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2 Euclidean 5d Action and 4d Instantons

Let us start with the effective action of D8-branes
in the background of D4-branes:

1
Sym = —k [d*zdztr (é-h(z)Fﬁy + k(z)Fﬁz)

where
AN,

~ 21673

k
and
hz)=(1+2)713, k(z)=142°

where p,v = 1,...,4, and z is the 5th dimension.
The action can be rewritten using auxiliary metric
components |

‘ Sym = —k [ /g5 d'z dztr (g g"" F,, Fpy + 2g””gzszF,,z)|

where the metric components are

1 1
Guv = ik(z)h(z)(s;wa 92z = Zlh(z)25zz

The 5d Euclidean metric is

1 1
ds® = Z(l + 22?35, datdz” + Z(l + 22)723d2?




A set of classical solutions of the Euclidean 5d
theory: set F),, = 0, and require that all other fields
to be independent of z then we have a 4d action
with instantons as its classical minima. To get rid of
that factor ,/g.-, we do a coordinate transformation,
z — 2/, and write the metric as

r ds® = f(2') (8 dztda”) + d2 }
where = &
| dz 1 113
/ = - il
%2) 2/(1+22)1/3 QZF(Q’S’Q’ z)

with F' the hypergeometric function, and
f() = 71+ 2D
Therefore, in this Coordi{nate system /g, = 1, and
the action reads
Sym = —k [ \/g_‘-*dzla: dz tr (g"°g"° F Fps)
The absolute minima of the 4d action can be worked

out by adding and subtracting a topological term
proportional to the instanton number:

S = —k [ Vaid'atr (9" F, Fro)

= —QIMd.’I)tT FNV_%

2
)
Ad
gupguaepa F)\5

— g [ d*ztr (GPJA‘SFPGF )\5)
—a N

| S e




Written in this form, it is now clear that the abso-
lute minima of the 4d action are the instantons on
a curved 4-dimensional space with the metric g,

1
F;_u/ = 5 —9up9vo epa/\éF)\cS

2./0

with the convention €'?%* = 1 and €93, ~ g4. How-

ever, since we are in four dimensions and since the
metric in the remaining 4 coordinates is conformally
flat, the above equations reduce to the instanton
equations on-flat space

1
F#V — §5W5y0 EPJA(SF)@

with completely known solutions.



3 String-like Solutions and Monopoles

We discuss a class of solutions of the 5d theory which
are independent of ¢ and the z direction, and hence
resemble vortex solutions.

The 5d action now includes adjoint scalars ¢. The
U(1) part of ¢ gets stabilized at antipodal points of
S1. So the 5d action is

Sym = —k [ /g5 d°ztr (" g™ FunFri
+ 2¢"" Dy Dyo)

In looking for solitons of the 5d model, the simplest
choice is to look for a static field configuration and
set 0y = Ag = 0, so the action reads

Svm = —k [ v/=goo dt /i d*zdz tr (¢% g% FapFs
+ 29*° DagpDso)

with o, 3,... =1, 2,3, 2z, and the metric
I | ‘
ds? = 7L+ 2%)36;dxtda? + il # 22) 7232

If \/—goo was absent, we could have argued that
the instantons (with ¢ = 0) are sitting at the min-
ima of the action. However, it is not possible to get
rid of \/—ggo by a coordinate transformation, and



thus instantons are not solutions to the field equa-
tions. By varying the action, the field equations read

Do (V=300 F*%) + iv/=goo |6, DP¢| = 0,
Do (V=900 D*¢) =0

with f?a the 4d connection. Now for instantons we

have
1

Fa;@ — %ga'ygﬁnevnaﬂﬁbm
together with ¢ = 0. These clearly do not satisfy
field egs; with the /—ggo factor inside the covariant
derivative the field equations do not reduce to the
Bianchi identities.

Although /—gpy cannot be set to 1 by a coor-
dinate transformations, we can get rid of that by
dimensionally reducing the action one step further.
In fact, since

1

V=900 \/Gzz = 1

we observe that if we reduce action to 3 dimensions
there is a chance of reducing the field equations to
some first order differential equations. Let us first
discuss that without the scalars ¢ it is not possible
to get to the monopole equations.
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3.2 The case with ¢ # 0

The 5d equations of motion read
Dy FMN 44l , DVl = 0

DyDM¢p =0
requiring 0y = Ag = 0, the above equations to 4
dimensions

DoF + O F# 4 i[¢p, DP¢] =0

D,D% =0

Splitting the indices to z and ¢
D F* +i[¢p, D*¢] = 0

D;FF+i[A,, F*|+ 8,F* + T, F* +i[¢, D'¢] = 0
We reduce these equations to 3 dimensions. We no-
tice that there is a consistent ansatz of the form

0,A; = 0 and A, = 0, which also implies F},; = 0.
In this case
[$,0%¢] =0
D;F" +i[¢, D'¢] = 0
In 3 dimensions, the last equation is solved by solu-
tions to the Bogomolny equations:

| 1
-F:ij e —Sg‘imgjnemnkaQb

V93
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plugging back the metric components this equation

becomes

1
Fyj=o(1+ 22V BseiDe™ Db

Since 0,A; = 0, the left hand side is z-independent.
Define

b=+

which is to be z-independent. Written in terms of

~

¢, the monopole equation becomes:
Fij = 8im0jn€™* Dy
These monopole configurations can be seen that

minimize the energy density. The reduced 3d action
can be read:

Sym = —k [ /g3 dt d®z-dztr (¢ g Fij Fpy + 297 Dip D)
Hence, for the energy density we have
k | s "
B= |VG ztr (¢ FysFo + 297 DitD;)
:Ej\/g_d?’a:tr F— ——1—9- g Gmnkafi’ 2
4 3 ¥ \/@ mmyin
L -~
+ 5 [d°x tr(e”kFijDkqb)

The last term is proportional to the winding num-
ber. The energy density functional, in each topo-
logical sector, is minimized if the fields satisfy the
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Bogomolny Eqs. The energy density (energy per
unit invariant length in the z direction) is

E
9zz

which is finite and proportional to the winding num-
ber associated to the behaviour of ¢ on the boundary
of R3. These monopole solutions, viewed from the
four dimensions, look like strings extended along the
z direction.

=2k [ d°z tr(eijkﬂjDkq;)
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Sub!-l‘l.f’ufl"»j inte the acticn we ‘oe”':

S = JJHZ \G—Z - (3007'6“7'65 § Sux'qx'b)

Where

Cp S\rfgdz" f"(ag&“cfg:ﬁj + 6. 55"’)
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