerably in the slow-roll approximation. In any case, for illustration we may consider the motion of the probe D3 in an AdS_5XS^5 throat as the latter captures all essential features of slingshot.

In the $AdS_5 xS^5$ case:

$$ds^{2} = h^{-1/2} dx^{\mu} dx_{\mu} + h^{1/2} \left(dr^{2} + r^{2} d\Omega_{5}^{2} \right)$$
$$h = \frac{r^{4}}{L^{4}}, \quad \varphi = \varphi_{0}, \quad C_{4} = 1 - \frac{1}{h} = C$$

Probe D3-brane motion is specified by r(t), $\Omega_{5}(t)$. From the DBI action, we get that

$$r'^{2} = -v = \frac{1}{h} \left| 1 - \frac{1}{h^{2}(1 - C - u)^{2}} \left(1 + \frac{hJ^{2}}{r^{2}} \right) \right|$$

u is "energy" and J angular momentum in S⁵.

The geometry experienced by an observer on the D3 probe brane is determined by the induced metric (Mirage cosmology)

$$ds_{ind}^{2} = h^{-1/2} \left[- \left(1 - hr^{2} \right) d\eta^{2} + dx^{2} \right]$$

In the "slow-roll" approximation r' < < 1

Bouncing Cosmology

Cosmological Problems Revisited

- Homogeneity: the comoving horizon diverges (no horizon problem)
- Isotropy: There is no Bing-Bang (scale factor never vanishes). Moreover, at small scales mirage matter contribution dominates over shear.
- Flatness:

or assume a flat (BPS) empty initial state.

DENSITY PERTURBATIONS

For "slow-roll" motion (adiabatic approximation)

$$S = -\frac{\tau_3}{2} \int \mathcal{A}^4 \chi \left(\partial_{\mu} r \partial^{\mu} r + r^2 \partial_{\mu} \Omega_5 \partial^{\mu} \Omega_5 \right)$$

We may perturb the theory by

$$\label{eq:radius} r \rightarrow \ r + \delta \ r \,, \qquad \Omega_{5} \rightarrow \ \Omega_{5} + \delta \Omega_{5}$$

Then small fluctuations satisfy (in Fourier space): $S_{\delta} = \frac{T_{3}}{2} \int d\eta \left[\delta r_{k}^{'2} + r^{2} \delta \Omega r_{k}^{'2} - \left(k^{2} - \Omega r_{5}^{'2} \right) \delta r_{k}^{2} - r^{2} k^{2} \delta \Omega r_{k}^{2} \right]$ $+ 4r \Omega r_{5}^{'} \delta \Omega r_{k}^{'} \delta r_{k}^{'}$

Bardeen Potentials:

$$\Phi = -\frac{\delta \gamma}{\gamma} = -\Psi$$

are frozen ($\Phi := \Psi := 0$) for $k < < \frac{J}{r^2}$

Then we find

$$\mathcal{P}(\mathcal{R}) = \frac{\langle \delta r_{\mathcal{R}}^2 \rangle}{r^2} \sim \frac{1}{\mathcal{R}^3}$$

The spectral index is

$$n_{s} = \frac{d\ln(k^{3}P)}{d\ln(k)} + 1 = 1$$

This is an exactly scale invariant power spectrum Using the KS background, we find

$$M_{S} \approx 1 - \frac{1}{2 \ln (k/k_{co})} \approx .95$$
 at $k \approx .002 Mpc^{-1}$

for appropriate k_{co} consistent with WMAP3:

Conclusíons: General pícture

Allowing for a D3 brane moving with non-zero angular momentum in the KS throat :

- Bouncing Cosmology
- Homogeneity, isotropy, flatness problem solved

Allowing perturbations to be created at "string" scale

• Red-shifted almost scale invariant spectrum.

open problems: many