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Plan & Motivation:

iz Discuss black ring and black hole attractors in a unified way
using Sen’'s entropy function.

[d Starting point for considering higher derivative corrections
to black hole/string entropy and checking micro-scopic vs.
Mmacroscopic entropy in detail.

d General framework for discussing various properties of
attractors.



What are blackhole attractors?

iz Context = Theory with gravity, gauge fields, neutral scalars

1 generically appear as (part of) low energy limit of string
theory

i scalars (or moduli) encode geometry of compactified
dimensions

iz Attractor mechanism = scalars’ values fixed at Blackhole's
horizon

i independent of values at infinity

iz SO horizon area depends only on gauge charges = Entropy
depends only on charges

i works for Extremal (I'=0) blackholes



Hand waving

iz nuMmber of microstates of extremal blackhole determined by
quantised charges

d entropy can not vary continuously
iz put the moduli vary continuously

i resolution: horizon area independent of moduli

d moduli take on fixed values at the horizon determined by
charges

iz | NO mention of SUSY




Outline

iz GO through examples of application of entropy function

[d discuss four dimensional spherically symmetric black holes
d some simple black holes and black rings in 5d

— may be dimensionally reduced to previous case
d Time permitting: more general black holes and black rings

iz Study Lagrangians which generically appear as (the bosonic
part of) certain low energy limits of string theory
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Entropy function outline

Only need near horizon geometry

Equations of motion & Extremising an Entropy function
Entropy function at extremum = Entropy of Blackhole
need to solve algebraic equations

Argument is independent of SUSY

in 4-d:

3 Assume extremal (T' = 0) < AdS> x S? near horizon
symmetries
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Entropy function outline

Only need near horizon geometry

Equations of motion & Extremising an Entropy function
Entropy function at extremum = Entropy of Blackhole
need to solve algebraic equations

Argument is independent of SUSY

in 5-d:
d Assume (AdS2 x S2) U (1) near horizon symmetries



Entropy function outline

iz Only need near horizon geometry

i Equations of motion & Extremising an Entropy function
i Entropy function at extremum = Entropy of Blackhole
iz need to solve algebraic equations

iz Argument is independent of SUSY

iz N 5-d:

d Assume (AdS2 x S2) U (1) near horizon symmetries
— AdS3 X S2 near horizon symmetries = black-ring
— AdSy X S3 near horizon symmetries = black-hole
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Entropy function outline

Only need near horizon geometry

Equations of motion & Extremising an Entropy function
Entropy function at extremum = Entropy of Blackhole
need to solve algebraic equations

Argument is independent of SUSY

in 5-d:

d More generally:
- AdS>;®@U(1)? near horizon symmetries



Step 1

i First we look at simple 4-dimensional spherically symmetric
black holes

iz Form the basis for generalisation to higher dimensions



Entropy Function (Sen)

Set up:

i Gravity, p-form gauge fields, massless neutral scalars

v [ gauge and coordinate invariant - in particular there may
be higher derivative terms

= Assume: Extremal = AdS»> X S? Near horizon geometry

iz Entropy function:

d First we consider, f, the Lagrangian density evaluated at
the horizon:

f[eiapi7RAd527R527(708] — / \V/ —g£
H

d The electric charges, conjugate to the electric fields, are
defined as
_9f

- Qel

q;



Entropy Function (Sen)

Set up:

i GGravity, p-form gauge fields, massless neutral scalars

v [ gauge and coordinate invariant - in particular there may
be higher derivative terms

i Extremal = AdS, X S? Near horizon geometry

iz Entropy function:

d First we consider, f, the Lagrangian density evaluated at

the horizon.
d Now take the Legendre transform of f w.r.t the electric
fields and their conjugate charges:

E=2r (qiei — /H \/Tg£>

E = S[Qi,pi, RAnga R527 908]



Entropy Function (Sen)

E=2m (qiei—/ \/—g£>
H
Results:

iz equations of motion <>Extremising &£
i \Wald Entropy = Extremum of &£

ww Fixing ¢; and p' fixes everything else completely



Caveats

‘ @ Entropy function, £, might have flat directions |

— T he near horizon geometry is not completely determined
by extremisation of &£

— T here may be a dependence of the near horizon geometry
on the moduli

But since these are flat directions

v the entropy is still independent of the moduli

i (Generalised attractor mechanism

@ Also note that we have assumed that a blackhole solution
exists which may not always be the case.




Simple example: spherically symmetric case

B)g" 0,00, P, — f:(B)g""g"" Fl) FsY

Furs(
1fzj (q;)euypaFﬁsi)Fég>

Ansatz: AdSs, X S? near horizon geometry

ds* = vy (—r*dt’+dr*/r?) 4+ v2d§2
A e'rdt+p'(1 — cos0)de

®, = wu,(const.)



Simple example: spherically symmetric case

Ansatz: AdS, x S? near horizon geometry

ds® = (—7“2dt2 + dr2/’r2) —|—v2dQ§

F,,ft = e Fg¢:pisin9

®, = w,(const.)



Entropy function

Wish to calculate:

£ =2m(qe' — f) =2m (qiei — /d@dqb\/ —g£>

Calculate the action:

2 2 Qetel  Dpip
f[é:ﬁa _)7U17v2] :(47-(-)(’017}2) ( _’Ul _I_fZ](uT) < 626 o pzp >>

V2 Uy (%)

— 872 fijeipj

Calculate the conjugate variables:

of
qi =

J

= (167) (v1v2) fij (ur) (%) — 87 fijp’

e’ :
. V1 T
el = (U—> VT
2




Entropy function

Wish to calculate:

£ =2m(qe' — f) =2m (qiei — /d@dqb\/ —g£>

Calculate the action:

2 2 Qetel  Dpip
f[é,ﬁ,ﬁ,vl,UQ] :(47'(')(’017}2) ( _’Ul _I_fZ](uT) < 626 o pzp >>

V2 Uy (%)

— 87? fijeipj

Calculate the conjugate variables:

of
qi =

J

2 = em) o f ) (G ) =57

. U _ R 1 ~
el = <U—1> 7% qy, Gk =1 (C]k +87T2szpl>
2



Entropy function

Finally

U1

Elq,p,U,v1,v2] = 27 (877(02 —v1) + (U—> Veff>
Notation

Verr = 8m(p' fij (@)p + 4i fV (@) ds)



Notation

Entropy function

Verr = 8m(p' fis (W)’ + i f¥ (@) i)



Entropy function

S[CT? —)7 67U17v2] =27 <87T(R%'_ R?ﬁldS) + ( R

Vepg ~ E°+ B

2
RAdS

)



Equations of Motion

Then the equations of motion are equivalent to extremising
the entropy function:

oc OVerp

— =0 = 0
8(131 aq)l
o0&
— =0 = 8m—v, Vo (®;)=0
(9?)1
o0&
— =0 = —8m+vv, Vepp(Pr) =0
8v2
So
U1:U2:87T‘/eff
and

SpH = 2T Veyy



5-d attractors

Consider b5-d Lagrangian with massless uncharged scalars
coupled to U(1) gauge fields with Chern-Simons terms:

/ d’z+/—g (R hsr(®)0,X50" X" — fr,(®)F!, F/ 1

o CIJKE,Lwaﬁ’yFI FJ AK)

pur— af

167TG5

i Lagrangian density is not gauge invariant — Entropy
function formalism does not apply

iz similar to BTZ black hole with gravitational Chern-Simons
and/or gauge Chern-Simons term

> compactify 1 (Sen, Sahoo)
v can apply formalism to dimensionally reduced action

iz Related work: (Kraus, Larsen), (Dabholkar, lizuka, Iqubal,
Sen, Shigemori)



Dimensional reduction

Kaluza-Klein Ansatz:
ds® = w™ g datda’ +w’ (dyp + A, dx")?

) ®° = X ()
Al = Aﬁda}“ +a'(z") (dyp + Agd:c”)

i dimensionally reduce on :

1
S =
167Gy

/ d'z\/—ga (R— hst(P)OP* 0D — f;;(P)FL, FI 1

— [ (B)e O F; FI )

where [ = (F°, F1), & = (w, X", a’).



Gory Details

1
S =
167Gy

/ dz\/— g (R—hst(5)8¢38¢t— fii(B)FL, FIH
— J( @) P By 1)

where F* = (F° F!), & = (w,X",a’) and

0 J
fii = 0 iw?’ +wfryata™  wfrra”
A w frra® W f1
0 J
f‘ o 0 ( dexrma™ata™  4cjgra®a”
oo 1 6¢crera’at 120[JKCLK
hrs = diag ( 3w 2, hrs,2wfr; )



Near-horizon dimensional reduction

iz \\We consider a 5—d near horizon geometry which reduces to
AdSQ X SQ

= Starting with AdSs X S?

d 2
w1 (—r2dt2—|—i2> + wo (al92—|—sin2 9dq52)

r



Near-horizon dimensional reduction

iz \\We consider a 5—d near horizon geometry which reduces to
AdSQ X SQ

iz \We add an extra-dimension

d 2
wy <—r2dt2 + %> +wy (d62 + sin®0d¢?) + wada)

r



Near-horizon dimensional reduction

iz \\We consider a 5—d near horizon geometry which reduces to
AdSQ X SQ

i Can add 5-d rotation and a Hopf-fibration

d 2
w1 <—r2dt2—|—i2> + w9 (al92—|—8i1r12 qubQ)

r

+ws (dep + € rdt + cosOdep)”



Near-horizon dimensional reduction

iz \\We consider a 5—d near horizon geometry which reduces to
AdSQ X S2

iz More generally we could have a Taub-Nut charge

d 2
w1 (—T2dt2—|—i2> + w9 (al92—|—8i1r12 qubQ)

r

+ws (dip + € rdt +p°cosOdg)’



Near-horizon dimensional reduction

iz \\We consider a 5—d near horizon geometry which reduces to
AdSQ X S2

iz More generally we could have a Taub-Nut charge

d 2
w1 (—T2dt2—|—i2> + w9 (al92—|—8i1r12 qubQ)

r

+ws (dip + € rdt +p°cosOdg)’

= For black rings we set p® = 0.



Near-horizon dimensional reduction

iz \\We consider a 5—d near horizon geometry which reduces to
AdSQ X S2

iz AS IS usual with Kalusa-Klein reduction it is convenient to
choose the following parameterisation

d 2
w ! |:U1 (—r2dt2—|—%> + U9 (d92—|—81n2 9d</52)

r

+w? (dip + 2 rdt 4 p° cos 0dg)’



5-d near horizon ansatz

d 2
ds? = w! {ful <—r2dt2—|—%> + vy (d6? 4 sin?0d¢>?)

.
1 w? (dw + e’ rdt +p’cos qub) i ,

Al = elrdt+p'cosfdp+a’ (dip+ e’ rdt+p°cosfde)

d° = u’

where the coordinates, 6, ¢ and %, have periodicity m, 2,
and 4 /p°



Geometry of 4-d/5-d lift

Black hole at the center of
Taub-NUT

Dimensional Reduction
via Hopf fibration

0

> T p °
Black hole

2°' Black ring in Taub-NUT
Dimensional Reduction

on S’ of Ring

pY Y. J

Naked KK monopole Black hole

~ =




Back to the entropy function

i After dimensional reduction, we can just read off the 5-d
entropy function from the 4 — d result



Gory Details Again

1 S o
S = / d’r~\/—g (R—hST(CI))é?MXsé?“XT— fry(®)F! FIr
167TG5 H
—C[,]KeﬁwaﬁfyFl{VF&] AK)
d (R het(B)ODOD! — f,,(B)F! Fin
= e [ a9 (R~ ha(® (B)EL,

— fis(B)e P Ey, 1)
= (FO, F), &%= (w,X",al),

f ( 1w +wfrala’ wf[JaJ>
1y —

w frya’ w17
1 K_ L. M 1 K L
f —CKLMCL a - a §CJKLCL a
1y — K _ L K
§CIKLCL a CIIKQ

hrs :diag( 5?1}_2, hR57 waIJ )



Back to the entropy function

i After dimensional reduction, we can just read off the b5-d
entropy function from the 4 — d result

- 47‘(‘2 1
E=2n(Nqg'e;— f) = — {vz—vl+—%ff}
PG U2
Verr = f24:ig;+ fip'y’
G = qi— fiyp

i Choose Nqg; = % for convenience (N = 47 /G5)

i AS before it is easy to solve for v; and v9 to get




v1 = v2 = Verrlav=o,
Now we “just” need to solve:

a{w,(i,f(’}‘/@ff = 0.

As a check, we note that, even before extremising V.¢¢, this
result agrees with the Hawking-Bekenstein entropy since,

o (5)
S:4—(§5: 20(;5 — €.

= To get black rings or black holes we fix p and p’
appropriately.



More gory details: Effective potential

= iw?’(po)2 + 4’w_3(q() — ij(a)Pj — GI(QI — flj(a)Pj))2
+wfr (X)) (P +a'p) (p” + a’p°)
+w (X)) (qr — fre(@)p") (a7 — Fr(@)p),



Two Examples

We now consider the black-ring and black-hole examples



Black ring

Black ring in Taub-NUT
Dimensional Reduction

on S’ of Ring

r

>

Y.

Naked KK monopole Black hole

~— =1

>



Black ring (p° = 0)

Ansatz:

ds?

d 2
w ! [vl (—r2dt2—|—%> + U9 (d(92—|—sin2 ngbz)]

r
+w? (dw + ¢ rdt) ?
Al = elrdt+p'cosOded+a’ (dw + €' rdt)

O° = u°

Already know

and v1 = vy. Still need to solve

Otw.airVerr =0



Finding the solution

We need to solve

=z

Iy

IS

Iy

Otw,a,iy Vers =0

Easiest to solve for the axions/gauge fields first:
OiVerr=0 = Fl =0
= Ver=wfp'p’ + (4w ) ()

Solving OyVerr =0 =

_ IJ
OG5\/QO( VM)2 Vv = friq q

and

egw2 — vw

which means that we our fibration (AdS: x S?) @ U(1) is
actually AdS3 x S?

more precisely: (AdS3/Zz) x S*



Example: 11-d supergravity on 79

v 11-d supergravity on T°%—5-d U(1)? supergravity

Q2fr; = hry = 3diag (X)) 72, (X?)2(X?)7?), ek =

|€]JK|/24:
O X'X?2X3=1

iz We get the magnetic potential

(p1)2 (2)2 3\2/ v 1\2/ v2\2
iz Extremising gives
1\3 _ ﬂ N3 _ (p*H)?
a (X7)° = oy’ (X5)° =25

w0

1 Vi = 2(p'p?p?)s.



Non-rotating black hole

Black hole at the center of

Taub-NUT Dimensional Reduction

via Hopf fibration

0
> T p

Black hole



Non-rotating black hole

= This is in some sence dual to the black ring case: p" <€,

-~

p' <> q

Ansatz:
2 -1 2 7,2 dr? 2 .9 2
ds® = w v1 | —ridt —|——2 + V9 (d@ -+ sin 9d¢)
r

+w? (dip + p° cosOde)”
Al = elrdt+p'cosbdd + ol (dw + p°cos qub)
P° = u°
Need to solve
Otw,a,iy Vers =0

Easiest to solve for the gauge fields/axions a! first =

Fy, =0



which gives
1 _ .
Verr = (Z’w?’)(po)2 +w 7414,

Solving OyVers =0 =

\G][N]

4r? 4 IJ A ~
E = E\/po(ng) Ve= 1414,

and

png = vow ™|

which means that we our fibration (AdS; x S?) @ U(1) is
actually AdS, x S?3

s AdSy x (S%/Z,0)



Non-supersymmetric solutions of (very)
special geometry

= In 4 dimensional A/ = 2 special geometry we can write Veff
or the “blackhole potential function”

Vesr=1Z°+|DZ|*.

1 BPS solutions: each term of the potential is separately
extremised
d non-BPS solutions: V¢ extremised but DZ # 0

iz For the black holes and rings with very special geometry we
get
V =2+ (DZ)*.
which may also have both BPS and non-BPS extrema.

1 Black holes: Zg = X!q;
d Black rings: Zy = X p!



Less Symmetry

= Again in will be helpful to consider 4 — d blackholes

i in 4-d rotation leads to less symmetric attractor blackholes

ISy AdSQ X SQ — AdSQ X U(l)



Rotating attractors in 4-d

What is the generalisation of an
AdSs> x S? near horizon geometry for
rotating blackholes?

i Take a hint from the near
horizon geometry of extremal Kerr
Blackholes (Bardeen, Horowitz)

a3 .S0(2,1) xU(1)




Recall: SO(2,1) x S* Ansatz

d 2
ds? = v, <—r2dt2 n %) + 0pd0? + vysin 0 d?

T
Ps — Ug

()

p'sinf

1 .
5F,§?dm“ Adz’ = e'dr A dt + do A dgp

4



SO(2,1) xU(1) Ansatz

2

d
ds* =v1(0) (—7“2dt2 -+ —7; ) + 82d0% 4+ v5(0) sin’ 0 (dp — ardt)?
/’/b

Ps — US(Q)
A = e'rdt +b"(0)(d¢ — ar dt)

Horizon has spherical topology =- v2(f#) at poles ~ 1

pi — / A0dGFL) = 27 (bi () — b(0)).



SO(2,1) xU(1) Ansatz

2

d
ds* =v1(0) (—7“2dt2 -+ —7; ) + 82d0% 4+ v5(0) sin’ 0 (dp — ardt)?
/’/b

s = us(0)
sFwda Ada” = (¢ — ab(8))dr Adt+ b7 (0)d0 A (d — ar d)

Horizon has spherical topology = v2(#) at poles ~ 1

pl= / d@dqu“ = 27 (b'(m) — b'(0)) .



SO(2,1) xU(1) Ansatz

2

d
ds® = Q%e* (—T2dt2 + %) + 3d6? + e %Y (dp — ardt)’
7/)

s = us(0)
sFwda Ada = (¢ — ab(8))dr Adt+ b7 (0)d0 A (dp — ar d)

Horizon has spherical topology = e 2% at poles ~ sin? 6

p = / d0doF,;) = 2m(b'(m) — b'(0)).



Symmetries

= One way to see that the ansatz has SO(2,1) x U(1)
symmetries is to check that it is invariant under the Killing
vectors, 0y and

1 /1
L1=0y, Lo=t0—r0, L—1=§ ( —|-t2> 8t—(tr)8r—|-g8¢.
T

72

i can also be seen by thinking of ¢ as a compact dimension
and find that the resulting geometry has a manifest SO(2,1)
symmetry with the conventional generators.



5-d Ansatz

For the five dimensional black-rings and black-holes we take
a SO(2,1) x U(1)? ansatz which will give us the 4d one after
dimensional reduction:

d 2
ds? =w1(0)Q?(0)e2v?) (—r2dt2 + % + 52d92>
[”)

+w H(0)e 2O (dp + eyrdt)?

+w?(0)(dvp + eqrdt + bo(0)dp)?
Al =elrdt +b'(0)(d¢ + egrdt)

+a’(0)(dvp + egrdt + bo(0)de)
¢° =u’(0).



Entropy function:

We define
Flas B,,9(0),:(6), @(6),5(6)] / d0dep/—gL

i T he equations of motion are:

of _ 4, 9f _, of _  Of _
da 88 dei ' 5bi(0)
5f 5f 5f

—— =0 ———=0 =0

5Q(0) 5(0) Sus(0)




Entropy function:

Equivalently we let
E[1,3,b(0), B,v1(6),v2(0),@(0)] = 27 (Ja+q-&— f)

iz T he equations of motion:

OE OE OE 5E
— =0 =0 =0 =0
da s de' 5bi(6)
5 5E
68 £ _, 0

ov1(0) ov2(0) dus(0)



Examples

Kerr, Kerr-Newman, constant scalars (non-dyonic)

Dyonic Kaluza Klein blackhole (5-d()—4-d).
-(Rasheed)

Blackholes in toroidally compactified heterotic string theory
-(Cvetic,Youm;Jatkar,Mukherji,Panda)



Two derivative Lagrangians

L= R—hyo(8)g"0,8.0,8, — fi;(8)g"g" Ff) Y

on(Ja+q-€— /d@dqb\/— det g L)

onJo+2nq- €— 4r? / do {2@151@’2 —2Q8 —2Q8 1y
o Be B0, (D!

+2 fi; (1) {ﬁﬂ_le_w(ei —ab') (el —ab!) — ﬁ_lﬁewbi/bﬂ} }

+8% [Q%e* sin (v +20Q/Q)], .



Equations of motion

Notation:

Y= el — ab’

()2 equation:

1
—4p7Q/Q+2671(Q/Q)° -268-2671 () — et Be
— B hysulul +2fi; { — B8O 2e 2y — a2 ey /} =0,

1) equation:

4371 Q) —2a°Q 7 Be™
+2£;{ ~2807 e 2] = 207287102\ | =0,



Us equation:

2 (5_1Qhrsu;)/—|—28rfij {ﬁﬂ—le—%bxixj _ a—2ﬁ—1962¢Xi/Xj/}
— B (Orhts) ujul, = 0,

b equation:
—affi ey —am 57 (fijﬁewxj/)/:o
(3 equation:
/d@](é’) —0
where

1(0) = —2Q7'872(Q)* - 2Q+ 208 *(¢')* + loﬂg—le—w

+ 872 0h 42, { Q7 e 2 + a8 QQ(e)eW@ X'}



Charges:
Qi = S8 / dé [fijﬁQ_1€_2¢Xj] :
J= 2n [[dO{aQ 1Be " —45f;;Q e )b }



Solutions

i Equations can be solved for some simple cases

d Kerr, Kerr-Newmann, constant scalars

iz Check known solutions fitted into the frame work:

d KK blackholes, Toroidal compactification of Heterotic
string theory



Kaluza-Klein Blackholes

L=R—2(0p)" — e2V3¥ [2
ww Charges = ), P, J

iz 2 types of extremal blackholes

3 Both have SO(2,1) x U(1) near horizon geometry
J non-SUSY

1. Ergo branch

w | J] > PQ

i Ergo-sphere

w S =21/ J2 — P2QQ2
ww &£ has flat directions

2. Ergo-free branch

w | J] < PQ

= N0 Ergo-sphere

w S =21/ P2Q? — J?

w £ has no flat directions




Blackholes in Heterotic String Theory on T°

i Charges = 1, 2, Q3, Q4,P1, P>, P53, Py, J,
ad (Actually 56 P’'s and @'s)

iz Duality invariant quartic
D = (Qi1Qs3+ Q20Q4)(PiP;s+ PPy)

1
_Z(lel + Q2P+ Q3P+ QuPy)?
1. Ergo branch

i Ergo-sphere
w S =21V J2+ D
ww &£ has flat directions

2. Ergo-free branch

iz NO Ergo-sphere
w S =21v/—J2—D
w £ has no flat directions




Ergo-free branch

6=0




Ergo-free branch
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Ergo-free branch
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Ergo-free branch
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Ergo-free branch




Scalar Field at Horizon




Ergo-branch
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Ergo-branch

O=r/4

IS
(@)
Q0 |
=
)

A
8
Il

BEEREE
| | 000000

00000 WL
OIRWNE




1.5

05

Ergo-branch

O=rm/2

-0.5;

~15

O '

0 -

A
8
Il

| | ©OO0000

00000 WL
OIRWNE




Ergo-branch
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Ergo-branch
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Scalar Field at Horizon
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General Entropy function in five dimensions:
AdSQ X U(1)2

We now relax our symmetry assumptions to SO(2,1) x U(1)?:

d 2
ds® = wL(0)Q*(§)e2¥® <—r2dt2 + 5%1@2)
T

+w 1(0)e?Y O (dp + eyrdt)?

+w?(0) (dap + eordt + bo(0)de)?
Al = elrdt+b'(0)(do+egrdt) 4+ a’ (0)(dap + egrdt + bo(0)do)
¢° = u”(0).

Using dimensional reduction we can now use the four
dimensional entropy function to get the five dimensional one.



Summary

iz Discussed black ring and black hole attractors in a unified
way using Sen’'s entropy function.

iz Constructed the entropy function for black holes with
AdSs x S? horizons which can be lifted to (AdSs x S?) ®
U(1) black things.

v Generalised this to SO(2,1) x U(1) — SO(2,1) x U(1)?

i Attractor behaviour seems only to need the presence of an
AdS-
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Puzzles and Future directions

Consider higher derivative corrections

d (Alishahiha ; Cai,Pang; Castro,Davis,Kraus,Larsen)
Consider non-extremal generalisations

Further investigate the role of flat directions.

What role does the ergo-sphere play 7

Why are these bosonic symmetries sufficient for
attractor mechanism?

the
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