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“To many practitioners of quantum gravity the black hole plays

the role of a soliton, a non-perturbative field configuration that

is added to the spectrum of particle-like objects only after the

basic equations of their theory have been put down, much like

what is done in gauge theories of elementary particles, where

Yang-Mills equations with small coupling constants determine

the small-distance structure, and solitons and instantons gov-

ern the large-distance behavior.

Such an attitude however is probably not correct in quantum

gravity. The coupling constant increases with decreasing dis-

tance scale which implies that the smaller the distance scale,

the stronger the influences of “solitons”. At the Planck scale

it may well be impossible to disentangle black holes from ele-

mentary particles.”

– G. ’t Hooft
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Strings explain black hole entropy quantitatively in terms of D-branes
[Strominger, Vafa]

black-hole entropy

• Hawking radiation
⇒ Information loss paradox

• Greybody factors
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Quasi-normal modes (QNMs)
describe small perturbations of a black hole.

• A black hole is a thermodynamical system whose (Hawking) temperature
and entropy are given in terms of its global characteristics (total mass,
charge and angular momentum).

QNMs obtained by solving a wave equation for small fluctuations subject to the
conditions that the flux be

• ingoing at the horizon and

• outgoing at asymptotic infinity.

⇒ discrete spectrum of complex frequencies.

• imaginary part determines the decay time of the small fluctuations

=ω =
1

τ
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imaginary part of QNM is negative

⇒ black hole eventually relaxes back to its original (thermal) equilibrium at
(Hawking) temperature TH

|e−iωt| = e−t/τ

⇒ leakage of information into the horizon

⇒ breakdown of unitarity

⇒ closely related to Hawking’s information loss paradox

resolution will require understanding of quantum gravity beyond semi-classical
approximation.
asymptotically AdS space-times

additional tool due to AdS/CFT correspondence:

• complex QNM frequencies are poles of the retarded propagator in CFT

• puzzling: CFT is unitary ∴ propagator should possess real poles only.
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Poincaré recurrence theorem

• two-point function quasi-periodic with a period

tP ∼ eS

S: entropy.

• For times t ¿ tP , system may look like it is decaying back to thermal
equilibrium, but for t >∼ tP , it should return to its original state (or close) an
infinite number of times.

• system will never relax back to its original state.
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AdS Black Holes

establishment of AdS/CFT correspondence hindered by difficulties in solving
the wave equation.

• In 3d: Hypergeometric equation ∴ solvable

[Cardoso, Lemos; Birmingham, Sachs, Solodukhin]
quasi-normal frequencies are the poles of the retarded Green function of
the corresponding perturbations in the dual CFT (on the cylinder R× S1).

• Numerical results in 4d, 5d and 7d

[Horowitz, Hubeny; Starinets; Konoplya]

• In 5d: Heun equation ∴ unsolvable.
in high frequency regime Heun equation → Hypergeometric equation.

[GS]

– analytical expression for asymptotic form of QNM frequencies
– in agreement with numerical results.
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Monodromies
Asymptotic expressions for QNMs may also be easily obtained by considering
the monodromies around the singularities of the wave equation.

• singularities lie in the unphysical region.
– In three dimensions, they are located at the horizon r = rh, where rh

is the radius of the horizon, and at the black hole singularity, r = 0.
– In higher dimensions, it is necessary to analytically continue r into the

complex plane. The singularities lie on the circle |r| = rh.
– similar to asymptotically flat space where analytic continuation of r

yields asymptotic form of QNMs
[Motl and Neitzke].

• It is curious that unphysical singularities determine the behavior of QNMs.
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AdS5/CFT4 correspondence
Despite a considerable amount of work on quasi-normal modes of black holes
in asymptotically AdS space-times their relation to the AdS/CFT correspon-
dence is not well understood.
In 5d, the large real part of the QN frequencies challenges our understanding
of the AdS/CFT correspondence in five dimensions.
QN frequencies determine the poles of the retarded correlation functions of
dual operators in finite-temperature N = 4 SU(N) SYM theory in the large-
N , large ’t Hooft coupling limit.
[Núñez and Starinets]

Also arise in complexified geodesics.
[Fidkowski, Hubeny, Kleban and Shenker; Balasubramanian and Levi]

I QN frequencies are obtained as the poles of a CFT on R × S3 in a certain
scaling limit where Euclidean time is identified with one of the periodic coordi-
nates of S3.
[GS]
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Linear response theory
[Birmingham, Sachs and Solodukhin]

system in thermal equilibrium described by density matrix ρ.
perturbation

H ′ =
∫
dxJ(t, x)O(t, x)

J : external source
change in ensemble average

δ〈O(t, x)〉 =
∫ ∞
−∞

dt′
∫
dx′J(t′, x′)GR(t, x; t′, x′)

in terms of retarded propagator

GR(t, x; t′, x′) = −iθ(t− t′)Tr
(
ρ[O(t, x),O(t′, x′)]

)
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Fourier transform G̃R(ω, p):

• analytic in upper-half ω-plane.

• discrete energy levels
⇒ simple poles on real axis
⇒ meromorphic in lower-half ω-plane
⇒ oscillatory behavior

• continuous energy levels
⇒ poles (stable states) or cuts (multi-particle states) on real axis
⇒ poles (resonances) in lower-half ω-plane
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BTZ black hole
The wave equation (with m = 0) is

1

R2 r
∂r

(
r3

(
1− r2h

r2

)
∂rΦ

)
− R2

r2 − r2h
∂2
t Φ +

1

r2
∂2
xΦ = 0

One normally solves this in physical interval:

r ∈ [rh,∞)

Instead, we shall solve it inside the horizon

0 ≤ r ≤ rh

Solution:

Φ = ei(ωt−px)Ψ(y), y =
r2

r2h

where Ψ satisfies
(
y(1− y)Ψ′)′ +

(
ω̂2

1− y
+
p̂2

y

)
Ψ = 0
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in terms of dimensionless variables

ω̂ =
ω

2rh
=

ω

4πTH
, p̂2 =

p

2rh
=

p

4πTH

TH = rh/(2π): Hawking temperature.
Two solutions obtained by examining behavior near the horizon (y → 1),

Ψ± ∼ (1− y)±iω̂

A different set obtained by studying behavior at black hole singularity
(y → 0)

Ψ ∼ y±ip̂

For QNMs, Ψ ingoing at the horizon

Ψ ∼ Ψ− as y → 1

By writing

Ψ(y) = y±ip̂(1− y)−iω̂F (y)

we deduce

y(1− y)F ′′+ {1± 2ip̂− (2− 2i(ω̂ ∓ p̂)y}F ′+ (ω̂ ∓ p̂)(ω̂ ∓ p̂+ i)F = 0
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Solution:

F (y) = F (1− i(ω̂ ∓ p̂),−i(ω̂ ∓ p̂); 1± 2ip̂; y)

• near the horizon (y → 1): mixture of ingoing and outgoing waves.

• blows up at infinity (y →∞).

For a QNM, we demand that F (y) be a Polynomial

⇒ takes care of both limits y → 1,∞
⇒

ω̂ = ±p̂− in , n = 1,2, . . .

⇒
F (y) = 2F1(1− n,−n; 1± 2ip̂; y)

is a Polynomial of order n− 1.
∴ constant at y = 1, as desired and
∴

F (y) ∼ yn−1 ∼ yi(ω̂∓p̂)−1 as y →∞
so Ψ ∼ y−1 as y →∞, as expected.
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A monodromy argument
Let M(y0) be the monodromy around the singular point y = y0 computed
along a small circle centered at y = y0 running counterclockwise.
For y = 1,

M(1) = e2πω̂

For y = 0,

M(0) = e∓2πp̂

Since the function vanishes at infinity, the two contours around the two singular
points y = 0,1 may be deformed into each other without encountering any
singularities,
∴

M(1)M(0) = 1

∴ e2π(ω̂∓p̂) = e2πin (n ∈ Z)
same QNM frequencies as before, if we demand =ω̂ < 0.
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Massive scalar
wave equation for massive scalar of mass m

1

r
∂r

(
r3

(
1− r2h

r2

)
∂rΦ

)
− 1

r2 − r2h
∂2
t Φ +

1

r2
∂2
xΦ = m2Φ

rh: radius of horizon (set AdS radius R = 1)
Let

Φ = ei(ωt−px)Ψ(y), Ψ(y) = yip̂(1− y)−iω̂F (y)

Solution

F (y) = F (a+, a−; c; 1− y)

where

a± = 1
2∆± − i(ω̂ − p̂) , c = 1− 2iω̂ , ∆± = 1±

√
1 +m2
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As y →∞, this function behaves as

F (y) ∼ Ay−a+ + By−a−
where

A =
Γ(c)Γ(a− − a+)

Γ(a−)Γ(c− a+)
, B =

Γ(c)Γ(a+ − a−)

Γ(a+)Γ(c− a−)

For desired behavior (Ψ ∼ y−∆+/2 as y →∞), set

B = 0

This condition implies

ω̂ = ±p̂− i(n+ 1
2∆+ − 1) , n = 1,2, . . .
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AdS/CFT correspondence:

I flux at the boundary (y → ∞) is related to the retarded propagator of the
corresponding CFT living on the boundary.

A standard calculation yields

G̃R(ω, p) ∼ lim
y→∞

F ′(y)
F (y)

Explicitly,

G̃R(ω, p) ∼ A
B

∼ |Γ(1
2
∆+ − i(ω̂ − p̂))Γ(1

2
∆+ − i(ω̂+ p̂))|2

× sinπ(1
2
∆+ − i(ω̂ − p̂)) sinπ(1

2
∆+ − i(ω̂+ p̂))

Plainly, QNMs (zeroes of B) are poles of the retarded propagator ∵

G̃R ∼ 1/B
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2-point correlator

〈O(t, x)O(0,0)〉 =
(πTH)2∆+

(sinhπTH(t− x) sinhπTH(t+ x))∆+

decays exponentially as t→∞,

〈O(t, x)O(0,0)〉 ∼ e−2πTH∆+t
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AdS3

associated with zero temperature
Metric

ds2 = − cosh2 ρdτ2 + dρ2 + sinh2 ρdφ2

The boundary on which the corresponding CFT lives is the cylinder R× S1.
Upon a change of coordinates,

y = cosh2 ρ , x =
τ

2πT

metric identical to the BTZ black hole metric with y = r2/r2h, rh = 2πT .

cf. with corresponding CFT:

I write propagator in terms of invariant distance in the embedding

P(X,X ′) = (X −X ′)2

where
X0 = cosh ρ cos τ , X3 = cosh ρ sin τ

X1 = sinh ρ cosφ , X2 = sinh ρ sinφ

and similarly for X ′.
Γι¸ργος Σι¸ψης Κολυµπ�ρι - Κρ τη 2005



Black holes and unitarity 20

propagator on the boundary

G(τ, φ; τ ′, φ′) ∼ lim
ρ,ρ′→∞

P−∆+/2

In this limit,

P ∼ cosh(τ − τ ′)− cos(φ− φ′)
therefore,

G(τ, φ; τ ′, φ′) ∼ 1

(cos(τ − τ ′)− cos(φ− φ′))∆+/2

real poles

ω = p+ 2(n+ 1
2∆+ − 1) , p ∈ Z , n = 1,2, . . .

⇒ oscillatory behavior
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CFT calculation
(without reference to the corresponding AdS)

two-point function of a massless scalar on the cylinder R× S1 is

G0(τ, φ; τ
′, φ′) ∼ T

∞∑

j=−∞

∫
dk

2π
e−ik·x i

k2

∣∣∣∣
k0=2πjT

After integrating over k, summing over j and subtracting an irrelevant (infinite)
constant, we obtain

G0(τ, φ; τ
′, φ′) ∼ lnP

For a scalar operator O of dimension ∆, the two point function then reads

G(τ, φ; τ ′, φ′) ≡ 〈T (O(τ, φ)O(τ ′, φ′))〉 ∼ 1

P∆/2

as before.
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SUMMARY

I high temperature limit: BTZ black hole

I zero temperature limit: AdS space (locally equivalent to BTZ black hole)

I intermediate temperature? Hard
Correlator on torus of periods 1/T and 1.

EXAMPLE: free fermion (∆ = 1)
Correlator:

〈ψ(w)ψ(0)〉 =
∂wϑ1(0|T )

ϑν(0|iT )

ϑν(wT |iT )

ϑ1(wT |iT )
, ν = 3,4

w = i(t+ φ), invariant under w → w+ 1/T , w → w+ i,
⇒ periodic in t, period 1.
poles:

w =
m

T
+ in , m, n ∈ Z
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As T → 0, oscillating behavior:

〈ψ(w)ψ(0)〉 ∼ 1

sinπ(t+ φ)

As T →∞, exponential decay

〈ψ(w)ψ(0)〉 =
πT

4 sinhπT (t+ φ)

{
1± 2e−πT cosh2πT (t+ φ) + . . .

}

violation of periodicity (t→ t+ 1) and loss of unitarity? NO!
Two time scales: 1 and 1/T ¿ 1.

• When t <∼ 1/T , system decays

• When t ∼ 1/T , corrections important

• When t >∼ 1, periodicity is restored
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Strong coupling
AdS3 arises in type IIB superstring theory in the near horizon limit of a large
number of D1 and D5 branes.

I Low energy excitations form a gas of strings wound around a circle with
winding number k and target space T4.

I They are described by a strongly coupled CFT2 whose central charge is

c = 6k ∼ 1

G
À 1

At finite temperature, the thermal CFT2 has entropy

S ∼ k ∼ 1

G
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BTZ black hole:
If radius of horizon is o(1), then so is area of horizon

A ∼ 1

Bekenstein-Hawking entropy:

S =
A

4G
∼ 1

G

in agreement with CFT.
Poincaré recurrence time:

tP ∼ eS ∼ o(e1/G)

To understand this, one ought to include contributions to gravity correlators

I beyond the semi-classical approximation

which will modify the black-hole background.
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’t Hooft’s brick wall

near horizon infinite energy levels
∴ information loss
∴ Hawking radiation

↪→ continuous spectrum due to horizon. Set rh = 1.

place brick wall at distance ε from horizon

φ(r) = 0 , r ≤ 1 + ε

discrete energy levels

ωn ∼ nπ

− ln ε

Free energy F ∼ T3
H
A
ε .

Entropy: S = −∂F∂T ∼ A
ε

I contributes to renormalization of G.

PROBLEM: Unnatural cutoff (coordinate invariance broken) - also need two
time scales (ε as well as ln ε), more complicated spectrum (fractal wall?)
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Solodukhin’s wormhole

replace black hole by a wormhole

⇒ eliminate horizon and attendant leakage of information.

size of narrow throat λ ∼ o(e−1/G)

leading to a Poincaré recurrence time

tP ∼
1

λ
∼ o(e1/G)

in agreement with expectations.
GOAL

• calculate two-point functions explicitly

• obtain the real poles of the propagator,
thus demonstrating unitarity.
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Wormhole metric

ds2 = −(sinh2 y+ λ2) dt2 + dy2 + cosh2 y dφ2

In the limit λ→ 0, reduces to BTZ black hole.
no horizon at y = 0:

I wormhole has a very narrow throat (o(λ)) joining two regions of space-
time with two distinct boundaries (at y → ±∞, respectively).

I Information may flow in both directions through the throat.

I modification significant near the “horizon” point y = 0.

I As y → 0, time-like distance is ds2 ≈ −λ2dt2,
⇒ time scale of system is ∼ 1/λ.
⇒ Poincaré recurrence time

tP ∼ o(1/λ)

as advertised.

λ will be fixed upon comparison with CFT.
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wave equation

1

cosh y (sinh2 y+ λ2)1/2

(
cosh y (sinh2 y+ λ2)1/2 Ψ′

)′
+

(
ω2

sinh2 y+ λ2
+

k2

cosh2 y

)
Ψ = m2Ψ

to be solved along the entire real axis (y ∈ R)
cf. black hole: y ≥ 0, horizon at y = 0.
solve wave equation in the small-λ limit (λ¿ 1).

↪→ consider three regions,

(I) y À λ, which includes one of the boundaries,
(II) y ¿ −λ, which includes the other boundary, and
(III) |y| ¿ 1.

solve in each region and then match solutions in overlapping regions

λ¿ y ¿ 1 , −1 ¿ y ¿ −λ
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Region (II)

wave equation may be approximated by BTZ black hole.

¦ no physical requirement dictating a choice based on the small-y behavior
(no horizon at y = 0).

choose a linear combination which behaves nicely at the boundary (y → −∞),

ΨII = cosh−2h+ y tanh−iω y F (h+− i
2(ω+k), h+− i

2(ω−k); 2h+; 1/ cosh2 y)

vanishes at the boundary

ΨII ∼ e2h+y as y → −∞
At small y

ΨII ∼ B+y
−iω + B−y+iω , B± =

Γ(2h+)Γ(±iω)

Γ(h+ ± i
2(ω+ k))Γ(h+ ± i

2(ω − k))
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Region (III)

|y| ¿ 1; wave equation

1

(y2 + λ2)1/2

(
(y2 + λ2)1/2 Ψ′

III

)′
+

ω2

y2 + λ2
ΨIII = 0

linearly independent solutions

Ψ(1)
III = F ( i2ω,− i

2ω; 1
2;−y2/λ2) , Ψ(2)

III =
y

λ
F (1

2+
i
2ω,

1
2− i

2ω; 1
3;−y2/λ2)

At large y > 0,

Ψ(1)
III ∼

1

2

(
2y

λ

)+iω
+

1

2

(
2y

λ

)−iω
, Ψ(2)

III ∼
i

2ω

(
2y

λ

)+iω
− i

2ω

(
2y

λ

)−iω

asymptotic behavior as y → −∞,

Ψ(1)
III ∼

1

2

(
2y

λ

)+iω
+

1

2

(
2y

λ

)−iω
, Ψ(2)

III ∼ − i

2ω

(
2y

λ

)+iω
+

i

2ω

(
2y

λ

)−iω

Match this to the asymptotic behavior of ΨII ,

ΨIII = B+Ψ(−)
III + B−Ψ(+)

III , Ψ(±)
III =

(
2

λ

)∓iω (
Ψ(1)
III ± iωΨ(2)

III

)
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at large y > 0, it behaves as

ΨIII ∼ B+

(
4y

λ2

)+iω
+B−

(
4y

λ2

)−iω

Region (I)

linearly independent solutions

Ψ(±)
I = cosh−2h± y tanh−iω y F (h±− i

2(ω+k), h±− i
2(ω−k); 2h±; 1/ cosh2 y)

Matching asymptotic behavior,

ΨI = α+Ψ(−)
I + α−Ψ(+)

I

where

α+ =
B2

+

(
2
λ

)2iω − B2−
(
2
λ

)−2iω

B+C− − B−C+
, α− =

B−C−
(
2
λ

)−2iω − B+C+
(
2
λ

)2iω

B+C− − B−C+
B± are given above and

C± =
Γ(2h−)Γ(±iω)

Γ(h− ± i
2(ω+ k))Γ(h− ± i

2(ω − k))
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For a normalizable solution, set

α+ = 0

which leads to the quantization condition
(
2

λ

)2iω
=
B−
B+

=
Γ(−iω)Γ(h+ + i

2(ω+ k))Γ(h+ + i
2(ω − k))

Γ(+iω)Γ(h+ − i
2(ω+ k))Γ(h+ − i

2(ω − k))

⇒ discrete spectrum of real frequencies
For small ω,

ωn ≈
(
n+ 1

2

) π

ln 2
λ

, n ∈ Z

⇒ periodicity with period Leff ∼ ln(1/λ).

cf. with CFT (string winding k times around circle of length o(1))
Leff ∼ k ∼ 1/G

λ ∼ o(e−1/G)

as promised.
Notice: Leff ¿ tP , ∴ two time scales.
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In the limit λ→ 0 (or, equivalently, k→∞),

⇒ spectrum of real frequencies becomes continuous,

⇒ emergence of a horizon.

⇒ QNMs emerge

It should be emphasized that for no other value of λ, no matter how small, do
complex poles arise.
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Conclusions

• Hawking radiation and information loss paradox semiclassical effects

• String theory should provide a unitary description of evolution of a black
hole

• AdS/CFT correspondence indispensible tool
– need understand AdS/CFT correspondence at finite temperature
– non-perturbative effects
– explicit results in 3d

I generalize to higher dimensions
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