Towards Donaldson–Thomas Theory on Orbifolds

Michele Cirafici

University of Patras $\Pi \alpha \nu \epsilon \pi \iota \sigma \tau \eta \mu \iota \sigma \ \Pi \alpha \tau \rho \omega \nu$

Fourth Regional Meeting in String Theory, Patras, 10–17 June

work in progress with A. Sinkovics and R.J. Szabo

(日) (四) (三) (三)

Outline

Introduction and Motivations Donaldson–Thomas on Toric Manifolds Donaldson–Thomas on $\mathbb{C}^3/\mathbb{Z}_3$ Conclusions and Work in Progress

Introduction and Motivations

- Introduction
- Invariants of Calabi–Yau manifolds
- Gromov–Witten theory for orbifolds
- The Local Threefold
- 2 Donaldson–Thomas on Toric Manifolds
 - Counting Ideal Sheaves
 - The Calabi-Yau Crystal Picture
 - The Topological Gauge Theory Picture
- 3 Donaldson–Thomas on $\mathbb{C}^3/\mathbb{Z}_3$
- 4 Conclusions and Work in Progress

(D) (A) (A)

Introduction

Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

Topological Strings on Calabi–Yau Manifolds

- Topological Strings play a very important role in modern mathematical physics
- They compute F-terms in supersymmetric theories

Antoniadis Gava Narain Taylor Bershadsky Cecotti Ooguri Vafa

• Black Holes: counting of microstates and statistical interpretation of the entropy

Beckenridge Myers Peet Vafa Ooguri Strominger Vafa

• Geometric engineering of gauge theories

Katz Klemm Vafa

- Interplay with enumerative geometry and characterization of the Calabi–Yau moduli space
- Test our understanding of the full String Theory in a controllable setup

<□> <□> <□> <□> <□> <□>

Introduction

Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

Topological Strings on Calabi–Yau Manifolds

- Topological Strings play a very important role in modern mathematical physics
- They compute F-terms in supersymmetric theories

Antoniadis Gava Narain Taylor Bershadsky Cecotti Ooguri Vafa

• Black Holes: counting of microstates and statistical interpretation of the entropy

Beckenridge Myers Peet Vafa Ooguri Strominger Vafa

• Geometric engineering of gauge theories

Katz Klemm Vafa

- Interplay with enumerative geometry and characterization of the Calabi–Yau moduli space
- Test our understanding of the full String Theory in a controllable setup

(日) (部) (注) (注)

Outline Introduction and Motivations Donaldson–Thomas on Toric Manifolds Donaldson–Thomas on $\mathbb{C}^3/\mathbb{Z}_3$ Conclusions and Work in Progress

Introduction

Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

Topological Strings on Calabi–Yau Manifolds

- Topological Strings play a very important role in modern mathematical physics
- They compute F-terms in supersymmetric theories

Antoniadis Gava Narain Taylor Bershadsky Cecotti Ooguri Vafa

• Black Holes: counting of microstates and statistical interpretation of the entropy

Beckenridge Myers Peet Vafa Ooguri Strominger Vafa

<ロ> (四) (四) (三) (三) (三)

• Geometric engineering of gauge theories

- Interplay with enumerative geometry and characterization of the Calabi–Yau moduli space
- Test our understanding of the full String Theory in a controllable setup

Introduction

Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

Topological Strings on Calabi–Yau Manifolds

- Topological Strings play a very important role in modern mathematical physics
- They compute F-terms in supersymmetric theories

Antoniadis Gava Narain Taylor Bershadsky Cecotti Ooguri Vafa

• Black Holes: counting of microstates and statistical interpretation of the entropy

Beckenridge Myers Peet Vafa Ooguri Strominger Vafa

(日) (四) (三) (三)

• Geometric engineering of gauge theories

- Interplay with enumerative geometry and characterization of the Calabi–Yau moduli space
- Test our understanding of the full String Theory in a controllable setup

Introduction

Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

Topological Strings on Calabi–Yau Manifolds

- Topological Strings play a very important role in modern mathematical physics
- They compute F-terms in supersymmetric theories

Antoniadis Gava Narain Taylor Bershadsky Cecotti Ooguri Vafa

• Black Holes: counting of microstates and statistical interpretation of the entropy

Beckenridge Myers Peet Vafa Ooguri Strominger Vafa

• Geometric engineering of gauge theories

- Interplay with enumerative geometry and characterization of the Calabi–Yau moduli space
- Test our understanding of the full String Theory in a controllable setup

Introduction

Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

Topological Strings on Calabi–Yau Manifolds

- Topological Strings play a very important role in modern mathematical physics
- They compute F-terms in supersymmetric theories

Antoniadis Gava Narain Taylor Bershadsky Cecotti Ooguri Vafa

• Black Holes: counting of microstates and statistical interpretation of the entropy

Beckenridge Myers Peet Vafa Ooguri Strominger Vafa

• Geometric engineering of gauge theories

- Interplay with enumerative geometry and characterization of the Calabi–Yau moduli space
- Test our understanding of the full String Theory in a controllable setup

Outline Introduction and Motivations Donaldson–Thomas on Toric Manifolds Donaldson–Thomas on $\mathbb{C}^3/\mathbb{Z}_3$ Conclusions and Work in Progress

Introduction Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

The Enumerative Geometry of Threefolds

- The Topological String computes invariants that characterize the geometry
- Gromov–Witten : count worldsheet instantons
- Gopakumar–Vafa: count massive BPS states
- Donaldson–Thomas: count D0–D2–D6 bound states
- All these invariants are equivalent since they are different expansions of the same topological amplitude: remarkable prediction!
- Problem: usually these invariants are known only in the large radius limit where classical geometry is a good concept.
- To learn more about quantum geometry we can try to move away from the large radius limit

Outline Introduction and Motivations Donaldson–Thomas on Toric Manifolds Donaldson–Thomas on $\mathbb{C}^3/\mathbb{Z}_3$ Conclusions and Work in Progress

Introduction Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

The Enumerative Geometry of Threefolds

- The Topological String computes invariants that characterize the geometry
- Gromov–Witten : count worldsheet instantons
- Gopakumar–Vafa: count massive BPS states
- Donaldson–Thomas: count D0–D2–D6 bound states
- All these invariants are equivalent since they are different expansions of the same topological amplitude: remarkable prediction!
- Problem: usually these invariants are known only in the large radius limit where classical geometry is a good concept.
- To learn more about quantum geometry we can try to move away from the large radius limit

Introduction Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

The Enumerative Geometry of Threefolds

- The Topological String computes invariants that characterize the geometry
- Gromov–Witten : count worldsheet instantons
- Gopakumar-Vafa: count massive BPS states
- Donaldson–Thomas: count D0–D2–D6 bound states
- All these invariants are equivalent since they are different expansions of the same topological amplitude: remarkable prediction!
- Problem: usually these invariants are known only in the large radius limit where classical geometry is a good concept.
- To learn more about quantum geometry we can try to move away from the large radius limit

Introduction Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

The Enumerative Geometry of Threefolds

- The Topological String computes invariants that characterize the geometry
- Gromov–Witten : count worldsheet instantons
- Gopakumar-Vafa: count massive BPS states
- Donaldson–Thomas: count D0–D2–D6 bound states
- All these invariants are equivalent since they are different expansions of the same topological amplitude: remarkable prediction!
- Problem: usually these invariants are known only in the large radius limit where classical geometry is a good concept.
- To learn more about quantum geometry we can try to move away from the large radius limit

Introduction Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

The Enumerative Geometry of Threefolds

- The Topological String computes invariants that characterize the geometry
- Gromov–Witten : count worldsheet instantons
- Gopakumar-Vafa: count massive BPS states
- Donaldson–Thomas: count D0–D2–D6 bound states
- All these invariants are equivalent since they are different expansions of the same topological amplitude: remarkable prediction!
- Problem: usually these invariants are known only in the large radius limit where classical geometry is a good concept.
- To learn more about quantum geometry we can try to move away from the large radius limit

Introduction Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

The Enumerative Geometry of Threefolds

- The Topological String computes invariants that characterize the geometry
- Gromov–Witten : count worldsheet instantons
- Gopakumar-Vafa: count massive BPS states
- Donaldson–Thomas: count D0–D2–D6 bound states
- All these invariants are equivalent since they are different expansions of the same topological amplitude: remarkable prediction!
- Problem: usually these invariants are known only in the large radius limit where classical geometry is a good concept.
- To learn more about quantum geometry we can try to move away from the large radius limit

Introduction Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

The Enumerative Geometry of Threefolds

- The Topological String computes invariants that characterize the geometry
- Gromov–Witten : count worldsheet instantons
- Gopakumar-Vafa: count massive BPS states
- Donaldson–Thomas: count D0–D2–D6 bound states
- All these invariants are equivalent since they are different expansions of the same topological amplitude: remarkable prediction!
- Problem: usually these invariants are known only in the large radius limit where classical geometry is a good concept.
- To learn more about quantum geometry we can try to move away from the large radius limit

Outline Introduction and Motivations Donaldson–Thomas on Toric Manifolds Donaldson–Thomas on $\mathbb{C}^3/\mathbb{Z}_3$ Conclusions and Work in Progress

Introduction Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

Gromov–Witten theory for orbifolds

- Very hard problem but with a recent solution
- The Topological B model has an interpretation as a wave function over the Calabi–Yau moduli space

Witten

- Recently the B-model was solved on a threefold by using the properties of modularity and holomorphicity of the free energy Aganagic Bouchard Klemm ; Huang Klemm Quackenbush Grimm Klemm Mariño Weiss
- By Mirror Symmetry this is equivalent to a solution of Gromov–Witten theory all over the moduli space
- Generically a Calabi–Yau develops orbifold like singularities in the moduli space: the orbifold points.
- Predictions for the values of the GW invariants at the orbifold points.

(日) (四) (王) (王) (王)

Outline Introduction and Motivations Donaldson–Thomas on Toric Manifolds Donaldson–Thomas on $\mathbb{C}^3/\mathbb{Z}_3$ Conclusions and Work in Progress

Introduction Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

Gromov–Witten theory for orbifolds

- Very hard problem but with a recent solution
- The Topological B model has an interpretation as a wave function over the Calabi–Yau moduli space

Witten

- Recently the B-model was solved on a threefold by using the properties of modularity and holomorphicity of the free energy Aganagic Bouchard Klemm ; Huang Klemm Quackenbush Grimm Klemm Mariño Weiss
- By Mirror Symmetry this is equivalent to a solution of Gromov–Witten theory all over the moduli space
- Generically a Calabi–Yau develops orbifold like singularities in the moduli space: the orbifold points.
- Predictions for the values of the GW invariants at the orbifold points.

< 日 > (四 > (三 > (三 >)))

Introduction Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

Gromov–Witten theory for orbifolds

- Very hard problem but with a recent solution
- The Topological B model has an interpretation as a wave function over the Calabi-Yau moduli space

Witten

- Recently the B-model was solved on a threefold by using the properties of modularity and holomorphicity of the free energy Aganagic Bouchard Klemm ; Huang Klemm Quackenbush Grimm Klemm Mariño Weiss
- By Mirror Symmetry this is equivalent to a solution of Gromov–Witten theory all over the moduli space
- Generically a Calabi–Yau develops orbifold like singularities in the moduli space: the orbifold points.
- Predictions for the values of the GW invariants at the orbifold points.

(D) (B) (E) (E)

Introduction Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

Gromov–Witten theory for orbifolds

- Very hard problem but with a recent solution
- The Topological B model has an interpretation as a wave function over the Calabi-Yau moduli space

Witten

- Recently the B-model was solved on a threefold by using the properties of modularity and holomorphicity of the free energy Aganagic Bouchard Klemm ; Huang Klemm Quackenbush Grimm Klemm Mariño Weiss
- By Mirror Symmetry this is equivalent to a solution of Gromov–Witten theory all over the moduli space
- Generically a Calabi–Yau develops orbifold like singularities in the moduli space: the orbifold points.
- Predictions for the values of the GW invariants at the orbifold points.

Introduction Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

Gromov–Witten theory for orbifolds

- Very hard problem but with a recent solution
- The Topological B model has an interpretation as a wave function over the Calabi-Yau moduli space

Witten

- Recently the B-model was solved on a threefold by using the properties of modularity and holomorphicity of the free energy Aganagic Bouchard Klemm ; Huang Klemm Quackenbush Grimm Klemm Mariño Weiss
- By Mirror Symmetry this is equivalent to a solution of Gromov–Witten theory all over the moduli space
- Generically a Calabi–Yau develops orbifold like singularities in the moduli space: the orbifold points.
- Predictions for the values of the GW invariants at the orbifold points.

・ロト ・ 一 ・ ・ モト・・ ・ モト・・

Introduction Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

Gromov–Witten theory for orbifolds

- Very hard problem but with a recent solution
- The Topological B model has an interpretation as a wave function over the Calabi-Yau moduli space

Witten

- Recently the B-model was solved on a threefold by using the properties of modularity and holomorphicity of the free energy Aganagic Bouchard Klemm ; Huang Klemm Quackenbush Grimm Klemm Mariño Weiss
- By Mirror Symmetry this is equivalent to a solution of Gromov–Witten theory all over the moduli space
- Generically a Calabi–Yau develops orbifold like singularities in the moduli space: the orbifold points.
- Predictions for the values of the GW invariants at the orbifold points.

◆□→ ◆□→ ◆三→ ◆三→ ----

Introduction Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

The Local Threefold

- We will focus on the local threefold $\mathcal{O}(-3) \longrightarrow \mathbb{P}^2$ and its orbifold limit $\mathbb{C}^3/\mathbb{Z}_3$
- The GW invariants at the orbifold point have been explicitly computed recently

Aganagic Bouchard Klemm

크

- However the other enumerative invariants are just different expansions of the *same* topological string amplitude
- \bullet This leads us to consider Donaldson–Thomas theory on the $\mathbb{C}^3/\mathbb{Z}_3$ orbifold.

(日) (四) (三) (三)

Introduction Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

The Local Threefold

- We will focus on the local threefold $\mathcal{O}(-3) \longrightarrow \mathbb{P}^2$ and its orbifold limit $\mathbb{C}^3/\mathbb{Z}_3$
- The GW invariants at the orbifold point have been explicitly computed recently

Aganagic Bouchard Klemm

- However the other enumerative invariants are just different expansions of the *same* topological string amplitude
- \bullet This leads us to consider Donaldson–Thomas theory on the $\mathbb{C}^3/\mathbb{Z}_3$ orbifold.

Introduction Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

The Local Threefold

- We will focus on the local threefold $\mathcal{O}(-3) \longrightarrow \mathbb{P}^2$ and its orbifold limit $\mathbb{C}^3/\mathbb{Z}_3$
- The GW invariants at the orbifold point have been explicitly computed recently

Aganagic Bouchard Klemm

- However the other enumerative invariants are just different expansions of the *same* topological string amplitude
- \bullet This leads us to consider Donaldson–Thomas theory on the $\mathbb{C}^3/\mathbb{Z}_3$ orbifold.

Introduction Invariants of Calabi–Yau manifolds Gromov–Witten theory for orbifolds The Local Threefold

The Local Threefold

- We will focus on the local threefold $\mathcal{O}(-3) \longrightarrow \mathbb{P}^2$ and its orbifold limit $\mathbb{C}^3/\mathbb{Z}_3$
- The GW invariants at the orbifold point have been explicitly computed recently

Aganagic Bouchard Klemm

- However the other enumerative invariants are just different expansions of the *same* topological string amplitude
- $\bullet\,$ This leads us to consider Donaldson–Thomas theory on the $\mathbb{C}^3/\mathbb{Z}_3$ orbifold.

Counting Ideal Sheaves The Calabi–Yau Crystal Picture The Topological Gauge Theory Picture

Counting Ideal Sheaves

- The Donaldson–Thomas invariants count the number of bound states formed by a single D6 brane wrapping the Calabi–Yau X with an arbitrary number of D2 branes wrapping a curve C ⊂ X and D0 branes
- The curve *C* and the set of points where the D0 branes are supported can be described by an ideal sheaf: the holomorphic functions that vanish on the prescribed locus
- Counting D6–D2–D0 bound states leads us to consider the moduli spaces of ideal sheaves I_m(X, β) such that

 $\chi(\mathcal{O}_Y) = m$ number of D0 $\beta = [C] \in H_2(X, \mathbb{Z})$ curve the D2 are wrapping

• The DT invariant $D^m_{\beta}(X)$ is the "volume" of this moduli space

《曰》 《圖》 《言》 《言》 二重

Counting Ideal Sheaves The Calabi–Yau Crystal Picture The Topological Gauge Theory Picture

Counting Ideal Sheaves

- The Donaldson–Thomas invariants count the number of bound states formed by a single D6 brane wrapping the Calabi–Yau X with an arbitrary number of D2 branes wrapping a curve C ⊂ X and D0 branes
- The curve *C* and the set of points where the D0 branes are supported can be described by an ideal sheaf: the holomorphic functions that vanish on the prescribed locus
- Counting D6–D2–D0 bound states leads us to consider the moduli spaces of ideal sheaves I_m(X, β) such that

 $\chi(\mathcal{O}_Y) = m$ number of D0 $\beta = [C] \in H_2(X, \mathbb{Z})$ curve the D2 are wrapping

• The DT invariant $D^m_{\beta}(X)$ is the "volume" of this moduli space

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ ○ ○

Counting Ideal Sheaves The Calabi–Yau Crystal Picture The Topological Gauge Theory Picture

Counting Ideal Sheaves

- The Donaldson–Thomas invariants count the number of bound states formed by a single D6 brane wrapping the Calabi–Yau X with an arbitrary number of D2 branes wrapping a curve C ⊂ X and D0 branes
- The curve *C* and the set of points where the D0 branes are supported can be described by an ideal sheaf: the holomorphic functions that vanish on the prescribed locus
- Counting D6–D2–D0 bound states leads us to consider the moduli spaces of ideal sheaves I_m(X, β) such that

$$\chi(\mathcal{O}_Y) = m$$
 number of D0
 $\beta = [C] \in H_2(X, \mathbb{Z})$ curve the D2 are wrapping

• The DT invariant $D^m_{\beta}(X)$ is the "volume" of this moduli space

(日) (문) (문) (문) (문)

Outline Introduction and Motivations Donaldson–Thomas on Toric Manifolds Donaldson–Thomas on $\mathbb{C}^3/\mathbb{Z}_3$ Conclusions and Work in Progress

Counting Ideal Sheaves The Calabi–Yau Crystal Picture The Topological Gauge Theory Picture

Counting Ideal Sheaves

- The Donaldson–Thomas invariants count the number of bound states formed by a single D6 brane wrapping the Calabi–Yau X with an arbitrary number of D2 branes wrapping a curve C ⊂ X and D0 branes
- The curve *C* and the set of points where the D0 branes are supported can be described by an ideal sheaf: the holomorphic functions that vanish on the prescribed locus
- Counting D6–D2–D0 bound states leads us to consider the moduli spaces of ideal sheaves I_m(X, β) such that

 $\chi(\mathcal{O}_Y) = m$ number of D0 $\beta = [C] \in H_2(X, \mathbb{Z})$ curve the D2 are wrapping

• The DT invariant $D^m_\beta(X)$ is the "volume" of this moduli space

<ロ> (四) (四) (三) (三) (三)

Counting Ideal Sheaves The Calabi–Yau Crystal Picture The Topological Gauge Theory Picture

The Calabi–Yau Crystal Picture

- When X is toric DT theory is more easily understood in terms of the Calabi-Yau crystal
- A toric manifold has the structure of a fibration where the fibers are tori. The information of the locus where the cycles of the torus degenerate can be encoded in a (trivalent) toric diagram that characterize completely the manifold.
- The topological partition function is

$$\mathcal{Z}_X(q,t) = \sum_{\substack{\{\pi_f\} \ f \in ext{vertices}}} (-q)^{|\pi_f|} \prod_{e \in ext{edge}} (-1)^{m_e|\lambda_e|} \operatorname{e}^{-t_e|\lambda_e|}$$

• Partition function of a classical crystal whose edges are given by the toric diagram. The "atoms" of the crystal correspond to boxes in a 3D Young tableaux π_f : combinatorial interpretation of DT theory

Counting Ideal Sheaves The Calabi–Yau Crystal Picture The Topological Gauge Theory Picture

The Calabi–Yau Crystal Picture

- When X is toric DT theory is more easily understood in terms of the Calabi-Yau crystal
- A toric manifold has the structure of a fibration where the fibers are tori. The information of the locus where the cycles of the torus degenerate can be encoded in a (trivalent) toric diagram that characterize completely the manifold.
- The topological partition function is

$$\mathcal{Z}_X(q,t) = \sum_{\substack{\{\pi_f\}\ f\in ext{vertices}}} (-q)^{|\pi_f|} \prod_{e\in ext{edge}} (-1)^{m_e|\lambda_e|} \operatorname{e}^{-t_e|\lambda_e|}$$

 Partition function of a classical crystal whose edges are given by the toric diagram. The "atoms" of the crystal correspond to boxes in a 3D Young tableaux π_f: combinatorial interpretation of DT theory

Counting Ideal Sheaves The Calabi–Yau Crystal Picture The Topological Gauge Theory Picture

The Calabi–Yau Crystal Picture

- When X is toric DT theory is more easily understood in terms of the Calabi-Yau crystal
- A toric manifold has the structure of a fibration where the fibers are tori. The information of the locus where the cycles of the torus degenerate can be encoded in a (trivalent) toric diagram that characterize completely the manifold.
- The topological partition function is

$$\mathcal{Z}_X(q,t) = \sum_{\substack{\{\pi_f\}\ f\in ext{vertices}}} (-q)^{|\pi_f|} \prod_{e\in ext{edge}} (-1)^{m_e|\lambda_e|} \operatorname{e}^{-t_e|\lambda_e|}$$

 Partition function of a classical crystal whose edges are given by the toric diagram. The "atoms" of the crystal correspond to boxes in a 3D Young tableaux π_f: combinatorial interpretation of DT theory

Counting Ideal Sheaves The Calabi-Yau Crystal Picture The Topological Gauge Theory Picture

The Calabi–Yau Crystal Picture

- When X is toric DT theory is more easily understood in terms of the Calabi-Yau crystal
- A toric manifold has the structure of a fibration where the fibers are tori. The information of the locus where the cycles of the torus degenerate can be encoded in a (trivalent) toric diagram that characterize completely the manifold.
- The topological partition function is

$$\mathcal{Z}_X(q,t) = \sum_{\substack{\{\pi_f\}\ f\in ext{vertices}}} (-q)^{|\pi_f|} \prod_{e\in ext{edge}} (-1)^{m_e|\lambda_e|} \operatorname{e}^{-t_e|\lambda_e|}$$

 Partition function of a classical crystal whose edges are given by the toric diagram. The "atoms" of the crystal correspond to boxes in a 3D Young tableaux π_f: combinatorial interpretation of DT theory

Counting Ideal Sheaves The Calabi–Yau Crystal Picture The Topological Gauge Theory Picture

The Topological Gauge Theory Picture

• The states of the crystal can be described as "instanton" solutions of 6-dimensional $N_T = 2$ abelian super Yang-Mills topologically twisted

• The bosonic matter content is $A_{\mu}, \varphi^{3,0}, \Phi$ and the gauge theory localizes on solutions of the Donaldson-Uhlenbeck-Yau equations Baulieu Kanno Singer

Baulieu Kanno Singer Acharya O'Loughlin Spence Blau Thompson; Hofman Park

(日) (同) (目) (日) (日)

$$F^{(0,2)} = 0$$
, $F^{(1,1)} \wedge \omega \wedge \omega = 0$, $d_A \Phi = 0$

- The critical points ("instantons") correspond to 3D partitions
- The problem of computing DT invariants is reduced to an instanton counting problem

Counting Ideal Sheaves The Calabi–Yau Crystal Picture The Topological Gauge Theory Picture

The Topological Gauge Theory Picture

• The states of the crystal can be described as "instanton" solutions of 6-dimensional $N_T = 2$ abelian super Yang-Mills topologically twisted

Iqbal Nekrasov Okounkov Vafa

• The bosonic matter content is $A_{\mu}, \varphi^{3,0}, \Phi$ and the gauge theory localizes on solutions of the Donaldson-Uhlenbeck-Yau equations Baulieu Kanno Singer

Baulieu Kanno Singer Acharya O'Loughlin Spence Blau Thompson; Hofman Park

$$F^{(0,2)} = 0$$
, $F^{(1,1)} \wedge \omega \wedge \omega = 0$, $d_A \Phi = 0$

- The critical points ("instantons") correspond to 3D partitions
- The problem of computing DT invariants is reduced to an instanton counting problem

Counting Ideal Sheaves The Calabi–Yau Crystal Picture The Topological Gauge Theory Picture

The Topological Gauge Theory Picture

• The states of the crystal can be described as "instanton" solutions of 6-dimensional $N_T = 2$ abelian super Yang-Mills topologically twisted

Iqbal Nekrasov Okounkov Vafa

• The bosonic matter content is $A_{\mu}, \varphi^{3,0}, \Phi$ and the gauge theory localizes on solutions of the Donaldson-Uhlenbeck-Yau equations Baulieu Kanno Singer

Baulieu Kanno Singer Acharya O'Loughlin Spence Blau Thompson; Hofman Park

<ロ> (四) (四) (注) (注) (注) (三)

$$F^{(0,2)} = 0$$
, $F^{(1,1)} \wedge \omega \wedge \omega = 0$, $d_A \Phi = 0$

- The critical points ("instantons") correspond to 3D partitions
- The problem of computing DT invariants is reduced to an instanton counting problem

Counting Ideal Sheaves The Calabi–Yau Crystal Picture The Topological Gauge Theory Picture

The Topological Gauge Theory Picture

• The states of the crystal can be described as "instanton" solutions of 6-dimensional $N_T = 2$ abelian super Yang-Mills topologically twisted

Iqbal Nekrasov Okounkov Vafa

• The bosonic matter content is $A_{\mu}, \varphi^{3,0}, \Phi$ and the gauge theory localizes on solutions of the Donaldson-Uhlenbeck-Yau equations Baulieu Kanno Singer

Baulieu Kanno Singer Acharya O'Loughlin Spence Blau Thompson; Hofman Park

<ロ> (四) (四) (注) (注) (注) (三)

$$F^{(0,2)} = 0$$
, $F^{(1,1)} \wedge \omega \wedge \omega = 0$, $d_A \Phi = 0$

- The critical points ("instantons") correspond to 3D partitions
- The problem of computing DT invariants is reduced to an instanton counting problem

Counting Ideal Sheaves The Calabi–Yau Crystal Picture The Topological Gauge Theory Picture

The Topological Gauge Theory Picture

- Key Idea: work equivariantly with respect to the toric action (i.e. $Q \longrightarrow Q + Q_{\mu}\Omega_{\mu\nu}x_{\nu}$) and consider a noncommutative deformation of the gauge theory
- After this deformation the instanton moduli space is regularized and the critical points isolated: the localization problem is well posed
- Taking this into account the gauge theory partition function localizes as a sum over instanton solutions

$$Z \sim \sum_{x \in \{ \text{critical} \}} \left(\int_{\mathcal{M}_{\text{inst}}(\text{ch}_2, \text{ch}_3)} 1 \right) \, \mathrm{e}^{S_{ ext{inst}}(x)}$$

• This reproduces the melting crystal partition function

크

Counting Ideal Sheaves The Calabi–Yau Crystal Picture The Topological Gauge Theory Picture

The Topological Gauge Theory Picture

- Key Idea: work equivariantly with respect to the toric action (i.e. $Q \longrightarrow Q + Q_{\mu}\Omega_{\mu\nu}x_{\nu}$) and consider a noncommutative deformation of the gauge theory
- After this deformation the instanton moduli space is regularized and the critical points isolated: the localization problem is well posed
- Taking this into account the gauge theory partition function localizes as a sum over instanton solutions

$$Z \sim \sum_{x \in \{\text{critical}\}} \left(\int_{\mathcal{M}_{\text{inst}}(\text{ch}_2, \text{ch}_3)} 1 \right) e^{S_{\text{inst}}(x)}$$

• This reproduces the melting crystal partition function

(D) (B) (E) (E)

Counting Ideal Sheaves The Calabi–Yau Crystal Picture The Topological Gauge Theory Picture

The Topological Gauge Theory Picture

- Key Idea: work equivariantly with respect to the toric action (i.e. $Q \longrightarrow Q + Q_{\mu}\Omega_{\mu\nu}x_{\nu}$) and consider a noncommutative deformation of the gauge theory
- After this deformation the instanton moduli space is regularized and the critical points isolated: the localization problem is well posed
- Taking this into account the gauge theory partition function localizes as a sum over instanton solutions

$$Z \sim \sum_{x \in \{ ext{critical}\}} \left(\int_{\mathcal{M}_{ ext{inst}}(ext{ch}_2, ext{ch}_3)} 1
ight) \, \mathrm{e}^{\, S_{ ext{inst}}(x)}$$

• This reproduces the melting crystal partition function

・ロト ・ 一日 ト ・ 日 ト ・ ・ 日 ト ・

Counting Ideal Sheaves The Calabi–Yau Crystal Picture The Topological Gauge Theory Picture

The Topological Gauge Theory Picture

- Key Idea: work equivariantly with respect to the toric action (i.e. $Q \longrightarrow Q + Q_{\mu}\Omega_{\mu\nu}x_{\nu}$) and consider a noncommutative deformation of the gauge theory
- After this deformation the instanton moduli space is regularized and the critical points isolated: the localization problem is well posed
- Taking this into account the gauge theory partition function localizes as a sum over instanton solutions

$$Z \sim \sum_{x \in \{\mathrm{critical}\}} \left(\int_{\mathcal{M}_{\mathrm{inst}}(\mathrm{ch}_2, \mathrm{ch}_3)} \mathbf{1} \right) \, \mathrm{e}^{\, S_{\mathrm{inst}}(x)}$$

• This reproduces the melting crystal partition function

르

Donaldson–Thomas on $\mathbb{C}^3/\mathbb{Z}_3$

- In the following we will adopt this gauge theoretical point of view
- But how do we define the theory on the orbifold?
- \bullet We propose to work on \mathbb{C}^3 and restrict attention to $\mathbb{Z}_3-invariant$ sheaves
- Motivation: the mathematical theory of Gromov–Witten and its formulation as " orbifold cohomology on a quotient stack "

Chen Ruan

• The localization procedure is well defined since the orbifold action and the toric action commute on C³:

Donaldson–Thomas on $\mathbb{C}^3/\mathbb{Z}_3$

- In the following we will adopt this gauge theoretical point of view
- But how do we define the theory on the orbifold?
- \bullet We propose to work on \mathbb{C}^3 and restrict attention to $\mathbb{Z}_3-invariant$ sheaves
- Motivation: the mathematical theory of Gromov–Witten and its formulation as " orbifold cohomology on a quotient stack "

Chen Ruan

• The localization procedure is well defined since *the orbifold action and the toric action commute* on C³:

$$\begin{array}{rcl} (\mathbb{C}^{x})^{3} & : & (z_{1}, z_{2}, z_{3}) \mapsto \left(e^{i\epsilon_{1}}z_{1}, e^{i\epsilon_{2}}z_{2}, e^{i\epsilon_{3}}z_{3} \right) \\ \mathbb{Z}_{3} & : & (z_{1}, z_{2}, z_{3}) \mapsto \left(e^{\frac{2\pi i}{3}}z_{1}, e^{\frac{2\pi i}{3}}z_{2}, e^{\frac{2\pi i}{3}}z_{3} \right) \end{array}$$

This identifies the moduli space as $\mathbb{Z}_3 - \operatorname{Hilb}^{(n)}(\mathbb{C}^3)$

Donaldson–Thomas on $\mathbb{C}^3/\mathbb{Z}_3$

- In the following we will adopt this gauge theoretical point of view
- But how do we define the theory on the orbifold?
- \bullet We propose to work on \mathbb{C}^3 and restrict attention to $\mathbb{Z}_3-invariant$ sheaves
- Motivation: the mathematical theory of Gromov–Witten and its formulation as " orbifold cohomology on a quotient stack " Chen Ruan
- The localization procedure is well defined since *the orbifold action and the toric action commute* on \mathbb{C}^3 :

$$\begin{array}{rcl} (\mathbb{C}^{x})^{3} & : & (z_{1}, z_{2}, z_{3}) \mapsto \left(e^{i\epsilon_{1}}z_{1}, e^{i\epsilon_{2}}z_{2}, e^{i\epsilon_{3}}z_{3} \right) \\ \mathbb{Z}_{3} & : & (z_{1}, z_{2}, z_{3}) \mapsto \left(e^{\frac{2\pi i}{3}}z_{1}, e^{\frac{2\pi i}{3}}z_{2}, e^{\frac{2\pi i}{3}}z_{3} \right) \end{array}$$

ullet This identifies the moduli space as $\mathbb{Z}_3-\mathrm{Hilb}^{[n]}(\mathbb{C}^3)$

A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Donaldson–Thomas on $\mathbb{C}^3/\mathbb{Z}_3$

- In the following we will adopt this gauge theoretical point of view
- But how do we define the theory on the orbifold?
- We propose to work on \mathbb{C}^3 and restrict attention to $\mathbb{Z}_3-invariant$ sheaves
- Motivation: the mathematical theory of Gromov–Witten and its formulation as " orbifold cohomology on a quotient stack " Chen Ruan
- The localization procedure is well defined since *the orbifold action and the toric action commute* on \mathbb{C}^3 :

$$\begin{array}{rcl} (\mathbb{C}^{x})^{3} & : & (z_{1}, z_{2}, z_{3}) \mapsto \left(e^{i\epsilon_{1}}z_{1}, e^{i\epsilon_{2}}z_{2}, e^{i\epsilon_{3}}z_{3} \right) \\ \mathbb{Z}_{3} & : & (z_{1}, z_{2}, z_{3}) \mapsto \left(e^{\frac{2\pi i}{3}}z_{1}, e^{\frac{2\pi i}{3}}z_{2}, e^{\frac{2\pi i}{3}}z_{3} \right) \end{array}$$

ullet This identifies the moduli space as $\mathbb{Z}_3-\mathrm{Hilb}^{[\mathrm{n}]}(\mathbb{C}^3)$

Donaldson–Thomas on $\mathbb{C}^3/\mathbb{Z}_3$

- In the following we will adopt this gauge theoretical point of view
- But how do we define the theory on the orbifold?
- We propose to work on \mathbb{C}^3 and restrict attention to $\mathbb{Z}_3-invariant$ sheaves
- Motivation: the mathematical theory of Gromov-Witten and its formulation as " orbifold cohomology on a quotient stack "

Chen Ruan

• The localization procedure is well defined since *the orbifold action and the toric action commute* on \mathbb{C}^3 :

$$\begin{array}{rcl} (\mathbb{C}^{x})^{3} & : & (z_{1}, z_{2}, z_{3}) \mapsto \left(e^{i \epsilon_{1}} z_{1}, e^{i \epsilon_{2}} z_{2}, e^{i \epsilon_{3}} z_{3} \right) \\ \mathbb{Z}_{3} & : & (z_{1}, z_{2}, z_{3}) \mapsto \left(e^{\frac{2 \pi i}{3}} z_{1}, e^{\frac{2 \pi i}{3}} z_{2}, e^{\frac{2 \pi i}{3}} z_{3} \right) \end{array}$$

• This identifies the moduli space as $\mathbb{Z}_3 - \operatorname{Hilb}^{[n]}(\mathbb{C}^3)$

Donaldson–Thomas on $\mathbb{C}^3/\mathbb{Z}_3$

- In the following we will adopt this gauge theoretical point of view
- But how do we define the theory on the orbifold?
- We propose to work on \mathbb{C}^3 and restrict attention to $\mathbb{Z}_3-invariant$ sheaves
- Motivation: the mathematical theory of Gromov-Witten and its formulation as " orbifold cohomology on a quotient stack "

Chen Ruan

• The localization procedure is well defined since *the orbifold action and the toric action commute* on \mathbb{C}^3 :

$$\begin{array}{rcl} (\mathbb{C}^{x})^{3} & : & (z_{1}, z_{2}, z_{3}) \mapsto \left(e^{i \epsilon_{1}} z_{1}, e^{i \epsilon_{2}} z_{2}, e^{i \epsilon_{3}} z_{3} \right) \\ \mathbb{Z}_{3} & : & (z_{1}, z_{2}, z_{3}) \mapsto \left(e^{\frac{2 \pi i}{3}} z_{1}, e^{\frac{2 \pi i}{3}} z_{2}, e^{\frac{2 \pi i}{3}} z_{3} \right) \end{array}$$

 \bullet This identifies the moduli space as $\mathbb{Z}_3-\mathrm{Hilb}^{[n]}(\mathbb{C}^3)$

Noncommutative deformation

• We introduce a noncommutative deformation of the gauge theory:

$$[x^i, x^j] = i\theta^{ij} \quad i = 1\dots 6$$

and work equivariantly with respect to the toric action on \mathbb{C}^3 .

• More precisely we work with the fields

$$Z^1 = \frac{1}{\sqrt{2\theta_1}} (X^1 + iX^2) \dots \qquad X^i = x^i + i\theta^{ij}A_j$$

• The fixed point equations now read

$$\begin{bmatrix} Z_i, Z_j \end{bmatrix} = \begin{bmatrix} 0 & [Z_i, \Phi] = \epsilon_i Z_i \\ P^{(0)} & 0 & 0 \\ 0 & P^{(1)} & 0 \\ 0 & 0 & P^{(2)} \end{bmatrix}$$

Noncommutative deformation

• We introduce a noncommutative deformation of the gauge theory:

$$[x^i, x^j] = i\theta^{ij} \quad i = 1\dots 6$$

and work equivariantly with respect to the toric action on \mathbb{C}^3

• More precisely we work with the fields

$$Z^{1} = \frac{1}{\sqrt{2\theta_{1}}} (X^{1} + iX^{2}) \dots \qquad X^{i} = x^{i} + i\theta^{ij}A_{j}$$

• The fixed point equations now read

$$\begin{bmatrix} Z_i, Z_j \end{bmatrix} = \begin{bmatrix} 0 & [Z_i, \Phi] = \epsilon_i Z_i \\ P^{(0)} & 0 & 0 \\ 0 & P^{(1)} & 0 \\ 0 & 0 & P^{(2)} \end{bmatrix}$$

(日) (四) (三) (三)

Noncommutative deformation

• We introduce a noncommutative deformation of the gauge theory:

$$[x^i, x^j] = i\theta^{ij} \quad i = 1\dots 6$$

and work equivariantly with respect to the toric action on \mathbb{C}^3

• More precisely we work with the fields

$$Z^1 = \frac{1}{\sqrt{2\theta_1}} (X^1 + iX^2) \dots \qquad X^i = x^i + i\theta^{ij}A_j$$

• The fixed point equations now read

$$\begin{bmatrix} Z_i, Z_j \end{bmatrix} = \begin{bmatrix} 0 & [Z_i, \Phi] = \epsilon_i Z_i \\ P^{(0)} & 0 & 0 \\ 0 & P^{(1)} & 0 \\ 0 & 0 & P^{(2)} \end{bmatrix}$$

(D) (A) (A)

Equivariant localization

• The fixed points can be classified in terms of *colored* 3D partitions: each box of a 3D partition has a different color labeled by 0, 1, 2 corresponding to the orbifold action

• These equations can be solved as

$$Z_{i} = U_{l}a_{i}FU_{l}^{\dagger} \qquad a_{i} = \begin{pmatrix} 0 & \alpha_{i}^{(1)} & 0 \\ 0 & 0 & \alpha_{i}^{(2)} \\ \alpha_{i}^{(0)} & 0 & 0 \end{pmatrix}$$

• Here U₁ are the von Neumann partial isometry split into the orbifold sectors and (for example)

$$\alpha_1^{(r)} = \sum_{k=0}^{\infty} \sum_{\substack{\{n\}\\n_1+n_2+n_3=r+3k}} \sqrt{n_1} |n_1 - 1, n_2, n_3\rangle \langle n_1, n_2, n_3|$$

Equivariant localization

- The fixed points can be classified in terms of *colored* 3D partitions: each box of a 3D partition has a different color labeled by 0, 1, 2 corresponding to the orbifold action
- These equations can be solved as

$$Z_{i} = U_{l}a_{i}FU_{l}^{\dagger} \qquad a_{i} = \begin{pmatrix} 0 & \alpha_{i}^{(1)} & 0 \\ 0 & 0 & \alpha_{i}^{(2)} \\ \alpha_{i}^{(0)} & 0 & 0 \end{pmatrix}$$

• Here *U_I* are the von Neumann partial isometry split into the orbifold sectors and (for example)

$$\alpha_1^{(r)} = \sum_{k=0}^{\infty} \sum_{\substack{\{n\}\\n_1+n_2+n_3=r+3k}} \sqrt{n_1} |n_1 - 1, n_2, n_3\rangle \langle n_1, n_2, n_3|$$

Equivariant localization

- The fixed points can be classified in terms of *colored* 3D partitions: each box of a 3D partition has a different color labeled by 0, 1, 2 corresponding to the orbifold action
- These equations can be solved as

$$Z_{i} = U_{l}a_{i}FU_{l}^{\dagger} \qquad a_{i} = \begin{pmatrix} 0 & \alpha_{i}^{(1)} & 0 \\ 0 & 0 & \alpha_{i}^{(2)} \\ \alpha_{i}^{(0)} & 0 & 0 \end{pmatrix}$$

• Here U₁ are the von Neumann partial isometry split into the orbifold sectors and (for example)

$$\alpha_1^{(r)} = \sum_{k=0}^{\infty} \sum_{\substack{\{n\}\\n_1+n_2+n_3=r+3k}} \sqrt{n_1} |n_1 - 1, n_2, n_3\rangle \langle n_1, n_2, n_3|$$

Equivariant localization

• The last equation is solved by

$$\Phi = U_l \begin{pmatrix} \sum_{i=1}^3 \epsilon_i N_i^{(0)} & 0 & 0 \\ 0 & \sum_{i=1}^3 \epsilon_i N_i^{(1)} & 0 \\ 0 & 0 & \sum_{i=1}^3 \epsilon_i N_i^{(2)} \end{pmatrix} U_l^{\dagger}$$

• where we have defined the number operator

$$N_i^{(r)} = \alpha_i^{(r)\dagger} \alpha_i^{(r)} = \sum_{k=0}^{\infty} \sum_{\substack{\{n\}\\n_1+n_2+n_3=r+3k}} n_i |n_1, n_2, n_3\rangle \langle n_1, n_2, n_3|$$

<ロ> (四) (四) (注) (注) (注) (三)

Equivariant localization

• The last equation is solved by

$$\Phi = U_{l} \begin{pmatrix} \sum_{i=1}^{3} \epsilon_{i} N_{i}^{(0)} & 0 & 0 \\ 0 & \sum_{i=1}^{3} \epsilon_{i} N_{i}^{(1)} & 0 \\ 0 & 0 & \sum_{i=1}^{3} \epsilon_{i} N_{i}^{(2)} \end{pmatrix} U_{l}^{\dagger}$$

where we have defined the number operator

$$N_i^{(r)} = \alpha_i^{(r)\dagger} \alpha_i^{(r)} = \sum_{k=0}^{\infty} \sum_{\substack{\{n\}\\n_1+n_2+n_3=r+3k}} n_i |n_1, n_2, n_3\rangle \langle n_1, n_2, n_3|$$

<ロ> (四) (四) (注) (注) (注) (三)

Equivariant localization

- Now we know what the fixed points look like...
- ...but we still need to compute the fluctuation determinant around them!
- one gets

 $\frac{\text{Det}(\text{Ad}\Phi)\text{Det}(\text{Ad}\Phi + \epsilon_1 + \epsilon_2)\text{Det}(\text{Ad}\Phi + \epsilon_1 + \epsilon_3)\text{Det}(\text{Ad}\Phi + \epsilon_2 + \epsilon_3)}{\text{Det}(\text{Ad}\Phi + \epsilon_1)\text{Det}(\text{Ad}\Phi + \epsilon_2)\text{Det}(\text{Ad}\Phi + \epsilon_3)\text{Det}(\text{Ad}\Phi + \epsilon_1 + \epsilon_2 + \epsilon_3)}$

• or equivalently

$$\exp\int \frac{\mathrm{d}t}{t} \operatorname{Tr}_{\mathcal{H}} \mathrm{e}^{t\Phi} \operatorname{Tr}_{\mathcal{H}} \mathrm{e}^{-t\Phi} (1 - \mathrm{e}^{t\epsilon_1}) (1 - \mathrm{e}^{t\epsilon_2}) (1 - \mathrm{e}^{t\epsilon_3})$$

Now we have all the ingredients

Equivariant localization

- Now we know what the fixed points look like...
- ...but we still need to compute the fluctuation determinant around them!

one gets

 $\frac{\text{Det}(\text{Ad}\Phi)\text{Det}(\text{Ad}\Phi + \epsilon_1 + \epsilon_2)\text{Det}(\text{Ad}\Phi + \epsilon_1 + \epsilon_3)\text{Det}(\text{Ad}\Phi + \epsilon_2 + \epsilon_3)}{\text{Det}(\text{Ad}\Phi + \epsilon_1)\text{Det}(\text{Ad}\Phi + \epsilon_2)\text{Det}(\text{Ad}\Phi + \epsilon_3)\text{Det}(\text{Ad}\Phi + \epsilon_1 + \epsilon_2 + \epsilon_3)}$

• or equivalently

$$\exp\int \frac{\mathrm{d}t}{t} \operatorname{Tr}_{\mathcal{H}} \mathrm{e}^{t\Phi} \operatorname{Tr}_{\mathcal{H}} \mathrm{e}^{-t\Phi} (1 - \mathrm{e}^{t\epsilon_1}) (1 - \mathrm{e}^{t\epsilon_2}) (1 - \mathrm{e}^{t\epsilon_3})$$

Now we have all the ingredients

Equivariant localization

- Now we know what the fixed points look like...
- ...but we still need to compute the fluctuation determinant around them!
- one gets

 $\frac{\text{Det}(\text{Ad}\Phi)\text{Det}(\text{Ad}\Phi + \epsilon_1 + \epsilon_2)\text{Det}(\text{Ad}\Phi + \epsilon_1 + \epsilon_3)\text{Det}(\text{Ad}\Phi + \epsilon_2 + \epsilon_3)}{\text{Det}(\text{Ad}\Phi + \epsilon_1)\text{Det}(\text{Ad}\Phi + \epsilon_2)\text{Det}(\text{Ad}\Phi + \epsilon_3)\text{Det}(\text{Ad}\Phi + \epsilon_1 + \epsilon_2 + \epsilon_3)}$

or equivalently

$$\exp\int \frac{\mathrm{d}t}{t} \operatorname{Tr}_{\mathcal{H}} \mathrm{e}^{t\Phi} \operatorname{Tr}_{\mathcal{H}} \mathrm{e}^{-t\Phi} (1 - \mathrm{e}^{t\epsilon_1}) (1 - \mathrm{e}^{t\epsilon_2}) (1 - \mathrm{e}^{t\epsilon_3})$$

Now we have all the ingredients

◆□→ ◆□→ ◆三→ ◆三→ -

Equivariant localization

- Now we know what the fixed points look like...
- ...but we still need to compute the fluctuation determinant around them!
- one gets

 $\frac{\text{Det}(\text{Ad}\Phi)\text{Det}(\text{Ad}\Phi + \epsilon_1 + \epsilon_2)\text{Det}(\text{Ad}\Phi + \epsilon_1 + \epsilon_3)\text{Det}(\text{Ad}\Phi + \epsilon_2 + \epsilon_3)}{\text{Det}(\text{Ad}\Phi + \epsilon_1)\text{Det}(\text{Ad}\Phi + \epsilon_2)\text{Det}(\text{Ad}\Phi + \epsilon_3)\text{Det}(\text{Ad}\Phi + \epsilon_1 + \epsilon_2 + \epsilon_3)}$

or equivalently

$$\exp\int \frac{\mathrm{d}t}{t} \operatorname{Tr}_{\mathcal{H}} \mathrm{e}^{t\Phi} \operatorname{Tr}_{\mathcal{H}} \mathrm{e}^{-t\Phi} (1 - \mathrm{e}^{t\epsilon_1})(1 - \mathrm{e}^{t\epsilon_2})(1 - \mathrm{e}^{t\epsilon_3})$$

• Now we have all the ingredients

Equivariant localization

- Now we know what the fixed points look like...
- ...but we still need to compute the fluctuation determinant around them!
- one gets

 $\frac{\text{Det}(\text{Ad}\Phi)\text{Det}(\text{Ad}\Phi + \epsilon_1 + \epsilon_2)\text{Det}(\text{Ad}\Phi + \epsilon_1 + \epsilon_3)\text{Det}(\text{Ad}\Phi + \epsilon_2 + \epsilon_3)}{\text{Det}(\text{Ad}\Phi + \epsilon_1)\text{Det}(\text{Ad}\Phi + \epsilon_2)\text{Det}(\text{Ad}\Phi + \epsilon_3)\text{Det}(\text{Ad}\Phi + \epsilon_1 + \epsilon_2 + \epsilon_3)}$

or equivalently

$$\exp\int \frac{\mathrm{d}t}{t} \operatorname{Tr}_{\mathcal{H}} \mathrm{e}^{t\Phi} \operatorname{Tr}_{\mathcal{H}} \mathrm{e}^{-t\Phi} (1 - \mathrm{e}^{t\epsilon_1})(1 - \mathrm{e}^{t\epsilon_2})(1 - \mathrm{e}^{t\epsilon_3})$$

Now we have all the ingredients

Conclusions and Work in Progress

- It is possible to define Donaldson–Thomas theory on an orbifold through equivariant localization of a topological gauge theory
- The fixed points are classified by colored 3D partitions
- Can we express the result in a closed form? Maybe through modular forms?
- It would be nice to make contact with the Gromov–Witten theory. However we are missing something: how to compute the descendants? Quiver representation theory?

Conclusions and Work in Progress

- It is possible to define Donaldson–Thomas theory on an orbifold through equivariant localization of a topological gauge theory
- The fixed points are classified by colored 3D partitions
- Can we express the result in a closed form? Maybe through modular forms?
- It would be nice to make contact with the Gromov–Witten theory. However we are missing something: how to compute the descendants? Quiver representation theory?

Conclusions and Work in Progress

- It is possible to define Donaldson–Thomas theory on an orbifold through equivariant localization of a topological gauge theory
- The fixed points are classified by colored 3D partitions
- Can we express the result in a closed form? Maybe through modular forms?
- It would be nice to make contact with the Gromov–Witten theory. However we are missing something: how to compute the descendants? Quiver representation theory?

Conclusions and Work in Progress

- It is possible to define Donaldson–Thomas theory on an orbifold through equivariant localization of a topological gauge theory
- The fixed points are classified by colored 3D partitions
- Can we express the result in a closed form? Maybe through modular forms?
- It would be nice to make contact with the Gromov-Witten theory. However we are missing something: how to compute the descendants? Quiver representation theory?

(D) (A) (A)

Conclusions and Work in Progress

- On the other hand we can apply the aforementioned ideas to a similar problem: the non abelian version of Donaldson–Thomas theory on a toric manifold
- Physically this would arise when we have *N* D6 branes: non abelian instanton counting problem
- The critical points are classified by *N*-tuples of 3D partitions (π₁,...,π_N) corresponding to the *N* D6 branes
- We are computing the partition function and the invariants. But what is their geometrical meaning?

Conclusions and Work in Progress

- On the other hand we can apply the aforementioned ideas to a similar problem: the non abelian version of Donaldson–Thomas theory on a toric manifold
- Physically this would arise when we have N D6 branes: non abelian instanton counting problem
- The critical points are classified by N-tuples of 3D partitions (π₁,...,π_N) corresponding to the N D6 branes
- We are computing the partition function and the invariants. But what is their geometrical meaning?

◆□→ ◆□→ ◆三→ ◆三→ -

Conclusions and Work in Progress

- On the other hand we can apply the aforementioned ideas to a similar problem: the non abelian version of Donaldson–Thomas theory on a toric manifold
- Physically this would arise when we have N D6 branes: non abelian instanton counting problem
- The critical points are classified by *N*-tuples of 3D partitions (π_1, \ldots, π_N) corresponding to the *N* D6 branes
- We are computing the partition function and the invariants. But what is their geometrical meaning?

Conclusions and Work in Progress

- On the other hand we can apply the aforementioned ideas to a similar problem: the non abelian version of Donaldson–Thomas theory on a toric manifold
- Physically this would arise when we have N D6 branes: non abelian instanton counting problem
- The critical points are classified by *N*-tuples of 3D partitions (π_1, \ldots, π_N) corresponding to the *N* D6 branes
- We are computing the partition function and the invariants. But what is their geometrical meaning?