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I. Bosonic actions

Relativistic point particle

Since the classical motion of a massive point particle is along
geodesics, the action is proportional to the invariant length of
the world-line

S0 = −m

∫
ds, (1)

where h̄ = c = 1. The line element is given by

ds2 = −gµν(x)dxµdxν.
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Here gµν(x) with µ, ν = 0, . . . , D−1 describes the background
geometry, with signature (− + · · ·+).

The minus sign has been introduced so that ds is real for
a time-like trajectory. The action, which is reparametrization
invariant, can be rewritten in the form

S0 = −m

∫ √
−gµν(x)ẋµẋνdτ, (2)

This action contains a square root, and it cannot be used to
describe a massless particle. These problems can be circum-
vented by introducing an auxiliary field e(τ )
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S̃0 =
1

2

∫
dτ

(
e−1ẋ2 −m2e

)
, (3)

where ẋ2 = gµν(x)ẋµẋν. Solving for e(τ ) and substituting

back into S̃0 gives S0. S̃0 has a smooth m → 0 limit.

p-brane actions

The action (2) can be generalized to a p-brane sweeping out
a (p + 1)-dimensional world volume in D dimensions

Sp = −Tp

∫
dµp. (4)

Tp is the p-brane tension. The dimension of Tp is (length)−p−1.
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dµp is the (p + 1)-dimensional volume element

dµp =
√
− det Gαβ dp+1σ,

where the induced metric is

Gαβ = gµν(X)∂αXµ∂βXν.

This action is valid in a probe-brane approximation in which
back reaction is neglected.

The reparametrization (or diffeomorphism) invariance of the
p-brane action allows p + 1 gauge choices. Static gauge iden-
tifies world-volume coordinates with spacetime coordinates
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Xµ = (σα, Xi),

where Xi describes the D− p− 1 directions transverse to the
p-brane. In a Minkowski spacetime background the p-brane
action becomes

S = −Tp

∫
dp+1σ

√
− det(ηαβ + ∂αXi∂βXi).

Tp is the energy density of the undisturbed brane.

Strings

Now consider a string in Minkowski spacetime. Denoting
σ0 = τ and σ1 = σ, one obtains the Nambu–Goto action
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SNG = −T

∫
dσdτ

√
Ẋ2X ′2 − (Ẋ ·X ′)2,

where

Ẋµ =
∂Xµ

∂τ
and Xµ′ =

∂Xµ

∂σ
,

and A ·B = ηµνA
µBν. Classical string motion extremizes the

world-sheet area.

A classically equivalent action, usually called the Polyakov
action, is expressed in terms of an auxiliary world-sheet metric
hαβ(σ, τ ).
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The Polyakov action is

SP = −T

2

∫
d2σ

√
−hhαβ∂αX · ∂βX.

The hαβ equation of motion implies the vanishing of the energy–
momentum tensor Tαβ

Tαβ = ∂αX · ∂βX − 1

2
hαβhγδ∂γX · ∂δX = 0.

Taking the square-root of minus the determinant of both sides
of the equation
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1

2
hαβhγδ∂γX · ∂δX = ∂αX · ∂βX

gives

1

2

√
−hhγδ∂γX · ∂δX =

√
− det(∂αX · ∂βX).

Substitution gives back SNG.

In addition to global Poincaré invariance and local diffeomor-
phism invariance, SP has local Weyl invariance

hαβ → eφ(σ,τ )hαβ and Xµ → Xµ.

This explains why the energy–momentum tensor is traceless.
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II. Supersymmetric actions

A natural supersymmetric generalization is based on maps
into superspace, so that the basic fields are Xµ(σα) and Θa(σα).

D0-brane action

Let us begin with a spacetime supersymmetric world-line ac-
tion for a point particle of mass m. The D0-brane, a nonper-
turbative excitation in the type IIA theory, is a special case of
more general Dp-branes, which will be discussed later.

Our goal here is to find a D = 10, N = 2 supersymmetric
generalization of
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S = −m

∫ √
−ẊµẊµdτ (5)

by introducing a Majorana spinor coordinate Θa(τ ) with a =
1, 2, . . . , 32. This encodes two MW spinors of opposite chiral-
ity defined by

Θ1 =
1

2
(1 + Γ11)Θ and Θ2 =

1

2
(1− Γ11)Θ,

where

Γ11 = Γ0Γ1 . . . Γ9.

Supersymmetry can be represented in terms of infinitesimal
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supersymmetry transformations of superspace

δΘa = εa,

δXµ = ε̄ΓµΘ.

These supersymmetry transformations will be realized as global
symmetries of the action. We define the supersymmetric com-
bination

Π
µ
0 = Ẋµ − Θ̄ΓµΘ̇.

The corresponding formula for a Dp-brane is
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Π
µ
α = ∂αXµ − Θ̄AΓµ∂αΘA, α = 0, 1, . . . , p A = 1, 2.

which explains the subscript 0.

Making the replacement Ẋµ → Π
µ
0 in the action (5) gives

S1 = −m

∫ √
−Π2

0 dτ, (6)

where Π2
0 = Π0 · Π0. This action is invariant under global

super-Poincaré transformations and local diffeomorphisms of
the world-line.

The action S1, by itself, is not the theory that we want. This
can be seen by deriving the equations of motion associated
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with Xµ and ΘA. The canonical conjugate momentum to Xµ

is

Pµ =
δS1

δẊµ
=

m√
−Π2

0

(
Ẋµ − Θ̄ΓµΘ̇

)
. (7)

The Xµ equations of motion imply Ṗµ = 0. Not all the compo-
nents of the momentum are independent. Squaring both sides
of eq. (7) gives the mass-shell condition

P 2 = −m2.

On the other hand, the equation of motion for Θ is
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P · ΓΘ̇ = 0. (8)

Multiplying this with P · Γ gives m2Θ̇ = 0, so for m 6= 0 one
obtains Θ̇ = 0.

The factor P ·Γ is singular in the massless case, corresponding
to saturation of a BPS bound and enhanced supersymmetry.
By adding another contribution to the action we can ensure
saturation of a BPS bound and enhanced supersymmetry in
the massive case as well.

Suppose that there is a second contribution to the action that
changes eq. (8) to form suggested by KK reduction of massless
particle in 11d
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(P · Γ−mΓ11)Θ̇ = 0.

This equation only forces half the components of Θ to be con-
stant, because half of the eigenvalues of P ·Γ−mΓ11 are zero.
As evidence of this consider its square

(P · Γ−mΓ11)
2 = (P · Γ)2 −m{P · Γ, Γ11} + (mΓ11)

2

= P 2 + m2 = 0.

Thus the number of independent equations is only half the
number of components of Θ. There are local fermionic sym-
metries such that half the components of Θ are actually gauge
degrees of freedom.

16



The missing contribution to the action that gives this addi-
tional term in the Θ equation of motion is

S2 = −m

∫
Θ̄Γ11Θ̇ dτ. (9)

If this sign describes a D0-brane, then the opposite sign would
describe an anti-D0-brane.

To summarize, the complete action for a D0-brane of mass
m is

S = −m

∫ √
−Π0 · Π0 dτ −m

∫
Θ̄Γ11Θ̇ dτ.
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κ symmetry

Under a κ transformation

δXµ = Θ̄ΓµδΘ = −δΘ̄ΓµΘ.

The variation δΘ will be determined later. It follows that

δΠ
µ
0 = −2δΘ̄ΓµΘ̇.

The variation of the action S1 under a κ transformation is

δS1 = m

∫
Π0 · δΠ0√
−Π2

0

dτ.

Substituting for δΠ
µ
0 gives
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δS1 = −2m

∫
Π

µ
0δΘ̄ΓµΘ̇√
−Π2

0

dτ = −2m

∫
δΘ̄γΓ11Θ̇ dτ,

where

γ =
Γ · Π0√
−Π2

0

Γ11.

Since γ2 = 1, γ can be used to construct projection operators

P± =
1

2
(1± γ).

The second contribution to the action, S2, has the variation
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δS2 = −2m

∫
δΘ̄Γ11Θ̇ dτ.

Thus

δ(S1+S2) = −2m

∫
δΘ̄(1+γ)Γ11Θ̇ dτ = −4m

∫
δΘ̄P+Γ11Θ̇ dτ.

For a transformation δΘ̄ that takes the form

δΘ̄ = κ̄P−,

with κ(τ ) an arbitrary Majorana spinor, the action is invariant.
So this is a local symmetry of the action.
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To summarize, the D0-brane action S is invariant under the
local κ transformations

δΘ̄ = κ̄P− and δXµ = −κ̄P−ΓµΘ.

κ symmetry implies that half of the components of Θ are de-
coupled and can be gauged away. Without this symmetry
there would be too many fermionic degrees of freedom.

Supersymmetric string actions

The type IIA and type IIB superstring theories both have
N = 2 and hence two MW fermionic coordinates Θ1 and Θ2.
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Γ11Θ
A = (−1)A+1ΘA type IIA

Γ11Θ
A = ΘA type IIB.

The obvious guess is that the supersymmetric string action
(for α′ = 1/2 or T = 1/π) takes the form

S1 = −1

π

∫
d2σ

√
−G,

with G = det Gαβ and Gαβ = Πα · Πβ, where

Π
µ
α = ∂αXµ − Θ̄AΓµ∂αΘA.
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As in the case of the D-particle, a second term S2 has to
be added in order to produce local κ symmetry. Global super-
Poincaré symmetry and local reparametrization symmetry must
be preserved by S2.

As before, we require that under κ transformations

δXµ = Θ̄AΓµδΘA = −δΘ̄AΓµΘA,

which implies

δΠ
µ
α = −2δΘ̄AΓµ∂αΘA. (10)

Using (10) one obtains
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δS1 =
1

π

∫
d2σ

√
−GGαβΠ

µ
αδΘ̄AΓµ∂βΘA.

Construction of S2

Whereas S1 has the structure of a supersymmetrized volume,
S2 is naturally described as the integral of a two-form

S2 =

∫
Ω2 =

1

2

∫
d2σεαβΩαβ,

where Ω2 does not depend on the world-sheet metric. More
generally, for a p-brane it would be an integral of a (p + 1)-
form. Such a geometric structure has manifest diffeomorphism
symmetry.
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The way to make the symmetries of the problem manifest
is to formally introduce an additional dimension and consider
the three-form

Ω3 = dΩ2.

Similarly, introduce a 3d region D whose boundary is the string
world-sheet M (M = ∂D). Then by Stokes’ theorem

∫

D
Ω3 =

∫

M
Ω2.

The form Ω3 is like a characteristic class in that it is closed and
invariant under the symmetries in question. The form Ω2 is
the corresponding Chern–Simons term. In general its variation
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under the corresponding symmetry transformations is a total
derivative, which is all we need.

A useful identity satisfied by a MW spinor Θ in 10d is

ΓµdΘ dΘ̄ΓµdΘ = 0. (11)

Wedge products are implicit. This formula, which is crucial to
the existence of supersymmetric Yang–Mills theory in 10d, is
proved by considering Fierz rearrangements of the spinors.

There are three supersymmetric one-forms:

dΘ1, dΘ2, Πµ = dXµ − Θ̄AΓµdΘA.
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So Ω3 should be a Lorentz-invariant three-form constructed
out of these. Up to a constant c to be determined later, the
appropriate choice is

Ω3 = c(dΘ̄1ΓµdΘ1 − dΘ̄2ΓµdΘ2)Πµ. (12)

To verify that Ω3 is closed, substitute

dΠµ = −(dΘ̄1ΓµdΘ1 + dΘ2ΓµdΘ2)

into

dΩ3 = c(dΘ̄1ΓµdΘ1 − dΘ̄2ΓµdΘ2)dΠµ.
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The minus sign ensures the cancellation of the cross terms with
two powers of dΘ1 and two powers of dΘ2. Terms quartic in
dΘ1 or dΘ2 vanish due to eq. (11).

Let us now compute the κ symmetry variation of Ω3:

δΩ3 = 2c(dδΘ̄1ΓµdΘ1 − dδΘ̄2ΓµdΘ2)Πµ

−2c(dΘ̄1ΓµdΘ1 − dΘ̄2ΓµdΘ2)δΘ̄AΓµdΘA.

Using eq. (11) again, one obtains

δΩ3 = d
[
2c(δΘ̄1ΓµdΘ1 − δΘ̄2ΓµdΘ2)Πµ

]
,
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and thus

δΩ2 = 2c(δΘ̄1ΓµdΘ1 − δΘ̄2ΓµdΘ2)Πµ.

To be explicit, setting c = 1/2π gives

δS2 =
1

π

∫
d2σεαβ(δΘ̄1Γµ∂αΘ1 − δΘ̄2Γµ∂αΘ2)Π

µ
β. (13)

Then the variation of the entire action under κ transformations
takes the form

δS =
2

π

∫
d2σεαβ(δΘ̄1P+Γµ∂αΘ1 − δΘ̄2P−Γµ∂αΘ2)Π

µ
β.
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The orthogonal projection operators P± are defined by

P± =
1

2
(1± γ)

with

γ = −
εαβΠ

µ
αΠν

βΓµν

2
√−G

,

which again satisfies γ2 = 1.

It now follows that the action is invariant under the transfor-
mations
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δΘ̄1 = κ̄1P− and δΘ̄2 = κ̄2P+

for arbitrary MW spinors κ1 and κ2 of appropriate chirality.

To make S2 more explicit, we can solve Ω3 = dΩ2 for Ω2.
The solution is

Ω2 = c(Θ̄1ΓµdΘ1 − Θ̄2ΓµdΘ2)dXµ − cΘ̄1ΓµdΘ1Θ̄2ΓµdΘ2,

where c = 1/2π. Note that changing the sign of c corresponds
to interchanging Θ1 and Θ2.
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III. Kappa symmetric D-brane actions

The D-brane world-volume theories that follow contain

Xµ(σ), Θ1a(σ), Θ2a(σ), Aα(σ)

σα parametrizes the Dp-brane world-volume (α = 0, 1, . . . , p).
The new ingredient is an Abelian world-volume gauge field.

The physical content is the massless open-string spectrum,
which is maximally supersymmetric Maxwell theory in p + 1
dimensions — 8 physical fermions and 8 physical bosons.

The fields ΘAa have 32 real components. κ symmetry gives
a factor of two reduction and the Dirac equation removes half
again. So there are 8 physical fermions.
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The bosonic degrees of freedom come from Xµ and Aα. Ac-
counting for p + 1 diffeomorphism symmetries

10− (p + 1) = 9− p

components of Xµ are physical. These describe transverse ex-
citations of the Dp-brane. The gauge field Aα has p + 1 com-
ponents, but two of them are nondynamical, so A contributes
p− 1 physical degrees of freedom.

Altogether, there are

(9− p) + (p− 1) = 8

physical bosonic degrees of freedom, as required by supersym-
metry.
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Construction of S1

Born and Infeld proposed the theory

SBI ∼
∫ √

− det(ηαβ + kFαβ) d4σ,

where k is a constant. This structure combines nicely with the
usual Nambu–Goto structure for a p-brane to give the DBI
action

S1 = −TDp

∫
dp+1σ

√
− det(Gαβ + kFαβ),

where TDp is the tension (or energy density), and k = 2πα′.
As before
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Gαβ = ηµνΠ
µ
αΠν

β,

Π
µ
α = ∂αXµ − Θ̄AΓµ∂αΘA.

We also define

Fαβ = Fαβ + bαβ,

where F = dA is the Maxwell field strength, and the two-form
b is required in order that F is supersymmetric. The result is

b = (Θ̄1ΓµdΘ1 − Θ̄2ΓµdΘ2)(dXµ − 1

2
Θ̄AΓµdΘA).
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Construction of S2

A Chern–Simons term S2 still needs to be added for κ sym-
metry. It is the integral of a (p + 1)-form

S2 =

∫
Ωp+1.

As in the case of the superstring, it is easier to construct the
(p+2)-form dΩp+1, which is manifestly invariant under super-
symmetry. The answer again takes the form

dΩp+1 = dΘ̄AT AB
p dΘB,

where T AB
p is a 2× 2 matrix of p-form valued Dirac matrices.
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In the case of the D0-brane

Ω2 = −mdΘ̄Γ11dΘ = m(dΘ̄1dΘ2 − dΘ̄2dΘ1),

which implies that

T0 = m

(
0 1
−1 0

)
,

and the mass is

m = TD0 =
1

gs
√

α′
.

It is simpler to give the results for all p together rather than
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to enumerate them one by one.

T AB =

∞∑

p=0

T AB
p

In the IIA case the sum is over even values of p, and in the IIB
case the sum is over odd values of p.

Given T , one simply extracts the p-form part to obtain Tp.
The expression for T turns out to be

T AB = me2πα′FfAB(ψ),

where ψ is a matrix-valued one-form given by
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ψ =
1√

2πα′
Γµ Π

µ
α dσα.

In the type IIA case

f (ψ) =

(
0 cos ψ

− cosh ψ 0

)

and in the type IIB case

f (ψ) =

(
0 sin ψ

sinh ψ 0

)
.

This structure ensures that the matrix is symmetric or anti-
symmetric for the appropriate powers of ψ, as required when
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T is sandwiched between MW spinors.

Let us now choose static gauge and relabel the remaining
9− p coordinates as

Xi = kΦi.

Then the bosonic part of the DBI action becomes

−TDp

∫
dp+1σ

√
− det(ηαβ + k2∂αΦi∂βΦi + kFαβ).

Now let us include the fermions and make a gauge choice for
the κ symmetry. A particularly nice choice is
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Θ2 = 0.

This completely kills the Chern–Simons term, because the ma-
trices f (A) and f (B) are entirely off-diagonal.

Making this gauge choice in the case p = 9 and renaming the
remaining MW spinor Θ1 = λ gives the action

−TD9

∫
d10σ

√
− det

(
ηαβ + Zαβ

)
, (14)

where

Zαβ = kFαβ − 2k2λ̄Γα∂βλ + k4λ̄Γγ∂αλλ̄Γγ∂βλ.
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It is truly remarkable that this nonlinear extension of 10d
super-Maxwell theory has exact unbroken supersymmetry.

The static gauge Dp-brane actions with p < 9 can be ob-
tained by dimensional reduction of the gauge-fixed D9-brane
action in eq. (14). The supersymmetry transformations are
complicated, because induced κ transformations must be added
to the original ε transformations of the fields.
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IV. Bosonic D-brane actions with background fields

The D-brane actions obtained so far are for a Minkowski
spacetime background. Actions that describe D-branes in more
general backgrounds are also of interest.

Abelian case

The background fields in the NS-NS sector are the spacetime
metric gµν, the two-form Bµν and the dilaton φ. These can
be pulled back to the world volume by

P [g + B]αβ = (gµν + Bµν)∂αXµ∂βXν.

Henceforth, this will be denoted gαβ + Bαβ.
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The DBI term in static gauge takes the form

−TDp

∫
dp+1σe−φ

√
− det

(
gαβ + Bαβ + k2∂αΦi∂βΦi + kFαβ

)
.

Since the string coupling constant gs is already included in the
tension, the dilaton here is shifted by a constant so that it
approaches zero at infinity.

The R-R background fields only contribute to the Chern–
Simons term. Let us denote an n-form R-R field by Cn and
the corresponding field strength by Fn+1 = dCn.

The complete list of R-R fields in type II superstring theories
involves only n = 0, 1, 2, 3, 4. However, it is convenient to
introduce redundant fields Cn for n = 5, 6, 7, 8. This leads to
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more elegant formulas. The idea is to generalize the self-duality
of the 5-form field strength by requiring that

?Fn+1 = F9−n.

This can be generalized to allow for interactions by adding
additional terms in the definitions of the field strengths Fn+1 =
dCn + . . ..

The Cn fields can also be pulled back to the D-brane world
volume, after which they are represented by the same sym-
bols. Then the Chern–Simons term must contain a contribu-
tion µp

∫
Cp+1, where µp denotes the Dp-brane charge.

In the presence of a background B field or world-volume
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gauge fields, the D-brane also couples to R-R potentials of
lower rank. In terms of the total R-R potential

C =

8∑

n=0

Cn

the result is

SCS = µp

∫ (
C eB+2πα′F

)
p+1

.

Since B and F are 2-forms, only odd-rank R-R fields con-
tribute for even p (the IIA case) and only even-rank R-R fields
contribute for odd p (the IIB case). The B and F fields appear
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in the same combination as in the DBI term.

A Dp-brane in a suitable background can also carry induced
D(p − 2n)-brane charge for n = 0, 1, . . .. This charge can
be smeared over the D-brane world-volume, or it can be con-
centrated on a lower-dimensional hypersurface (e.g., a brane
within a brane).

In the presence of spacetime curvature the Chern–Simons
term contains an additional factor involving differential forms
constructed from the curvature tensor. This factor reduces to
1 in a flat spacetime, which is the case described here.

Non-Abelian case

When N Dp-branes coincide, the world-volume theory is a
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U(N) gauge theory. Almost all studies of non-Abelian D-brane
actions use the static gauge from the outset, since otherwise it
is unclear how to implement diffeomorphism and κ symmetry.

In the static gauge the world-volume fields are just those of a
maximally supersymmetric YM supermultiplet: gauge fields,
scalars and spinors, all in the adjoint representation of U(N).
The leading nontrivial term in a weak-field expansion is exactly
super YM theory. This approximation is sufficient for many
purposes including Matrix theory, based on D0-branes, and
AdS/CFT duality, based on D3-branes.

One should include higher powers of fields to give formulas
that correctly describe non-Abelian D-brane physics for strong
fields. The goal is to capture the physics in the regime of
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approximation in which the background fields and the world-
volume gauge fields are allowed to be arbitrarily large, but
their variation is small over distances of order the string scale.

The requirement of slow variation is meant to justify drop-
ping terms involving derivatives of fields. The tricky issue in
the non-Abelian case is that one should use covariant deriva-
tives to maintain gauge invariance, but there are relations of
the form

[Dα, Dβ] ∼ Fαβ.

This makes it somewhat ambiguous whether a term is deriva-
tive or not. Nonetheless, some success has been achieved,
which will now be sketched.
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In addition to the background fields g, B, φ and C, the
desired actions contain adjoint gauge fields A and 9−p adjoint
scalars Φi, both of which are represented as hermitian N ×N
matrices. The notation is

Aα =
∑
n

A
(n)
α Tn and Φi =

∑
n

Φi(n)Tn,

where Tn are N2 hermitian N ×N matrices satisfying

Tr(TmTn) = Nδmn.

Let us start with the non-Abelian D9-brane action, which is
relatively simple, because there are no scalar fields. In this

50



case the proposed DBI term S1 is

−TD9

∫
d10σe−φ Str

(√
− det

(
gαβ + Bαβ + 2πα′Fαβ

))
.

The determinant refers to the 10 × 10 matrix labelled by the
Lorentz indices. However, the expression inside the determi-
nant is also an N × N matrix. The square root of the deter-
minant is computed for each of the N2 matrix elements, and
then the trace of the resulting N ×N matrix is evaluated. Str
is the symmetrized trace.

The proposed non-Abelian D9-brane Chern–Simons term is
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S2 = µ9

∫
Str

(
C eB+2πα′F

)
10

.

Starting from this ansatz for the p = 9 case, Myers was
able to deduce a unique formula for all the p < 9 cases by
implementing consistency with T-duality.

Myers effect

The formula that Myers obtained has a very complicated Φ
dependence. We will settle here for pointing out an interesting
feature of the result: In the Abelian case a Dp-brane can couple
to the R-R potentials Cp−1, Cp−3, . . . in addition to the usual
Cp+1. In the non-Abelian case the Dp-brane can also couple
to the higher-rank R-R potentials Cp+3, Cp+5, . . ..
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The coupling of non-Abelian D-branes to higher-rank R-R
potentials has interesting consequences. The simplest example
concerns N coincident D0-branes in the presence of constant
4-form flux F4 = dC3. The flux is chosen to be electric, with
nonzero components

F0ijk = fεijk,

where f is a constant. All other background fields are set
to zero, and the background geometry is assumed to be 10d
Minkowski spacetime.

The relevant terms that need to be considered are a kinetic
energy term proportional to Tr(Φ̇iΦ̇i), which comes from the
DBI term, and a potential energy term
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V (Φ) ∼ −1

4
Tr([Φi, Φj][Φi, Φj])− i

3
fεijkTr(ΦiΦjΦk).

The first term in the potential comes from the DBI action. The
second term is the coupling to the R-R 4-form electric field,
which comes from the non-Abelian CS action.

Now let’s look for a static solution for which the potential is
extremal, which requires

[[Φi, Φj], Φj] + ifεijk[Φj, Φk] = 0.

A class of solutions of this equation is obtained by letting
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Φi = fαi/2,

where αi is an N -dimensional representation of SU(2) satis-
fying

[αi, αj] = 2iεijkα
k.

This gives many possible solutions (besides zero) if N is large—
one for each partition of N . However, the one of lowest en-
ergy is given by the N -dimensional irreducible representation
of SU(2), which satisfies

Tr(αiαj) =
1

3
N(N2 − 1)δij.
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In the Abelian theory 2πα′Φi is interpreted as a transverse
coordinate of the D-brane. In the non-Abelian theory this is
an N × N matrix, so this identification is not so straightfor-
ward anymore. In the absence of the four-form electric field,
the preferred configurations that minimize the potential have
[Φi, Φj] = 0. This allows one to define a moduli space on which
these matrices are simultaneously diagonal. Then one can in-
terpret the diagonal entries as characterizing the positions of
the N D-branes.

In the presence of the four-form flux, the Φi no longer com-
mute at the extrema of the potential, and so the classical in-
terpretation of the D-brane positions breaks down. There is
an irreducible fuzziness in the description of their positions.
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One can define the mean-square value of the ith coordinate
(averaged over all N D-branes) to be

〈(Xi)2〉 =
1

N
(2πα′)2Tr[(Φi)2].

Summing over the three coordinates gives a fuzzy sphere whose
radius R squared is the sum of three such terms. Substituting
the ground-state solution gives

R2 = (πα′f )2(N2 − 1).

For large N the uncertainty δR is proportional to 1/N , and
the radius is approximately R = πα′fN . This is proportional
to the electric field and the number of D0-branes.
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If one used a reducible representation of SU(2) instead, one
would find a set of concentric fuzzy spheres, one for each irre-
ducible component. However, such solutions are energetically
disfavored.

The fuzzy sphere has an alternative interpretation as a spher-
ical D2-brane with N dissolved D0-branes. For large N this
can be analyzed using the Abelian D2-brane theory. The to-
tal D2-brane charge is zero, but there is a nonzero D2-charge
electric dipole moment, which couples to the four-form electric
field. The previous results can be reproduced, at least for large
N , in this picture.
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