I. Antoniadis

CERN

Physics with

magnetized branes

4th Regional Meeting in String Theory Patras, 10-17 June 2007

Outline

- Framework
- Moduli stabilization

Oblique internal magnetic fields

- Effective field theory
- Standard Model embedding
- Supersymmetry breaking

A new gauge mediation mechanism

General framework

Type I string theory with magnetic fluxes on 2-cycles of the compactification manifold

- Dirac quantization: $H = \frac{m}{nA} \equiv \frac{p}{A}$
 - H: constant magnetic field
 - m: units of magnetic flux
 - *n*: brane wrapping
 - A: area of the 2-cycle
- Spin-dependent mass shifts for charged states

 \Rightarrow SUSY breaking

• Exact open string description:

 $qH
ightarrow heta = \arctan qH lpha' \quad {
m weak field} \Rightarrow {
m field theory}$

• T-dual representation: branes at angles

(m, n): wrapping numbers around the 2-cycle directions

Moduli stabilization with 3-form fluxes: significant progress but

- no exact string description
 low energy SUGRA approximation
- fix only complex structure

Type I with internal magnetic fluxes: alternative/complementary approach

- exact string description
- Kähler class stabilization T^6 : all geometric moduli fixed
- natural implementation in intersecting
 D-brane models

Magnetic fluxes can be used to stabilize moduli I.A.-Maillard '04, I.A.-Kumar-Maillard '05, '06

e.g. T^6 : 36 moduli (geometric deformations)

internal metric: $6 \times 7/2 = 21 = 9+2 \times 6$ type IIB RR 2-form: $6 \times 5/2 = 15 = 9+2 \times 3$

$$\operatorname{complexification} \Rightarrow \begin{cases} \mathsf{K\ddot{a}hler\ class} & J\\ \mathsf{complex\ structure} & \tau \end{cases}$$

9 complex moduli for each

magnetic flux: 6×6 antisymmetric matrix F complexification \Rightarrow

 $F_{(2,0)}$ on holomorphic 2-cycles: potential for τ $F_{(1,1)}$ on mixed (1,1)-cycles: potential for J T^6 parametrization/complexification $x^i \equiv x^i + 1$ $y_i \equiv y_i + 1$ i = 1, 2, 3 $z^i = x^i + \tau^{ij}y_i$ au: 3×3 complex structure matrix $\delta g_{i\overline{j}}$: Kähler deformations $\rightarrow J = \delta g_{i\overline{j}}idz_i \wedge d\overline{z}_j$ W: covering map

of the brane world-volume over T^6

N = 1 SUSY conditions:

1.
$$F_{(2,0)} = 0 \Rightarrow \tau$$

 $\tau^{\mathsf{T}} p_{xx} \tau - (\tau^{\mathsf{T}} p_{xy} + p_{yx} \tau) + p_{yy} = 0$
2. $J \wedge J \wedge F_{(1,1)} = F_{(1,1)} \wedge F_{(1,1)} \wedge F_{(1,1)} \Rightarrow J$
vanishing of a Fayet-Iliopoulos term
 $\xi \sim F \wedge F \wedge F - J \wedge J \wedge F$
e.g. $T^{6} = \prod_{i=1}^{3} T_{i}^{2} \leftarrow \text{orthogonal 2-torus}$
 $\tau_{i} = iR_{i}^{x}/R_{i}^{y} \quad J_{i} = R_{i}^{x}R_{i}^{y} \quad H_{i}^{a} = F_{i}^{a}/J_{i}$
 $H_{1} + H_{2} + H_{3} = H_{1}H_{2}H_{3} \Leftrightarrow \theta_{1} + \theta_{2} + \theta_{3} = 0$
3. $\det W(J \wedge J \wedge J - J \wedge F \wedge F) > 0$

action positivity

Main ingredients for moduli stabilization

- "oblique" (non-commuting) magnetic fields
 ⇒ fix off-diagonal components of the metric
 e.g. can be made diagonal
- Non linear DBI action \Rightarrow fix overall volume not valid in six dimensions: $J \wedge F = 0$

Stabilization of RR moduli

• Kähler class: absorbed by massive U(1)'s kinetic mixing with magnetized U(1)'s 10d : $dC_2 \wedge \star (A^a \wedge \langle F^a \rangle)$

 \Rightarrow need at least 9 brane stacks

 Complex structure: get potential through mixing with NS moduli Bianchi-Trevigne '05

Stack ‡	Fluxes	Fixed moduli	5 – brane localization
	$(F_{x_1y_2}^1, F_{x_2y_1}^1) = (1, 1)$	$ au_{31} = au_{32} = 0$ $ au_{11} = au_{22}$ ${ m Re}J_{1\bar{2}} = 0$	$[x_3, y_3]$
	$(F_{x_1y_3}^2, F_{x_3y_1}^2) = (1, 1)$	$ au_{21} = au_{23} = 0$ $ au_{11} = au_{33}$ $ ext{Re}J_{1\bar{3}} = 0$	$[x_2, y_2]$
$ $	$(F_{x_1x_2}^3, F_{y_1y_2}^3) = (1, 1)$	$ au_{13} = 0, \ au_{11} au_{22} = -1$ Im $J_{1\bar{2}} = 0$	$[x_3, y_3]$
$ \begin{array}{c} \sharp 4\\ N_4 = 1 \end{array} $	$(F_{x_2x_3}^4, F_{y_2y_3}^4) = (1, 1)$	$\tau_{12} = 0$ Im $J_{2\bar{3}} = 0$	$[x_1, y_1]$
	$(F_{x_1x_3}^5, F_{y_1y_3}^5) = (1, 1)$	$Im J_{1\bar{3}} = 0$	$[x_2, y_2]$
	$(F_{x_2y_3}^6, F_{x_3y_2}^6) = (1, 1)$	${\rm Re}J_{2\bar{3}} = 0$	$[x_1, y_1]$

Last column: 5-brane charge localization on the 2-cycles $[x_i, y_i]$

Fix areas of the 3 T^2 's \Rightarrow add 3 more stacks:

Stack #	Multiplicity	Fluxes
<u></u> ‡7	$N_7 = 1$	$(F_{x_1y_1}^7, F_{x_2y_2}^7, F_{x_3y_3}^7) = (-4, -4, 3)$
‡ 8	$N_8 = 2$	$(F_{x_1y_1}^8, F_{x_2y_2}^8, F_{x_3y_3}^8) = (-3, 1, 1)$
<u></u> #9	$N_9 = 3$	$(F_{x_1y_1}^9, F_{x_2y_2}^9, F_{x_3y_3}^9) = (-2, 3, 0)$

$$\Rightarrow \begin{pmatrix} F_1^7 & F_2^7 & F_3^7 \\ F_1^8 & F_2^8 & F_3^8 \\ F_1^9 & F_2^9 & F_3^9 \end{pmatrix} \begin{pmatrix} J_2 J_3 \\ J_1 J_3 \\ J_1 J_2 \end{pmatrix} = \begin{pmatrix} F_1^7 F_2^7 F_3^7 \\ F_1^8 F_2^8 F_3^8 \\ F_1^9 F_2^9 F_3^9 \end{pmatrix}$$

here: $i = 1, 2, 3 \equiv i\overline{i}$

$$\Rightarrow \tau_{ij} = i\delta_{ij} \quad (J_{x_1y_1}, J_{x_2y_2}, J_{x_3y_3}) = 4\pi^2 \alpha' \sqrt{\frac{3}{22}} (44, 66, 19)$$

- large volume:
- rescale all fluxes and all $J_I \Rightarrow$ three large T^2 tadpole conditions remain invariant

Tadpole conditions

- $Q_9 = \sum_a N_a \det W_a = 16 \leftarrow O9$ charge
- $Q_5 = \sum_a N_a \det W_a \epsilon^{\alpha \beta \gamma \delta \sigma \tau} p^a_{\gamma \delta} p^a_{\sigma \tau} = 0$

 \forall 2-cycle $\alpha, \beta = 1, \dots, 6$

SUSY + tadpole conditions seem incompatible

- use 9 magnetized branes to fix all moduli
 impose SUSY conditions
- introduce an extra brane(s)

to satisfy RR tadpole cancellation

 \Rightarrow dilaton potential from the FI D-term

 \Rightarrow two possibilities:

keep SUSY by turning on charged scalar VEVs
 I.A.-Kumar-Maillard '06

D-term condition (2) is modified to: $qv^2(J \wedge J \wedge J - J \wedge F \wedge F) = -(F \wedge F \wedge F - F \wedge J \wedge J)$

- EFT validity $\Rightarrow v < 1$ in string units
- Infinite family of (large volume) solutions invariance: $\{F_a, J\} \rightarrow \{\Lambda F_a, \Lambda J\}$ for $\Lambda \in \mathbb{N}$
- fixing the dilaton? combine magnetic and 3-form fluxes 3-brane charge $\Rightarrow T^6/\mathbb{Z}_2$ with O3 planes magnetized D7-branes
- break SUSY in a AdS vacuum

I.A.-Derendinger-Maillard in preparation

add a 'non-critical' dilaton potential

Tadpole cancellations + fix charged scalar VEVs

Stack #	Multiplicity	Fluxes	
<u></u> ‡7	$N_7 = 1$	$(F_{x_1y_1}^7, F_{x_2y_2}^7, F_{x_3y_3}^7) = (-4, -4, 3)$	
<u></u> #8	$N_8 = 2$	$(F_{x_1y_1}^8, F_{x_2y_2}^8, F_{x_3y_3}^8) = (-3, 1, 1)$	
<u></u> #9	$N_9 = 3$	$(F_{x_1y_1}^9, F_{x_2y_2}^9, F_{x_3y_3}^9) = (-2, 3, 0)$	
#10	$N_{10} = 2$	$(F_{x_1y_1}^{10}, F_{x_2y_2}^{10}, F_{x_3y_3}^{10}) = (5, 1, 2)$	
#11	$N_{11} = 2$	$(F_{x_1y_1}^{11}, F_{x_2y_2}^{11}, F_{x_3y_3}^{11}) = (0, 4, 1)$	

$$\Rightarrow \tau_{ij} = i\delta_{ij} \quad (J_{x_1y_1}, J_{x_2y_2}, J_{x_3y_3}) = 4\pi^2 \alpha' \sqrt{\frac{3}{22}} (44, 66, 19)$$

$$v_{10}^2 \alpha' \simeq \frac{0.71}{q} \simeq 0.35$$
 $v_{11}^2 \alpha' \simeq \frac{0.31}{q} \simeq 0.15$

 v_{10}, v_{11} : antisymmetric reps (q = 2) \Rightarrow

 $SU(2) \times SU(3) \times U(2)^2 \rightarrow SU(2) \times SU(3) \times SU(2)^2$

Effective field theory

Magnetized branes with stabilized moduli:

 ${\it N}=1$ SUSY + a second SUSY in the bulk

non-linearly realized on the branes

'away' from the orientifold

gauge multiplet $\Big|_{N=2} = (\text{vector } W + \text{chiral } X)_{N=1}$

$$\mathcal{L}_{Maxwell} = \frac{1}{4} \int d^2\theta \left(W^2 - \frac{1}{2} X \overline{DDX} \right) + c.c.$$

Non-linear constraint: $\frac{1}{\kappa}X = W^2 - \frac{1}{2}X\overline{DDX}$ Rocek-Tseytlin 78, 98

$$\delta W = \frac{i}{\kappa} \eta + \dots \leftarrow \text{linear susy}$$

$$\Rightarrow \mathcal{L}_{N=2} = \frac{1}{4\kappa g^2} \int d^2 \theta X + c.c. = \mathcal{L}_{N=1}^{\text{DBI}}$$

$$X = \kappa W^2 - \kappa^3 \bar{D}^2 \frac{W^2 \bar{W}^2}{1 + A_+ + \sqrt{1 + 2A_+ + A_-^2}}$$

where
$$A_{\pm} = \frac{\kappa^2}{2} \left(D^2 W^2 \pm \bar{D}^2 \overline{W}^2 \right) = \pm A_{\pm}^*$$

The FI term is also invariant under NL SUSY

$$\mathcal{L}_{FI} = \xi \int d^4 \theta V \quad ; \quad W = -\frac{1}{4} \bar{D}^2 D V$$

 $\delta V = \frac{i}{2\kappa} \left(\eta D + \bar{\eta} \bar{D} \right) \theta^2 \bar{\theta}^2 + \dots$

General form of the localized dilaton potential:

$$V(\phi, d) = \frac{e^{-\phi}}{g^2} \left\{ \left(\sqrt{1 - d^2} - 1 \right) + \xi d + \delta T \right\}$$

DBI action FI-term

d: D-auxiliary in $2\pi \alpha'$ -units

 δT : tension leftover RR tadpole cancellation

$$\Rightarrow \delta T = 1 - \sqrt{1 - \xi^2}$$

d elimination
$$\Rightarrow d = \frac{\xi}{\sqrt{1+\xi^2}}$$

 $V_{\min} = \delta \bar{T} e^{-\phi}$; $\delta \bar{T} = \sqrt{1 + \xi^2} - \sqrt{1 - \xi^2}$

Dilaton fixing: add a non-critical (bulk) term $V_{\text{non-crit}} = \delta c e^{-2\phi} \quad \delta c$: central charge deficit Einstein frame minimization $\Rightarrow \delta c < 0$ AdS:

$$e^{\phi_0} = -\frac{2\delta c}{3\delta \overline{T}}$$
 $V_0 = \frac{\delta c^3}{3\delta \overline{T}^2}$ $R_0 = -\delta \overline{T} e^{3\phi_0}$

Generic spectrum

N coincident branes $\Rightarrow U(N)$

U(1): "baryon" number

• open strings from the same stack

 \Rightarrow adjoint gauge multiplets of $U(N_a)$

• open strings stretched between two stacks

Non oriented strings \Rightarrow orientifold planes where closed strings change orientation

 \Rightarrow mirror branes

identified with branes under orientifold action

• strings stretched between two mirror stacks

 \Rightarrow antisymmetric or symmetric of $U(N_a)$

Minimal Standard Model embedding

 \bullet oriented strings \Rightarrow

need at least 4 brane-stacks

also for non-oriented strings
 with Baryon and Lepton number symmetries
 I.A.-Kiritsis-Tomaras '00

I.A.-Kiritsis-Rizos-Tomaras '02

• General analysis using 3 brane stacks $\Rightarrow U(3) \times U(2) \times U(1)$ antiquarks u^c, d^c ($\overline{3}, 1$): antisymmetric of U(3) or bifundamental $U(3) \leftrightarrow U(1)$ \Rightarrow 3 models: antisymmetric is u^c, d^c or none I.A.-Dimopoulos '04

Model A

Model B

Model C

Q	$(3,2;1,1,0)_{1/6}$	$(3,2;1,arepsilon_Q,0)_{1/6}$	$(3,2;1,arepsilon_Q,0)_{1/6}$
u^c	$(ar{3},1;2,0,0)_{-2/3}$	$(ar{3},1;-1,0,1)_{-2/3}$	$({f \overline{3}},1;-1,0,1)_{-2/3}$
d^c	$(ar{3},1;-1,0,arepsilon_d)_{1/3}$	$(ar{3},1;2,0,0)_{1/3}$	$(ar{3},1;-1,0,-1)_{1/3}$
L	$(1,2;0,-1,arepsilon_L)_{-1/2}$	$({f 1},{f 2};0,arepsilon_L,{f 1})_{-1/2}$	$(1,2;0,arepsilon_L,1)_{-1/2}$
l^c	$(1,1;0,2,0)_1$	$(1, 1; 0, 0, -2)_1$	$(1, 1; 0, 0, -2)_1$
$ u^c$	$(1,1;0,0,2arepsilon_ u)_0$	$(1,1;0,2arepsilon_ u,0)_0$	$(1,1;0,2arepsilon_{ u},0)_{0}$

 $Y_{B,C} = -\frac{1}{6}Q_3 - \frac{1}{2}Q_1$ $Y_A = -\frac{1}{3}Q_3 + \frac{1}{2}Q_2$

Model A :
$$\sin^2 \theta_W = \frac{1}{2 + 2\alpha_2/3\alpha_3} \Big|_{\alpha_2 = \alpha_3} = \frac{3}{8}$$

Model B, C : $\sin^2 \theta_W = \frac{1}{1 + \alpha_2/2\alpha_1 + \alpha_2/6\alpha_3} \Big|_{\alpha_2 = \alpha_2} = \frac{6}{7 + 3\alpha_2/\alpha_1}$

D-term SUSY breaking \Rightarrow

problem with Majorana gaugino masses

- lowest order: exact R-symmetry
- higher orders: suppressed by the string scale I.A.-Taylor '04, I.A.-Narain-Taylor '05

However in toroidal models:

- gauge multiplets have extended SUSY

 \Rightarrow Dirac gaugino masses without R

- non chiral intersections have N = 2 SUSY

 \Rightarrow Higgs in N = 2 hypermultiplet

 \Rightarrow New gauge mediation mechanism

I.A.-Benakli-Delgado-Quiros '07

SM observable sector: SUSY gauginos: extended susy, Higgs hypermultiplet Hidden (secluded) sector: SUSY breaking messengers: N = 2 hypermultiplets with mixed quantum numbers

• Dirac gaugino masses: $\sim \frac{\alpha}{4\pi} \frac{D}{M}$

• Higgs potential:

 $V = V_{\text{soft}} + \frac{1}{8}(g^2 + g'^2)(|H_1|^2 - |H_2|^2)^2 + \frac{1}{2}(g^2 + g'^2)|H_1H_2|^2 \Rightarrow$

- lightest higgs \boldsymbol{h} behaves as in SM
- heaviest H plays no role in EWSB, $g_{ZHH} = 0$
- same as MSSM in $\tan\beta\to\infty$

 \Rightarrow "little" fine tuning is greatly reduced

• Distinct collider signals different from MSSM