One entropy function to rule them all

Kevin Goldstein, TIFR

Patra, Greece


```
hep-th/0701221 (KG, Jena)
hep-th/0606244 (Astefanesei, KG,
Jena, Sen,Trivedi)
hep-th/0507096 (KG, Iizuka, Jena & 
Trivedi)
hep-th/0506177 (Sen)
```


Plan \& Motivation:

Discuss black ring and black hole attractors in a unified way using Sen's entropy function.

- Starting point for considering higher derivative corrections to black hole/string entropy and checking micro-scopic vs. macroscopic entropy in detail.
- General framework for discussing various properties of attractors.

What are blackhole attractors?

Context = Theory with gravity, gauge fields, neutral scalars
generically appear as (part of) low energy limit of string theory
scalars (or moduli) encode geometry of compactified dimensions

Attractor mechanism = scalars' values fixed at Blackhole's horizon
independent of values at infinity
So horizon area depends only on gauge charges \Rightarrow Entropy depends only on charges
works for Extremal $(T=0)$ blackholes

Hand waving

number of microstates of extremal blackhole determined by quantised charges
\square entropy can not vary continuously
but the moduli vary continuously
resolution: horizon area independent of moduli
\square moduli take on fixed values at the horizon determined by charges

No mention of SUSY

Outline

Go through examples of application of entropy function
discuss four dimensional spherically symmetric black holes

- some simple black holes and black rings in 5d
\rightarrow may be dimensionally reduced to previous case
Time permitting: more general black holes and black rings
Study Lagrangians which generically appear as (the bosonic part of) certain low energy limits of string theory

Entropy function outline

Only need near horizon geometry
Equations of motion \Leftrightarrow Extremising an Entropy function
Entropy function at extremum = Entropy of Blackhole
need to solve algebraic equations
Argument is independent of SUSY
in 4-d:

- Assume extremal $(T=0) \leftrightarrow A d S_{2} \times S^{2}$ near horizon symmetries

Entropy function outline

Only need near horizon geometry
Equations of motion \Leftrightarrow Extremising an Entropy function
Entropy function at extremum = Entropy of Blackhole
need to solve algebraic equations
Argument is independent of SUSY
in 5-d:

- Assume $\left(A d S_{2} \times S_{2}\right) \otimes U(1)$ near horizon symmetries

Entropy function outline

Only need near horizon geometry
Equations of motion \Leftrightarrow Extremising an Entropy function
Entropy function at extremum = Entropy of Blackhole
need to solve algebraic equations
Argument is independent of SUSY
in 5-d:

- Assume $\left(A d S_{2} \times S_{2}\right) \otimes U(1)$ near horizon symmetries
$\rightarrow A d S_{3} \times S_{2}$ near horizon symmetries $=$ black-ring
$\rightarrow A d S_{2} \times S_{3}$ near horizon symmetries $=$ black-hole

Entropy function outline

Only need near horizon geometry
Equations of motion \Leftrightarrow Extremising an Entropy function
Entropy function at extremum = Entropy of Blackhole
need to solve algebraic equations
Argument is independent of SUSY
in 5-d:

- More generally:
$\rightarrow A d S_{2} \otimes U(1)^{2}$ near horizon symmetries

Step 1

First we look at simple 4-dimensional spherically symmetric black holes

Form the basis for generalisation to higher dimensions

Entropy Function (Sen)

Set up:
Gravity, p-form gauge fields, massless neutral scalars
\mathcal{L} gauge and coordinate invariant - in particular there may be higher derivative terms

Assume: Extremal $=A d S_{2} \times S^{2}$ Near horizon geometry
Entropy function:

- First we consider, f, the Lagrangian density evaluated at the horizon:

$$
f\left[e^{i}, p^{i}, R_{A d S_{2}}, R_{S_{2}}, \varphi_{s}\right]=\int_{H} \sqrt{-g} \mathcal{L}
$$

- The electric charges, conjugate to the electric fields, are defined as

$$
q_{i}=\frac{\partial f}{\partial e^{i}}
$$

Entropy Function (Sen)

Set up:
Gravity, p-form gauge fields, massless neutral scalars
\mathcal{L} gauge and coordinate invariant - in particular there may be higher derivative terms

Extremal $=A d S_{2} \times S^{2}$ Near horizon geometry
Entropy function:
First we consider, f, the Lagrangian density evaluated at the horizon.

- Now take the Legendre transform of f w.r.t the electric fields and their conjugate charges:

$$
\begin{aligned}
\mathcal{E} & =2 \pi\left(q_{i} e^{i}-\int_{H} \sqrt{-g} \mathcal{L}\right) \\
\mathcal{E} & =\mathcal{E}\left[q_{i}, p^{i}, R_{A d S_{2}}, R_{S_{2}}, \varphi_{s}\right]
\end{aligned}
$$

Entropy Function (Sen)

$$
\mathcal{E}=2 \pi\left(q_{i} e^{i}-\int_{H} \sqrt{-g} \mathcal{L}\right)
$$

Results:

equations of motion \Leftrightarrow Extremising \mathcal{E}
Wald Entropy $=$ Extremum of \mathcal{E}
Fixing q_{i} and p^{i} fixes everything else completely

Caveats

\Rightarrow The near horizon geometry is not completely determined by extremisation of \mathcal{E}
\Rightarrow There may be a dependence of the near horizon geometry on the moduli

But since these are flat directions
\checkmark the entropy is still independent of the moduli
Generalised attractor mechanism

Also note that we have assumed that a blackhole solution exists which may not always be the case.

Simple example: spherically symmetric case

$$
\begin{aligned}
\mathcal{L}= & R-h_{r s}(\vec{\Phi}) g^{\mu \nu} \partial_{\mu} \Phi_{s} \partial_{\nu} \Phi_{r}-f_{i j}(\vec{\Phi}) g^{\mu \rho} g^{\nu \sigma} F_{\mu \nu}^{(i)} F_{\rho \sigma}^{(j)} \\
& -\frac{1}{2} \tilde{f}_{i j}(\vec{\Phi}) \epsilon^{\mu \nu \rho \sigma} F_{\mu \nu}^{(i)} F_{\rho \sigma}^{(j)}
\end{aligned}
$$

Ansatz: $A d S_{2} \times S^{2}$ near horizon geometry

$$
\begin{aligned}
d s^{2} & =v_{1}\left(-r^{2} d t^{2}+d r^{2} / r^{2}\right)+v_{2} d \Omega_{2}^{2} \\
A^{i} & =e^{i} r d t+p^{i}(1-\cos \theta) d \phi \\
\Phi_{r} & =u_{r}(\text { const. })
\end{aligned}
$$

Simple example: spherically symmetric case

Ansatz: $A d S_{2} \times S^{2}$ near horizon geometry

$$
\begin{aligned}
d s^{2} & =v_{1}\left(-r^{2} d t^{2}+d r^{2} / r^{2}\right)+v_{2} d \Omega_{2}^{2} \\
F_{r t}^{i} & =e^{i} \quad F_{\theta \phi}^{i}=p^{i} \sin \theta \\
\Phi_{r} & =u_{r} \text { (const.) }
\end{aligned}
$$

Entropy function

Wish to calculate:

$$
\mathcal{E}=2 \pi\left(q_{i} e^{i}-f\right)=2 \pi\left(q_{i} e^{i}-\int d \theta d \phi \sqrt{-g} \mathcal{L}\right)
$$

Calculate the action:

$$
\begin{aligned}
f\left[\vec{e}, \vec{p}, \vec{u}, v_{1}, v_{2}\right]=(4 \pi)\left(v_{1} v_{2}\right)\left(\frac{2}{v_{2}}-\frac{2}{v_{1}}+f_{i j}\left(u_{r}\right)\right. & \left.\left(\frac{2 e^{i} e^{j}}{v_{1}^{2}}-\frac{2 p^{i} p^{j}}{v_{2}^{2}}\right)\right) \\
& -8 \pi^{2} \tilde{f}_{i j} e^{i} p^{j}
\end{aligned}
$$

Calculate the conjugate variables:

$$
q_{i}=\frac{\partial f}{\partial e^{i}}=(16 \pi)\left(v_{1} v_{2}\right) f_{i j}\left(u_{r}\right)\left(\frac{e^{j}}{v_{1}^{2}}\right)-8 \pi^{2} \tilde{f}_{i j} p^{j}
$$

\Rightarrow

$$
e^{j}=\left(\frac{v_{1}}{v_{2}}\right) f^{j k} \hat{q}_{k}
$$

Entropy function

Wish to calculate:

$$
\mathcal{E}=2 \pi\left(q_{i} e^{i}-f\right)=2 \pi\left(q_{i} e^{i}-\int d \theta d \phi \sqrt{-g} \mathcal{L}\right)
$$

Calculate the action:

$$
\begin{aligned}
f\left[\vec{e}, \vec{p}, \vec{u}, v_{1}, v_{2}\right]=(4 \pi)\left(v_{1} v_{2}\right)\left(\frac{2}{v_{2}}-\frac{2}{v_{1}}+f_{i j}\left(u_{r}\right)\right. & \left.\left(\frac{2 e^{i} e^{j}}{v_{1}^{2}}-\frac{2 p^{i} p^{j}}{v_{2}^{2}}\right)\right) \\
& -8 \pi^{2} \tilde{f}_{i j} e^{i} p^{j}
\end{aligned}
$$

Calculate the conjugate variables:

$$
\begin{aligned}
& q_{i}=\frac{\partial f}{\partial e^{i}}=(16 \pi)\left(v_{1} v_{2}\right) f_{i j}\left(u_{r}\right)\left(\frac{e^{j}}{v_{1}^{2}}\right)-8 \pi^{2} \tilde{f}_{i j} p^{j} \\
& e^{j}=\left(\frac{v_{1}}{v_{2}}\right) f^{j k} \hat{q}_{k} \quad \hat{q}_{k}=\frac{1}{16 \pi}\left(q_{k}+8 \pi^{2} \tilde{f}_{k l} p^{l}\right)
\end{aligned}
$$

Entropy function

Finally

$$
\mathcal{E}\left[\vec{q}, \vec{p}, \vec{u}, v_{1}, v_{2}\right]=2 \pi\left(8 \pi\left(v_{2}-v_{1}\right)+\left(\frac{v_{1}}{v_{2}}\right) V_{e f f}\right)
$$

Notation

$$
V_{e f f}=8 \pi\left(p^{i} f_{i j}(\vec{u}) p^{j}+\hat{q}_{i} f^{i j}(\vec{u}) \hat{q}_{i}\right)
$$

Entropy function

Finally

$$
\mathcal{E}\left[\vec{q}, \vec{p}, \vec{u}, v_{1}, v_{2}\right]=2 \pi\left(8 \pi\left(R_{S}^{2}-R_{A d S}^{2}\right)+\left(\frac{R_{A d S}^{2}}{R_{S}^{2}}\right) V_{e f f}\right)
$$

Notation

$$
V_{e f f}=8 \pi\left(p^{i} f_{i j}(\vec{u}) p^{j}+\hat{q}_{i} f^{i j}(\vec{u}) \hat{q}_{i}\right)
$$

Entropy function

Finally

$$
\mathcal{E}\left[\vec{q}, \vec{p}, \vec{u}, v_{1}, v_{2}\right]=2 \pi\left(8 \pi\left(R_{S}^{2}-R_{A d S}^{2}\right)+\left(\frac{R_{A d S}^{2}}{R_{S}^{2}}\right) V_{e f f}\right)
$$

Roughly

$$
V_{e f f} \sim E^{2}+B^{2}
$$

Equations of Motion

Then the equations of motion are equivalent to extremising the entropy function:

$$
\begin{aligned}
\frac{\partial \mathcal{E}}{\partial \Phi_{I}} & =0 \Rightarrow \frac{\partial V_{e f f}}{\partial \Phi_{I}}=0 \\
\frac{\partial \mathcal{E}}{\partial v_{1}} & =0 \Rightarrow 8 \pi-v_{2}^{-1} V_{e f f}\left(\Phi_{I}\right)=0 \\
\frac{\partial \mathcal{E}}{\partial v_{2}} & =0 \Rightarrow-8 \pi+v_{1} v_{2}^{-2} V_{e f f}\left(\Phi_{I}\right)=0
\end{aligned}
$$

So

$$
v_{1}=v_{2}=8 \pi V_{e f f}
$$

and

$$
S_{B H}=2 \pi V_{e f f}
$$

5-d attractors

Consider 5-d Lagrangian with massless uncharged scalars coupled to $U(1)$ gauge fields with Chern-Simons terms:

$$
\begin{array}{r}
S=\frac{1}{16 \pi G_{5}} \int d^{5} x \sqrt{-g}\left(R-h_{S T}(\vec{\Phi}) \partial_{\mu} X^{S} \partial^{\mu} X^{T}-f_{I J}(\vec{\Phi}) \bar{F}_{\mu \nu}^{I} \bar{F}^{J \mu \nu}\right. \\
\left.-c_{I J K} \epsilon^{\mu \nu \alpha \beta \gamma} \bar{F}_{\mu \nu}^{I} \bar{F}_{\alpha \beta}^{J} \bar{A}_{\gamma}^{K}\right)
\end{array}
$$

Lagrangian density is not gauge invariant \rightarrow Entropy function formalism does not apply
similar to BTZ black hole with gravitational Chern-Simons and/or gauge Chern-Simons term
compactify ψ (Sen, Sahoo)
\checkmark can apply formalism to dimensionally reduced action
Related work: (Kraus, Larsen), (Dabholkar, Iizuka, Iqubal, Sen, Shigemori)

Dimensional reduction

Kaluza-Klein Ansatz:

$$
\begin{gathered}
d s^{2}=w^{-1} g_{\mu \nu} d x^{\mu} d x^{\nu}+w^{2}\left(d \psi+A_{\mu}^{0} d x^{\mu}\right)^{2} \\
\Phi^{S}=X^{S}\left(x^{\mu}\right) \\
\bar{A}^{I}=A_{\mu}^{I} d x^{\mu}+a^{I}\left(x^{\mu}\right)\left(d \psi+A_{\mu}^{0} d x^{\mu}\right)
\end{gathered}
$$

dimensionally reduce on ψ :

$$
\begin{array}{r}
S=\frac{1}{16 \pi G_{4}} \int d^{4} x \sqrt{-g_{4}}\left(R-h_{s t}(\vec{\Phi}) \partial \Phi^{s} \partial \Phi^{t}-f_{i j}(\vec{\Phi}) F_{\mu \nu}^{i} F^{j \mu \nu}\right. \\
\left.-\tilde{f}_{i j}(\vec{\Phi}) \epsilon^{\mu \nu \alpha \beta} F_{\mu \nu}^{i} F_{\alpha \beta}^{j}\right)
\end{array}
$$

where $F^{i}=\left(F^{0}, F^{I}\right), \Phi^{s}=\left(w, X^{S}, a^{I}\right)$.

Gory Details

$$
\begin{array}{r}
S=\frac{1}{16 \pi G_{4}} \int d^{4} x \sqrt{-g_{4}}\left(R-h_{s t}(\vec{\Phi}) \partial \Phi^{s} \partial \Phi^{t}-f_{i j}(\vec{\Phi}) F_{\mu \nu}^{i} F^{j \mu \nu}\right. \\
\left.-\tilde{f}_{i j}(\vec{\Phi}) \epsilon^{\mu \nu \alpha \beta} F_{\mu \nu}^{i} F_{\alpha \beta}^{j}\right)
\end{array}
$$

where $F^{i}=\left(F^{0}, F^{I}\right), \Phi^{s}=\left(w, X^{S}, a^{I}\right)$ and

$$
\begin{array}{rl}
f_{i j} & = \\
I\left(\begin{array}{cc}
0 & J \\
w f_{I L} a^{L} & w f_{I J}
\end{array}\right) \\
0 & J \\
\tilde{f}_{i j} & = \\
h_{r s} & =\operatorname{diag}\left(\begin{array}{cc}
4 c_{K L M} a^{K} a^{L} a^{M} & 4 c_{J K L} a^{K} a^{L} \\
6 c_{I K L} a^{K} a^{L} & 12 c_{I J K} a^{K}
\end{array}\right) \\
\left.\frac{9}{2} w^{-2}, h_{R S}, 2 w f_{I J}\right)
\end{array}
$$

Near-horizon dimensional reduction

We consider a 5-d near horizon geometry which reduces to $A d S_{2} \times S^{2}$

Starting with $A d S_{2} \times S^{2}$

$$
w_{1}\left(-r^{2} d t^{2}+\frac{d r^{2}}{r^{2}}\right)+w_{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

Near-horizon dimensional reduction

We consider a 5-d near horizon geometry which reduces to $A d S_{2} \times S^{2}$

We add an extra-dimension

$$
w_{1}\left(-r^{2} d t^{2}+\frac{d r^{2}}{r^{2}}\right)+w_{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)+w_{3} d \psi^{2}
$$

Near-horizon dimensional reduction

We consider a 5-d near horizon geometry which reduces to $A d S_{2} \times S^{2}$

Can add 5-d rotation and a Hopf-fibration

$$
\begin{aligned}
w_{1}\left(-r^{2} d t^{2}+\frac{d r^{2}}{r^{2}}\right)+w_{2}(& \left.d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \\
& +w_{3}\left(d \psi+e^{0} r d t+\cos \theta d \phi\right)^{2}
\end{aligned}
$$

Near-horizon dimensional reduction

We consider a 5-d near horizon geometry which reduces to $A d S_{2} \times S^{2}$

More generally we could have a Taub-Nut charge

$$
\begin{aligned}
w_{1}\left(-r^{2} d t^{2}+\frac{d r^{2}}{r^{2}}\right)+w_{2} & \left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \\
& +w_{3}\left(d \psi+e^{0} r d t+p^{0} \cos \theta d \phi\right)^{2}
\end{aligned}
$$

Near-horizon dimensional reduction

We consider a 5-d near horizon geometry which reduces to $A d S_{2} \times S^{2}$

More generally we could have a Taub-Nut charge

$$
\begin{aligned}
w_{1}\left(-r^{2} d t^{2}+\frac{d r^{2}}{r^{2}}\right)+w_{2} & \left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \\
& +w_{3}\left(d \psi+e^{0} r d t+p^{0} \cos \theta d \phi\right)^{2}
\end{aligned}
$$

For black rings we set $p^{0}=0$.

Near-horizon dimensional reduction

We consider a 5-d near horizon geometry which reduces to $A d S_{2} \times S^{2}$

As is usual with Kalusa-Klein reduction it is convenient to choose the following parameterisation

$$
\begin{aligned}
w^{-1}\left[v_{1}\left(-r^{2} d t^{2}+\frac{d r^{2}}{r^{2}}\right)\right. & \left.+v_{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right] \\
& +w^{2}\left(d \psi+e^{0} r d t+p^{0} \cos \theta d \phi\right)^{2}
\end{aligned}
$$

5-d near horizon ansatz

$$
\begin{aligned}
d s^{2}= & w^{-1}\left[v_{1}\left(-r^{2} d t^{2}+\frac{d r^{2}}{r^{2}}\right)+v_{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right] \\
& +w^{2}\left(d \psi+e^{0} r d t+p^{0} \cos \theta d \phi\right)^{2}, \\
A^{I}= & e^{I} r d t+p^{I} \cos \theta d \phi+a^{I}\left(d \psi+e^{0} r d t+p^{0} \cos \theta d \phi\right), \\
\Phi^{S}= & u^{S},
\end{aligned}
$$

where the coordinates, θ, ϕ and ψ, have periodicity $\pi, 2 \pi$, and $4 \pi / \tilde{p}^{0}$

Geometry of 4 -d/5-d lift

Dimensional Reduction on S^{1} of Ring

Naked KK monopole Black hole

Back to the entropy function

After dimensional reduction, we can just read off the 5-d entropy function from the $4-d$ result

Gory Details Again

$$
\left.\left.\begin{array}{c}
S=\frac{1}{16 \pi G_{5}} \int d^{5} x \sqrt{-g}\left(R-h_{S T}(\vec{\Phi}) \partial_{\mu} X^{S} \partial^{\mu} X^{T}-f_{I J}(\vec{\Phi}) \bar{F}_{\mu \nu}^{I} \bar{F}^{J \mu \nu}\right. \\
\left.-c_{I J K} \epsilon^{\mu \nu \alpha \beta \gamma} \bar{F}_{\mu \nu}^{I} \bar{F}_{\alpha \beta}^{J} \bar{A}_{\gamma}^{K}\right) \\
\rightarrow \quad \frac{1}{16 \pi G_{4}} \int d^{4} x \sqrt{-g}\left(R_{(4)}-h_{s t}(\vec{\Phi}) \partial \Phi^{s} \partial \Phi^{t}-f_{i j}(\vec{\Phi}) F_{\mu \nu}^{i} F^{j \mu \nu}\right. \\
\\
F^{i}=\left(\tilde{f}_{i j}(\vec{\Phi}) \epsilon^{\mu \nu \alpha \beta} F_{\mu \nu}^{i} F_{\alpha \beta}^{j}\right)
\end{array}\right), \Phi^{s}=\left(w, X^{S}, a^{I}\right), \quad \begin{array}{cc}
\frac{1}{4} w^{3}+w f_{I J} a^{I} a^{J} & w f_{I J} a^{J} \\
w f_{I J} a^{J} & w f_{I J}
\end{array}\right) .
$$

Back to the entropy function

After dimensional reduction, we can just read off the 5-d entropy function from the $4-d$ result

$$
\begin{gathered}
\mathcal{E}=2 \pi\left(N q^{i} e_{i}-f\right)=\frac{4 \pi^{2}}{\tilde{p}^{0} G_{5}}\left\{v_{2}-v_{1}+\frac{v_{1}}{v_{2}} V_{e f f}\right\} \\
V_{e f f}=f^{i j} \hat{q}_{i} \hat{q}_{j}+f_{i j} p^{i} p^{j} \\
\hat{q}_{i}=q_{i}-\tilde{f}_{i j} p^{j}
\end{gathered}
$$

Choose $N q_{i}=\frac{\partial f}{\partial e^{i}}$ for convenience $\left(N=4 \pi / G_{5}\right)$
As before it is easy to solve for v_{1} and v_{2} to get

$$
\mathcal{E}=\left.\frac{4 \pi^{2}}{\tilde{p}^{0} G_{5}} V_{e f f}\right|_{\partial V=0}
$$

$$
v_{1}=v_{2}=\left.V_{e f f}\right|_{\partial V=0},
$$

Now we "just" need to solve:

$$
\partial_{\{w, \vec{a}, \vec{X}\}} V_{e f f}=0 .
$$

As a check, we note that, even before extremising $V_{e f f}$, this result agrees with the Hawking-Bekenstein entropy since,

$$
S=\frac{A_{H}}{4 G_{5}}=\frac{\left(\frac{16 \pi^{2}}{\tilde{p}^{0}} v_{2}\right)}{4 G_{5}}=\mathcal{E}
$$

To get black rings or black holes we fix p^{0} and \tilde{p}^{0} appropriately.

More gory details: Effective potential

$$
\begin{aligned}
V_{e f f}= & \frac{1}{4} w^{3}\left(p^{0}\right)^{2}+4 w^{-3}\left(q_{0}-\tilde{f}_{0 j}(\vec{a}) p^{j}-a^{I}\left(q_{I}-\tilde{f}_{I j}(\vec{a}) p^{j}\right)\right)^{2} \\
& +w f_{I J}(\vec{X})\left(p^{I}+a^{I} p^{0}\right)\left(p^{J}+a^{J} p^{0}\right) \\
& +w^{-1} f^{I J}(\vec{X})\left(q_{I}-\tilde{f}_{I k}(\vec{a}) p^{k}\right)\left(q_{J}-\tilde{f}_{J l}(\vec{a}) p^{l}\right),
\end{aligned}
$$

Two Examples

We now consider the black-ring and black-hole examples

Black ring

$x^{5}{ }^{\wedge}$ Black ring in Taub-NUT

Black ring ($p^{0}=0$)

Ansatz:

$$
\begin{aligned}
d s^{2}= & w^{-1}\left[v_{1}\left(-r^{2} d t^{2}+\frac{d r^{2}}{r^{2}}\right)+v_{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right] \\
& +w^{2}\left(d \psi+e^{0} r d t\right)^{2} \\
A^{I}= & e^{I} r d t+p^{I} \cos \theta d \phi+a^{I}\left(d \psi+e^{0} r d t\right) \\
\Phi^{S}= & u^{S}
\end{aligned}
$$

Already know

$$
\mathcal{E}=\left.\frac{4 \pi^{2}}{\tilde{p}^{0} G_{5}} V_{e f f}\right|_{\partial V=0}
$$

and $v_{1}=v_{2}$. Still need to solve

$$
\partial_{\{w, \vec{a}, \vec{u}\}} V_{e f f}=0
$$

Finding the solution

We need to solve

$$
\partial_{\{w, \vec{a}, \vec{u}\}} V_{e f f}=0
$$

Easiest to solve for the axions/gauge fields first:

$$
\begin{aligned}
\partial_{\vec{a}} V_{e f f}=0 & \Rightarrow F_{t r}^{I}=0 \\
& \Rightarrow V_{e f f}=w f_{I J} p^{I} p^{J}+\left(4 w^{-3}\right)\left(\hat{q}_{0}\right)^{2}
\end{aligned}
$$

Solving $\partial_{w} V_{e f f}=0 \Rightarrow$

$$
\mathcal{E}=\frac{8 \pi^{2}}{\tilde{p}^{0} G_{5}} \sqrt{\hat{q}_{0}\left(\frac{4}{3} V_{M}\right)^{\frac{3}{2}}} \quad V_{M}=f_{I J} q^{I} q^{J}
$$

and

$$
e_{0}^{2} w^{2}=v_{1} w^{-1}
$$

which means that we our fibration $\left(A d S_{2} \times S^{2}\right) \otimes U(1)$ is actually $A d S_{3} \times S^{2}$
more precisely: $\left(A d S_{3} / \mathbb{Z}_{\hat{p}^{0}}\right) \times S^{2}$

Example: 11-d supergravity on T^{6}

11-d supergravity on $T^{6} \rightarrow 5-\mathrm{d} U(1)^{3}$ supergravity

$$
\begin{aligned}
& 2 f_{I J}=h_{I J}=\frac{1}{2} \operatorname{diag}\left(\left(X^{1}\right)^{-2},\left(X^{2}\right)^{-2},\left(X^{3}\right)^{-2}\right), \quad c_{I J K}= \\
& \left|\epsilon_{I J K}\right| / 24 \\
& X^{1} X^{2} X^{3}=1
\end{aligned}
$$

We get the magnetic potential

$$
V_{M}=f_{i j} p^{i} p^{j}=\frac{1}{4}\left(\frac{\left(p^{1}\right)^{2}}{\left(X^{1}\right)^{2}}+\frac{\left(p^{2}\right)^{2}}{\left(X^{2}\right)^{2}}+\left(p^{3}\right)^{2}\left(X^{1}\right)^{2}\left(X^{2}\right)^{2}\right)
$$

Extremising gives

- $\left(X^{1}\right)^{3}=\frac{\left(p^{1}\right)^{2}}{p_{2} p_{3}}$,
$\left(X^{2}\right)^{3}=\frac{\left(p^{2}\right)^{2}}{p^{3} p^{1}}$
- $V_{M}=\frac{3}{4}\left(p^{1} p^{2} p^{2}\right)^{\frac{2}{3}}$.

Non-rotating black hole

Non-rotating black hole

This is in some sence dual to the black ring case: $p^{0} \leftrightarrow e^{0}$, $p^{i} \leftrightarrow \hat{q}^{i}$

Ansatz:

$$
\begin{aligned}
d s^{2}= & w^{-1}\left[v_{1}\left(-r^{2} d t^{2}+\frac{d r^{2}}{r^{2}}\right)+v_{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right] \\
& +w^{2}\left(d \psi+p^{0} \cos \theta d \phi\right)^{2} \\
A^{I}= & e^{I} r d t+p^{I} \cos \theta d \phi+a^{I}\left(d \psi+p^{0} \cos \theta d \phi\right) \\
\Phi^{S}= & u^{S}
\end{aligned}
$$

Need to solve

$$
\partial_{\{w, \vec{a}, \vec{u}\}} V_{e f f}=0
$$

Easiest to solve for the gauge fields/axions a^{I} first \Rightarrow

$$
F_{\theta \phi}^{I}=0
$$

which gives

$$
V_{e f f}=\left(\frac{1}{4} w^{3}\right)\left(p_{0}\right)^{2}+w^{-1} f^{I J} \hat{q}_{I} \hat{q}_{J} .
$$

Solving $\partial_{w} V_{e f f}=0 \Rightarrow$

$$
\mathcal{E}=\frac{4 \pi^{2}}{G_{5}} \sqrt{p_{0}\left(\frac{4}{3} V_{E}\right)^{\frac{3}{2}}} . \quad V_{E}=f^{I J} \hat{q}_{I} \hat{q}_{J}
$$

and

$$
p_{0}^{2} w^{2}=v_{2} w^{-1}
$$

which means that we our fibration $\left(A d S_{2} \times S^{2}\right) \otimes U(1)$ is actually $A d S_{2} \times S^{3}$
$A d S_{2} \times\left(S^{3} / \mathbb{Z}_{p^{0}}\right)$

Non-supersymmetric solutions of (very) special geometry

In 4 dimensional $\mathcal{N}=2$ special geometry we can write $V_{\text {eff }}$ or the "blackhole potential function"

$$
V_{e f f}=|Z|^{2}+|D Z|^{2}
$$

\square BPS solutions: each term of the potential is separately extremised
\square non-BPS solutions: $V_{\text {eff }}$ extremised but $D Z \neq 0$
For the black holes and rings with very special geometry we get

$$
V=Z^{2}+(D Z)^{2}
$$

which may also have both BPS and non-BPS extrema.

- Black holes: $Z_{E}=X^{I} q_{I}$
- Black rings: $Z_{M}=X_{I} p^{I}$

Less Symmetry

Again in will be helpful to consider $4-d$ blackholes
in 4-d rotation leads to less symmetric attractor blackholes
$A d S_{2} \times S_{2} \rightarrow A d S_{2} \times U(1)$

Rotating attractors in 4-d

What is the generalisation of an $A d S_{2} \times S^{2}$ near horizon geometry for rotating blackholes?

Take a hint from the near horizon geometry of extremal Kerr Blackholes (Bardeen, Horowitz)

- $S O(2,1) \times U(1)$

Recall: $S O(2,1) \times S^{2}$ Ansatz

$$
\begin{gathered}
d s^{2}=v_{1}\left(-r^{2} d t^{2}+\frac{d r^{2}}{r^{2}}\right)+v_{2} d \theta^{2}+v_{2} \sin ^{2} \theta d \phi^{2} \\
\varphi_{s}=u_{s} \\
\frac{1}{2} F_{\mu \nu}^{(i)} d x^{\mu} \wedge d x^{\nu}=e^{i} d r \wedge d t+\frac{p^{i} \sin \theta}{4 \pi} d \theta \wedge d \phi
\end{gathered}
$$

$S O(2,1) \times U(1)$ Ansatz

$$
\begin{gathered}
d s^{2}=v_{1}(\theta)\left(-r^{2} d t^{2}+\frac{d r^{2}}{r^{2}}\right)+\beta^{2} d \theta^{2}+v_{2}(\theta) \sin ^{2} \theta(d \phi-\alpha r d t)^{2} \\
\varphi_{s}=u_{s}(\theta) \\
A^{i}=e^{i} r d t+b^{i}(\theta)(d \phi-\alpha r d t)
\end{gathered}
$$

Horizon has spherical topology $\Rightarrow v_{2}(\theta)$ at poles ~ 1

$$
p^{i}=\int d \theta d \phi F_{\theta \phi}^{(i)}=2 \pi\left(b^{i}(\pi)-b^{i}(0)\right)
$$

$S O(2,1) \times U(1)$ Ansatz

$$
\begin{aligned}
& d s^{2}=v_{1}(\theta)\left(-r^{2} d t^{2}+\frac{d r^{2}}{r^{2}}\right)+\beta^{2} d \theta^{2}+v_{2}(\theta) \sin ^{2} \theta(d \phi-\alpha r d t)^{2} \\
& \varphi_{s}=u_{s}(\theta) \\
& \frac{1}{2} F_{\mu \nu}^{(i)} d x^{\mu} \wedge d x^{\nu}=\left(e^{i}-\alpha b^{i}(\theta)\right) d r \wedge d t+b^{i^{\prime}}(\theta) d \theta \wedge(d \phi-\alpha r d t)
\end{aligned}
$$

Horizon has spherical topology $\Rightarrow v_{2}(\theta)$ at poles ~ 1

$$
p^{i}=\int d \theta d \phi F_{\theta \phi}^{(i)}=2 \pi\left(b^{i}(\pi)-b^{i}(0)\right)
$$

$S O(2,1) \times U(1)$ Ansatz

$$
\begin{gathered}
d s^{2}=\Omega^{2} e^{2 \psi}\left(-r^{2} d t^{2}+\frac{d r^{2}}{r^{2}}\right)+\beta d \theta^{2}+e^{-2 \psi}(d \phi-\alpha r d t)^{2} \\
\varphi_{s}=u_{s}(\theta) \\
\frac{1}{2} F_{\mu \nu}^{(i)} d x^{\mu} \wedge d x^{\nu}=\left(e^{i}-\alpha b^{i}(\theta)\right) d r \wedge d t+b^{i^{\prime}}(\theta) d \theta \wedge(d \phi-\alpha r d t)
\end{gathered}
$$

Horizon has spherical topology $\Rightarrow e^{-2 \psi}$ at poles $\sim \sin ^{2} \theta$

$$
p^{i}=\int d \theta d \phi F_{\theta \phi}^{(i)}=2 \pi\left(b^{i}(\pi)-b^{i}(0)\right)
$$

Symmetries

One way to see that the ansatz has $S O(2,1) \times U(1)$ symmetries is to check that it is invariant under the Killing vectors, ∂_{ϕ} and

$$
L_{1}=\partial_{t}, \quad L_{0}=t \partial_{t}-r \partial_{r}, \quad L_{-1}=\frac{1}{2}\left(\frac{1}{r^{2}}+t^{2}\right) \partial_{t}-(t r) \partial_{r}+\frac{\alpha}{r} \partial_{\phi}
$$

can also be seen by thinking of ϕ as a compact dimension and find that the resulting geometry has a manifest $S O(2,1)$ symmetry with the conventional generators.

5-d Ansatz

For the five dimensional black-rings and black-holes we take a $S O(2,1) \times U(1)^{2}$ ansatz which will give us the $4 d$ one after dimensional reduction:

$$
\begin{aligned}
d s^{2}= & w^{-1}(\theta) \Omega^{2}(\theta) e^{2 \Psi(\theta)}\left(-r^{2} d t^{2}+\frac{d r^{2}}{r^{2}}+\beta^{2} d \theta^{2}\right) \\
& +w^{-1}(\theta) e^{-2 \Psi(\theta)}\left(d \phi+e_{\phi} r d t\right)^{2} \\
& +w^{2}(\theta)\left(d \psi+e_{0} r d t+b_{0}(\theta) d \phi\right)^{2} \\
A^{I}= & e^{I} r d t+b^{I}(\theta)\left(d \phi+e_{\phi} r d t\right) \\
& +a^{I}(\theta)\left(d \psi+e_{0} r d t+b_{0}(\theta) d \phi\right) \\
\phi^{S}= & u^{S}(\theta)
\end{aligned}
$$

Entropy function:

We define

$$
f[\alpha, \beta, \vec{e}, \Omega(\theta), \psi(\theta), \vec{u}(\theta), \vec{b}(\theta)]:=\int d \theta d \phi \sqrt{-g} \mathcal{L}
$$

The equations of motion are:

$$
\begin{aligned}
& \frac{\partial f}{\partial \alpha}=J \quad \frac{\partial f}{\partial \beta}=0 \quad \frac{\partial f}{\partial e^{i}}=q_{i} \quad \frac{\delta f}{\delta b^{i}(\theta)}=0 \\
& \frac{\delta f}{\delta \Omega(\theta)}=0 \quad \frac{\delta f}{\delta \psi(\theta)}=0 \quad \frac{\delta f}{\delta u_{s}(\theta)}=0
\end{aligned}
$$

Entropy function:

Equivalently we let

$$
\mathcal{E}\left[J, \vec{q}, \vec{b}(\theta), \beta, v_{1}(\theta), v_{2}(\theta), \vec{u}(\theta)\right]=2 \pi(J \alpha+\vec{q} \cdot \vec{e}-f)
$$

The equations of motion:

$$
\begin{array}{lll}
\frac{\partial \mathcal{E}}{\partial \alpha}=0 & \frac{\partial \mathcal{E}}{\partial \beta}=0 & \frac{\partial \mathcal{E}}{\partial e^{i}}=0
\end{array} \frac{\delta \mathcal{E}}{\delta b^{i}(\theta)}=0
$$

Examples

Kerr, Kerr-Newman, constant scalars (non-dyonic)
Dyonic Kaluza Klein blackhole (5-d $\circlearrowleft \rightarrow 4-\mathrm{d})$. -(Rasheed)

Blackholes in toroidally compactified heterotic string theory -(Cvetic,Youm;Jatkar,Mukherji,Panda)

Two derivative Lagrangians

$$
\begin{aligned}
& \mathcal{L}=R-h_{r s}(\vec{\Phi}) g^{\mu \nu} \partial_{\mu} \Phi_{s} \partial_{\nu} \Phi_{r}-f_{i j}(\vec{\Phi}) g^{\mu \rho} g^{\nu \sigma} F_{\mu \nu}^{(i)} F_{\rho \sigma}^{(j)} \\
& \mathcal{E} \equiv 2 \pi\left(J \alpha+\vec{q} \cdot \vec{e}-\int d \theta d \phi \sqrt{-\operatorname{det} g} \mathcal{L}\right) \\
&= 2 \pi J \alpha+2 \pi \vec{q} \cdot \vec{e}-4 \pi^{2} \int d \theta\left[2 \Omega^{-1} \beta^{-1} \Omega^{\prime 2}-2 \Omega \beta-2 \Omega \beta^{-1} \psi^{\prime 2}\right. \\
&+\frac{1}{2} \alpha^{2} \Omega^{-1} \beta e^{-4 \psi}-\beta^{-1} \Omega h_{r s}(\vec{u}) u_{r}^{\prime} u_{s}^{\prime} \\
&\left.+2 f_{i j}(\vec{u})\left\{\beta \Omega^{-1} e^{-2 \psi}\left(e^{i}-\alpha b^{i}\right)\left(e^{j}-\alpha b^{j}\right)-\beta^{-1} \Omega e^{2 \psi} b^{i^{\prime} b^{j}}\right\}\right] \\
&+8 \pi^{2}\left[\Omega^{2} e^{2 \psi} \sin \theta\left(\psi^{\prime}+2 \Omega^{\prime} / \Omega\right)\right]_{\theta=0}^{\theta=\pi} .
\end{aligned}
$$

Equations of motion

Notation:

$$
\chi^{i}=e^{i}-\alpha b^{i}
$$

Ω equation:

$$
\begin{aligned}
& -4 \beta^{-1} \Omega^{\prime \prime} / \Omega+2 \beta^{-1}\left(\Omega^{\prime} / \Omega\right)^{2}-2 \beta-2 \beta^{-1}\left(\psi^{\prime}\right)^{2}-\frac{1}{2} \alpha^{2} \Omega^{-2} \beta e^{-4 \psi} \\
& -\beta^{-1} h_{r s} u_{r}^{\prime} u_{s}^{\prime}+2 f_{i j}\left\{-\beta \Omega^{-2} e^{-2 \psi} \chi^{i} \chi^{j}-\alpha^{-2} \beta^{-1} e^{2 \psi} \chi^{i^{\prime}} \chi^{j^{\prime}}\right\}=0
\end{aligned}
$$

ψ equation:

$$
\begin{aligned}
& 4 \beta^{-1}\left(\Omega \psi^{\prime}\right)^{\prime}-2 \alpha^{2} \Omega^{-1} \beta e^{-4 \psi} \\
& \quad+2 f_{i j}\left\{-2 \beta \Omega^{-1} e^{-2 \psi} \chi^{i} \chi^{j}-2 \alpha^{-2} \beta^{-1} \Omega e^{2 \psi} \chi^{i^{\prime}} \chi^{j^{\prime}}\right\}=0
\end{aligned}
$$

u_{s} equation:

$$
\begin{array}{r}
2\left(\beta^{-1} \Omega h_{r s} u_{s}^{\prime}\right)^{\prime}+2 \partial_{r} f_{i j}\left\{\beta \Omega^{-1} e^{-2 \psi} \chi^{i} \chi^{j}-\alpha^{-2} \beta^{-1} \Omega e^{2 \psi} \chi^{i^{\prime}} \chi^{j^{\prime}}\right\} \\
-\beta^{-1} \Omega\left(\partial_{r} h_{t s}\right) u_{t}^{\prime} u_{s}^{\prime}=0
\end{array}
$$

b equation:

$$
-\alpha \beta f_{i j} \Omega^{-1} e^{-2 \psi} \chi^{j}-\alpha^{-1} \beta^{-1}\left(f_{i j} \Omega e^{2 \psi} \chi^{j^{\prime}}\right)^{\prime}=0
$$

β equation:

$$
\int d \theta I(\theta)=0
$$

where

$$
\begin{aligned}
& I(\theta)=-2 \Omega^{-1} \beta^{-2}\left(\Omega^{\prime}\right)^{2}-2 \Omega+2 \Omega \beta^{-2}\left(\psi^{\prime}\right)^{2}+\frac{1}{2} \alpha^{2} \Omega^{-1} e^{-4 \psi} \\
& +\beta^{-2} \Omega h_{r s} u_{r}^{\prime} u_{s}^{\prime}+2 f_{i j}\left\{\Omega^{-1} e^{-2 \psi} \chi^{i} \chi^{j}+\alpha^{-2} \beta^{-2} \Omega(\theta) e^{2 \psi(\theta)} \chi^{i^{\prime}} \chi^{j^{\prime}}\right\}
\end{aligned}
$$

Charges:

$$
\begin{gathered}
q_{i}=8 \pi \int d \theta\left[f_{i j} \beta \Omega^{-1} e^{-2 \psi} \chi^{j}\right] \\
J=2 \pi \int_{0}^{\pi} d \theta\left\{\alpha \Omega^{-1} \beta e^{-4 \psi}-4 \beta f_{i j} \Omega^{-1} e^{-2 \psi} \chi^{i} b^{j}\right\}
\end{gathered}
$$

Solutions

Equations can be solved for some simple cases
\square Kerr, Kerr-Newmann, constant scalars

Check known solutions fitted into the frame work:
\square KK blackholes, Toroidal compactification of Heterotic string theory

Kaluza-Klein Blackholes

$$
\mathcal{L}=R-2(\partial \varphi)^{2}-e^{2 \sqrt{3} \varphi} F^{2}
$$

Charges $=Q, P, J$
2 types of extremal blackholes
Both have $S O(2,1) \times U(1)$ near horizon geometry] non-SUSY

1. Ergo branch
$|J|>P Q$
Ergo-sphere
$S=2 \pi \sqrt{J^{2}-P^{2} Q^{2}}$
(\mathcal{E} has flat directions
2. Ergo-free branch

$$
\begin{aligned}
& |J|<P Q \\
& \text { no Ergo-sphere } \\
& S=2 \pi \sqrt{P^{2} Q^{2}-J^{2}} \\
& \mathcal{E} \text { has no flat directions }
\end{aligned}
$$

Blackholes in Heterotic String Theory on T^{6}

Charges $=Q_{1}, Q_{2}, Q_{3}, Q_{4}, P_{1}, P_{2}, P_{3}, P_{4}, J$,

- (Actually $56 P^{\prime}$'s and Q 's)

Duality invariant quartic

$$
\begin{aligned}
D= & \left(Q_{1} Q_{3}+Q_{2} Q_{4}\right)\left(P_{1} P_{3}+P_{2} P_{4}\right) \\
& -\frac{1}{4}\left(Q_{1} P_{1}+Q_{2} P_{2}+Q_{3} P_{3}+Q_{4} P_{4}\right)^{2}
\end{aligned}
$$

1. Ergo branch

Ergo-sphere
$S=2 \pi \sqrt{J^{2}+D}$
\mathcal{E} has flat directions
2. Ergo-free branch
no Ergo-sphere
$S=2 \pi \sqrt{-J^{2}-D}$
\mathcal{E} has no flat directions

Ergo-free branch

Scalar Field at Horizon

Ergo-branch

Ergo-branch

Ergo-branch

Ergo-branch

Ergo-branch

Scalar Field at Horizon

General Entropy function in five dimensions:

$A d S_{2} \times U(1)^{2}$

We now relax our symmetry assumptions to $S O(2,1) \times U(1)^{2}$:

$$
\begin{aligned}
d s^{2}= & w^{-1}(\theta) \Omega^{2}(\theta) e^{2 \Psi(\theta)}\left(-r^{2} d t^{2}+\frac{d r^{2}}{r^{2}}+\beta^{2} d \theta^{2}\right) \\
& +w^{-1}(\theta) e^{-2 \Psi(\theta)}\left(d \phi+e_{\phi} r d t\right)^{2} \\
& +w^{2}(\theta)\left(d \psi+e_{0} r d t+b_{0}(\theta) d \phi\right)^{2} \\
A^{I}= & e^{I} r d t+b^{I}(\theta)\left(d \phi+e_{\phi} r d t\right)+a^{I}(\theta)\left(d \psi+e_{0} r d t+b_{0}(\theta) d \phi\right) \\
\phi^{S}= & u^{S}(\theta) .
\end{aligned}
$$

Using dimensional reduction we can now use the four dimensional entropy function to get the five dimensional one.

Summary

Discussed black ring and black hole attractors in a unified way using Sen's entropy function.

Constructed the entropy function for black holes with $A d S_{2} \times S^{2}$ horizons which can be lifted to $\left(A d S_{2} \times S^{2}\right) \otimes$ $U(1)$ black things.

Generalised this to $S O(2,1) \times U(1) \rightarrow S O(2,1) \times U(1)^{2}$
Attractor behaviour seems only to need the presence of an $A d S_{2}$

Puzzles and Future directions

Consider higher derivative corrections
\square (Alishahiha ; Cai,Pang; Castro,Davis,Kraus,Larsen)

Consider non-extremal generalisations

Further investigate the role of flat directions.

What role does the ergo-sphere play ?

Why are these bosonic symmetries sufficient for the attractor mechanism?

Thank you

