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SUMMARY

1. Relevance of higher-spins to holography: Type-H hologra-

phy and the three-dimensional O(N) vector model.

2. ”Double-Trace” deformations in Conformal Field Theories

and the first signs of higher-spin dualities.

3. Explicitly: duality canonical transformations in a U(1) gauge

theory on AdS4 induce boundary S-transformations.

4. Outlook (and preliminary results on duality transformations

in linearized higher-spin theories).



Type-S Holographic Correspondence: N=4 SYM/IIB String Theory
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Type-H Holographic Correspondence: O(N) Vector Model/HS on AdS4

O(N) MODEL HS THEORY

LARGE−N

high−spin currents

"equivalent" states

SELF DUALITY?

DUALITY

HOLOGRAPHIC  RELATION



1. Type-H Holography

The set of quasi-primary operators in a CFT form an algebra under the OPE

[Mack (74)]. For two such operators A(x) and B(x) we may expand as

A(x)B(0) =
∑
{Q}

C(x, ∂)Q(0)

The coefficients C(x, ∂) are fully determined in terms of the spin, scaling

dimension and 3-pt function couplings of the quasi-primary operators {Q}

involved in the OPE [Hoffmann, Petkou, Rühl (00)].

Quasi-primary operators are the ”building-blocks” of a CFT and they give

information about its dynamics.



Example: consider a scalar quasi-primary operator Φ(x) with dimension ∆.

〈Φ(x1)Φ(x2)Φ(x3)Φ(x4)〉 =
∑
{Q}

C(x12, ∂2)C(x34, ∂4)〈Q(x2)Q(x4)〉

=
1

(x2
12x

2
34)

∆

∑
{∆s,s}

g∆s,s H∆s,s(v, Y )

=
1

(x2
12x

2
34)

∆

∑
{∆s,s}

g∆s,s v
∆s−s

2 Y s

[
1 + O(v, Y )

]
,

where

v =
x2
12x

2
34

x2
13x

2
24

, u =
x2
12x

2
34

x2
14x

2
23

, Y = 1−
v

u
, x2

ij = |xi − xj|2 .

g∆s,s are the ”3-pt function couplings”.

H∆s,s(u, Y ) are explicitly known functions that give the contribution of an

operator with spin s and dimension ∆s to the OPE.



The terms

v
∆s−s

2 Y s

correspond to the leading short-distance behavior of the 4-pt function for

x2
12 , x2

34 → 0.

In a free CFT the set {Q} includes, among others, an infinite set of quasi-

primary conserved tensor operators with spin s and canonical dimension

∆s = d− 2 + s

These are the higher-spin conserved currents or conformal higher-spins.

Their leading contributions in the OPE are terms of the form

v
d−2
2 Y s .

[Such terms in an OPE also come from descendant operators.]



Holographic description of 4-pt functions:

The classical action on AdS gives non-trivial boundary correlators via tree-

level bulk-to-boundary graphs [Witten (98)] [e.g. α′ = 0⇒ g2N =∞ limit of

the AdS/CFT Correspondence.]

It appears that in order to get boundary 4-pt functions that have higher-spin

current contributions - e.g. free field theory ones - it is necessary to consider

bulk massless (gauge) fields.

A concrete example of the above is provided by explicit calculations in N = 4

SYM4 via the AdS/CFT correspondence [Arutyunov, Frolov, Petkou (00)].



Consider the 4-pt function of the lowest dimension chiral primary operators

(CPOs) of N = 4, [scalar operators with ∆ = 2 in the [0,2,0] of the SU(4)

R-symmetry group]. In the free field theory limit we have

δI1I2δI3I4

400
〈QI1(x1)...Q

I4(x4)〉free =

=
1

(x2
12x

2
34)

2

[
1 +

1

20
v2 +

1

20
v2(1− Y )−2

+
4

N2
(
1

6
[v + v(1− Y )−1] +

1

60
v2(1− Y )−1)

]
=

1

(x2
12x

2
34)

2

[
... +

4

6N2

∞∑
l=2

vY l + ...

]
In the last line of we see the contribution of higher-spin conserved currents

in the connected part of the correlator.



The leading contribution comes from the energy-momentum tensor which

appears always in the OPE. Its contribution is

He.m.(v, Y ) = vF1(Y )[1 + O(v, Y )]

F1(Y ) =
4Y 2 − 8Y

Y 3
+

4(−6 + 6Y − Y 2)

Y 3
ln(1− Y )

−→ Y 2 + O(Y 3)

One can identify the contributions from all the higher-spin currents and even

calculate their ”couplings” after subtracting the descendants.

The perturbative corrections to the connected part are of the form

1

N2
[connected] =

1

N2
[connected]free +

1

N2
g2

Y MN F (v, Y ) ,

F (v, Y ) ∼
∑

l

v Y l ln v + ...



The above terms can be attributed to an infinite set of ”nearly conserved”

higher-spin currents i.e. quasi-primary operators whose scaling dimensions

have being shifted from their canonical values as

∆HS −→∆HS + γ = 2 + s + (g2
Y MN)ηs + · · ·

We may view the above effect as a small deformation of the energy spectrum

of the boundary CFT.

[On AdS, this deformation should correspond to a monster Higgs effect

[Bianchi (04)]].



One can calculate the same 4-pt function using IIB supergravity [Arutyunov,

Frolov (99)]. The result is highly non trivial, but has the simple short-distance

expansion

1

N2
[connected]IIB =

1

N2

1

(x2
12x

2
34)

2

[
vF1(Y ) + O(v2, Y )

]
We notice that the expansion of such a non-trivial function reveals the pres-

ence of only the energy momentum tensor and the absence of all higher-spin

currents.

This shows how far away supergravity is from a holographic description of

perturbative CFTs. This shows also the necessity to consider HS gauge

theories if we wish to describe holographically perturbative CFTs.



QUESTION: Why bother for a holographic description of a well-understood,

non-gravitational system such as perturbative QFT?

ANSWER: Perhaps that well-understood system will teach us something

about a (quantum?) gravitational system on an (A)dS space.

If that is the case, we should better aim for a description of a four-dimensional

gravitational system - it is slightly easier then to argue that we do Physics.

Therefore, we will study three-dimensional CFTs. A concrete proposal for

the holographic correspondence between a 3-d CFT and a 4-d HS gauge

theory has been made [Klebanov, Polyakov (02)]: the O(N)-singlet part of

the critical three-dimensional O(N) vector model is the holographic dual of

the simplest HS gauge theory on AdS4, (hs4) a theory that contains bosonic

symmetric traceless even-rank tensors.



The elementary fields of the (Euclidean) three-dimensional O(N) vector model

are the scalars

Φa(x) , a = 1,2, .., N

constrained by

Φa(x)Φa(x) =
1

g
The model approaches a free field theory for g → 0.

To calculate the partition function in the presence of sources Ja(x) it is

convenient to introduce the Lagrange multiplier field G(x) as

Z[Ja] =

∫
(DΦa)(DG)e

−1
2

∫
Φa(−∂2)Φa + i

2

∫
G(ΦaΦa − 1

g
) +

∫
JaΦa

We then consider the effective coupling ĝ = gN which for large-N may be

adjusted to remain O(1) as g → 0.



Integrating out the Φas and setting G(x) = G0+λ(x)/
√

N we obtain a [renor-

malizable] 1/N expansion. Then, we set G0 = 0 to obtain the critical (i.e.

CFT) theory whose generating functional is

Z[Ja]

Z[0]
=

∫
(Dλ)e

−N
2
[Tr(ln(1− i√

N

λ
−∂2)) + i√

N

λ
ĝ
]

×e
1
2

∫
Ja 1
−∂2(1− i√

N

λ
−∂2)

−1Ja

and the critical coupling is determined by the gap equation

1

ĝ∗
=

∫
d3p

(2π)3

1

p2

The basic propagator of the Φa(x)s is

∆(x) =
1

4π

1

(x2)1/2

The composite field λ acquires an effective propagator K−1 with

K−1 =

[
∆2

2

]−1

= −
16

π2

1

x4



Now we can calculate all n-pt functions of Φa. For example, the 2-pt function

is given by

〈Φa(x)Φb(0)〉 = δab 1

(x2)1/2
[1− η1 lnx2 + ...] , η1 =

1

N

4

3π2

Notice that the elementary fields have acquired an anomalous dimension η1 -

contrast with N = 4 SYM.

A holographic description of the O(N) vector model should reproduce this

result from a bulk calculation, however, such a calculation is still elusive. The

difficulty is that Φa would correspond to the singleton D(1/2,0) of SO(3,2)

and we do not know the bulk action for that.



On the other hand, bulk fields would give the correlation functions of com-

posite boundary operators. The generating functional for one such operator

may be obtained if we consider a external source A for the fluctuations of

the auxiliary field λ as

Z[Ja]

Z0
→ Z[A]

=

∫
(Dλ)e

−1
2

∫
λKλ− i

3!
√

N

∫
K3λλλ− 1

8N

∫
K4λλλλ + · · ·+

∫
Aλ

K3, K4,.. are connected correlators.

This is a generating functional eŴ [A] for a conformal scalar operator λ with a

dimension

∆ = 2−
32

3π2

1

N
+ O(

1

N2
)



[To be precise, since∫
(Dλ)e

−1
2

∫
λKλ +

∫
Aλ

= e
1
2

∫
AΠλ

and Π gives a non-positive 2-pt function, we should consider

W [A] = Ŵ [iA]

]

The proposal of Klebanov-Polyakov is then

eW [A] ≡
∫

AdS4

(DΦ)e−IHS(Φ)

IHS(Φ) =
1

2κ2
4

∫
d4x
√

g

[
1

2
(∂Φ)2 +

1

2
m2Φ2 + ...

]
m2 = −2 that corresponds to a conformally coupled scalar.



The problem in hand naturally asks for a ”bottom-up” approach: use the

full knowledge of the boundary effective action in order to calculate the bulk

path integral.

In principle we should be able to have control of the fully quantized bulk

theory: bulk quantum corrections would correspond to the 1/N corrections

of a renormalizable boundary theory.

For the time being, however, one can be content if knowledge of the boundary

generating functional for composite operators can help the calculation of the

elusive non-linear classical bulk action for a HS gauge theory.



The ”lifting program” [Petkou (02)]:

A possible form of the bulk HS action is

IHS(Φ) =
1

2κ2
4

∫
d4x
√

g

[
1

2
(∂Φ)2 −Φ2 +

g3

3!
Φ3 +

g4

4!
Φ4

+

∞∑
s=2

Gsh
{µ1...µs}Φ ∂{µ1

...∂µs}Φ + · · ·
]

Gs denote the couplings of Φ to the higher-spin gauge fields h{µ1,..,µs}.

From the above, by the standard holographic procedure, we get unambigu-

ously the 2- and 3-pt functions of the boundary field λ.

The 4-pt function depends on g4, g2
3 and on all the higher-spin couplings Gs.

It is technically not impossible to calculate the bulk tree-level exchange of

higher-spin currents [Manvelyan, Rühl (04-05)]. Bulk gauge invariance should

be sufficient to determine all the Gs in terms of only one of them.



Schematically we have

〈λλλλ〉 ∼ g4 ��
��q qqq q@

@�
� + g2

3

[
��
��q qqq@@�

� + crossed
]
+

∑
s

Gs

[
· · ·

]
The above must be compared with the corresponding result obtained from

the W [A]. This would allow us to fix the scalings of various coefficients as

(we set the AdS radius to 1)

1

2κ2
4

∼ N , g3 , g4 ∼ O(1) , G2
s ∼ O(

1

N
) iff 〈hs hs〉 ∼ O(1)

The first result obtained this way was [Petkou (02)]

g3 = 0

This has been confirmed by a direct calculation using the Vasiliev equations

on AdS4 [Sezgin, Sundell (03)]. Further results have been reported in [Man-

velyan, Rühl (03)-(05)].



To Do

• Reproduce, from bulk loops, the known boundary anomalous dimension

of the operator λ and of all the higher-spin currents [for s > 2]

ηs =
1

N

16

3π2

s− 2

(2s− 1)
→s→∞ 2η1[1−

3

2s
+ ...]

[Manifestation of and old argument by Parisi.] Understand the bulk

Higgs mechanism responsible for the above anomalous dimensions.

• Is there ”integrability” of the spectrum of anomalous dimensions? Is

there a ”semiclassical” AdS string (membrane?) behind?

• Temperature: How is the bulk Hawking temperature related to the

known critical temperature for the O(N)→ O(N − 1) phase transition?



2. ”Double-Trace” Deformations and the First Sign of Duality

In the O(N) Vector Model we have started with an elementary field Φa with

dimension ∆ = 1/2 + O(1/N) and obtained a composite operator λ with

∆λ = 2 + O(1/N). It follows that we are dealing with an interacting CFT

even for N → ∞, since the free CFT would have had a composite operator

like

Φ2 ∼
1
√

N
ΦaΦa

with ∆Φ2 = 1.

Where is the free theory?



Consider the Legendre transform of W [A] as

W [A] +

∫
AQ = Γ[Q]

Γ[Q] = Γ0[Q] +
1

N
Γ1[Q] + ...

Γ0[Q] =
1

2

∫
Q K−1 Q +

1

3!
√

N

∫
K−1

3 QQQ + · · ·

K−1
3 ... are the amputated correlators.

Γ0[Q] is the generating functional for the correlation functions of the free

field 1√
N
ΦaΦa with dimension ∆ = 1.

Therefore, via the Legendre transform we have the holographic description

of a free field theory!



The theory described by Γ[Q] has imaginary couplings and anomalous dimen-

sions below the unitarity bounds [Petkou (96)]. Nevertheless, it seems that

the theories described by W [A] and Γ[Q] are holographic duals of a unique

HS bulk theory.

For N →∞ the spectra of the two above theories are almost the same. The

W [A] theory also contains higher-spin conserved currents for N → ∞ [recall

the values of the anomalous dimensions].

The only difference between the two theories at leading-N is the interchange

of the two scalar operators λ and Φ2, that correspond to the following Weyl

equivalent UIRs of SO(3,2)

D(1,0)←→ D(2,0)



The crucial observation is that the above two theories are related to each

other by an underlying dynamics that appears to be generic in non-trivial

models of three-dimensional CFTs i.e the O(N) vector model, the Gross-

Neveu model, the Thirring model.

This dynamics is commonly reffered to as double-trace deformations, takes

its name from real double-trace deformations of conformal gauge theories -

i.e. N = 4 SYM.

We conjecture that this particular underlying dynamics is related to some kind

of a duality.



Evidence for our conjecture: consider an operator Q(x) with a dimension

∆ = 1 i.e. an operator in free field theory. Q2(x) is a relevant deformation

and we can consider the deformed 2-pt function as

〈Q(x1)Q(x2) e
f
2

∫
Q2(x)〉 = 〈Q(x1)Q(x2)〉f

= 〈Q(x1)Q(x2)〉0 +
f

2

∫
d3x〈Q(x1)Q(x2)Q

2(x)〉0 + ...

We now make a large-N factorization assumption such that

1

2
〈Q(x1)Q(x2)Q

2(x)〉0 ' 〈Q(x1)Q(x)〉0〈Q(x2)Q(x)〉0 + O

(
1

N

)
Then the series can be summed and we obtain

〈Q(x1)Q(x2)〉f = 〈Q(x1)Q(x2)〉0

+f

∫
d3x〈Q(x1)Q(x)〉0〈Q(x2)Q(x)〉f + O

(
1

N

)



In momentum space this becomes

Qf(p) =
Q0(p)

1− fQ0(p)
, Q0(p) '

1

p
.

In the infrared, i.e. for small momenta |p| � f , we find

f2Qf(p) = −
f

1−
1

fQ0(p)

' −f −Q−1
0 (p) + O(

1

f
)... .

Dropping the non-conformal constant f term on the r.h.s. we obtain the 2-pt

function of an operator with dimension ∆f = 2.

We see that the UV dimension ∆0 = 1 has changed to the IR dimension

∆f = 2 and that this change is induced by the double-trace deformation.



The above dynamics must be seen in AdS4. The on-shell bulk action of a

conformally coupled scalar, using the standard Poincaré coordinates, is

Iε = −
1

2

1

ε2

∫
d3xΦ(x̄; ε)∂rΦ(x̄; r)

∣∣
r=ε�1

To evaluate it we need to solve the Dirichlet problem

(∇2 + 2)Φ(x̄; r) = 0 , Φ(x̄; r =∞) = 0 , Φ(x̄; ε) = Φε(x̄)

Φ(x̄; r) =

∫
d3p

(2π)3
eix̄p̄Φε(p̄)

r

ε
e−|p|(r−ε)



We proceed via the Dirichlet-to-Neumann map that relates the boundary value

of a field in a certain manifold M to its normal derivative at the boundary

Φ(x)
∣∣
x∈∂M

= f(x̄) ; Λ̂f = nµ∂µΦ(x)
∣∣
x∈∂M

where nµ is the normal to the boundary vector. Knowledge of the map

Λ̂ allows (in most cases) the reconstruction of the bulk metric. For the

conformally coupled scalar we have the remarkably simple expression

∂rΦ(p̄; r)
∣∣
r=ε

= (
1

ε
− |p|)Φ(p̄; ε) .

The terms in parenthesis on the r.h.s. may be viewed as a generalized

Dirichlet-to-Neumann map since we have taken the boundary to be at r = ε.

If we set f = 1/ε, we find

1

ε2

[
Λ̂ε(p)

]−1
∼ f2Qf(p) = f2 Q0(p)

1− fQ0(p)
.



Hence, the inversion of the generalized Dirichlet-to-Neumann map for a con-

formally coupled scalar corresponds to the resummation induced by a double-

trace deformation on the free boundary 2-pt function. Notice that the limit

ε→ 0 drives the boundary theory in the IR.

In other words, we have found that a dynamical process [double-trace defor-

mation] in the boundary corresponds to a ”duality” in the bulk [D(1,0) ↔

D(2,0)].

The UIRs D(1,0) and D(2,0) may be viewed as ”spin=0 conserved currents”.

Indeed, the higher-spin bosonic currents of hs4 correspond to the UIRs D(s+

1, s) and saturate the unitarity bound ∆ ≥ s + 1.



2

0

DIMENSION

SPIN

UNITARITY BOUND

1

2

1

The filled circles correspond to the higher-spin bosonic currents of SO(3,2),

D(s + 1, s) and the empty circles to their ”shadows” D(2− s, s).



Looking at the plot, one could conclude that the above ”duality” is a special

feature of the scalar UIRs. [Note: A similar ”duality” between scalar operators

with dimensions 3/2 and 5/2 is proposed to underline the Seiberg duality in

four-dimensions [Klebanov, Maldacena (04)]].

It does not seem to work for the higher-spin UIRs since the shadows have

dimensions below the unitarity bound, and for s > 2 below zero.

On the other hand, one may ask whether the group theoretic ”shadow invari-

ance” of the higher-spin current spectrum can be detectable at all. Or else,

whether there exist some particular property of 3-d CFTs that corresponds

to the ”shadow symmetry” of higher-spin currents on AdS4. It is natural to

imagine that this dynamical property is a ”double-trace” deformation.



Motivated by the spin=0 case, consider boundary deformations of the form

fs

2

∫
d3x h(s)h(s) ,

where h(s) denote symmetric traceless and conserved currents. Such defor-

mations are of course irrelevant for all s ≥ 1, nevertheless in many cases they

lead to well-defined UV fixed points.

The crucial example is the 3-d Thirring models in the large-N limit [e.g.

Hands (94), Anselmi (00)]. In this model one can show the existence of an

non-trivial UV fixed point. The irrelevant operator that drives the free (IR)

theory to that fixed point(UV) is of the ”double-trace” form above. [A similar

phenomenon occurs in the 3-d Gross-Neveu model].

Nevertheless, we will still be left with the problem of unitarity...



3. U(1) Field on AdS4: Bulk Duality and Boundary Transformations

The remedy of the above problem is suggested by old studies of three- di-

mensional gauge theories. In particular, it is well-known that to a three-

dimensional gauge potential Ai(p) corresponds [in momentum space], a con-

served current

Ji(x) ∝ iεijk pj Ak(p)

Similarly, to a three-dimensional spin-2 gauge potential gij(p) [symmetric,

conserved, traceless tensor], corresponds a conserved current

Tij(p) ∝ Π(1.5)
ijkl (p) gkl(p)

[see below for the definitions].

A similar construction associates to each gauge field belonging to the irrep

D(2− s, s) a physical current in the irrep D(s + 1, s).



Therefore, we need actually two steps to understand the effect of the double-

trace deformations: Starting with a theory that has a field in the D(s + 1, s)

irrep:

i) The deformation will produce an operator that transforms under D(2−s, s).

This may be viewed as a gauge field and hence there is no necessity to belong

to a unitary irrep.

ii) To this operator we associate a ”dual” conserved current D(s + 1, s) and

hence we are led to a ”dual” CFT.

Moreover, these conserved currents have opposite parity from the gauge

fields, so we expect that parity plays a role in our discussion.



The explicit example [Witten (03); Leigh, Petkou (03)]:

Consider a boundary CFT with a conserved current Ji having momentum

space 2-pt function

〈JiJi〉0 ≡ (J0)ij = τ1
1

|p|
Πij + τ2εijkpk , Πij ≡ pipj − δijp

2 .

The term proportional to τ2 is a parity breaking term, special to three dimen-

sions.

Consider the irrelevant double-trace deformation

f1

2

∫
JiJi ,

and calculate

(Jf1)ij ≡ 〈JiJi e
f1
2

∫
JJ 〉 = (J0)ij +

f1

2

∫
〈JiJj

∣∣JkJk〉+ ...



Now assume:

i) large-N expansion

JiJj ∼ (J )ij + O(1/N)

ii) existence of a UV fixed-point.

The leading-N resummation yields

f2
1 (Jf1)ij = τ̂1

1

|p|
Πij + τ̂2εijkpk

τ̂1 '
f1

|p|
+

1

|p|2
τ1

τ2
1 + τ2

2

+ ...

τ̂2 ' −
1

|p|2
τ2

τ2
1 + τ2

2

+ ...

Dropping the non-conformally invariant term f1/|p| we get

f2
1 (Jf1)ij =

τ1

τ2
1 + τ2

2

1

|p|3
Πij −

τ2

τ2
1 + τ2

2

1

p2
εijkpk .



This is the 2-pt function of a conformal operator Âi(p̄) transforming in the

irrep D(1,1). It lies below the unitary bound ∆ ≥ s+1 of SO(3,2), therefore

it must be a gauge field.

Define then the current Ĵi = iεijkpjÂk that has 2-pt function

〈ĴiĴj〉 =
τ1

τ2
1 + τ2

2

1

|p|
Πij −

τ2

τ2
1 + τ2

2

εijkpk .

It follows that there exists a ”dual” theory with current Ĵi that has 2-pt

function obtained from the initial one by

τ → −
1

τ
, τ = τ2 + iτ1 .

We conclude that the ”double-trace” deformation has induced an S-transformation

on the parameters of the 2-pt function of the conserved current.



The above generalized to all (bosonic) higher-spin currents in three dimen-

sional CFTs. Example: the energy momentum tensor.

〈TijTkl〉 = κ1
1

|p|
Π(2)

ij,kl − κ2Π
(1.5)
ij,kl ,

Π(2)
ij,kl =

1

2

[
ΠikΠjl + ΠilΠjk −ΠijΠkl

]
,

Π(1.5)
ij,kl =

1

4

[
εikpΠjl + εjkpΠil + εilpΠjk + εjlpΠik

]
.

The boundary irrelevant ”double-trace” deformation

f2

2

∫
TijTij ,

leads [under the same assumption regarding a large-N expansion and the

existence of UV fixed point], to a ”dual” theory with an energy momentum

tensor that has 2-pt function obtained from the initial one by

κ→ −
1

κ
, κ = κ2 + iκ1 .



What do all that mean for the bulk HS gauge theory?

The bulk action on AdS4

I =
1

8π

∫
d4x
√

g

[
4π

e2
FµνF

µν + i
θ

2π

1

2
εµνρσFµνFρσ

]
.

leads holographically to the 2-pt function (J0)ij with

τ =
θ

4π2
+ i

2

e2

Use the ADM form of the (Euclidean) AdS4 metric (with radius set to 1)

ds2 = dρ2 + γijdxidxj , γij = e2ρηij , γ = detγij , i, j = 1,2,3 .

I will show that a canonical duality transformation in the bulk, induces the

S-transformation in the boundary 2-pt function.



Method: Hamilton-Jacobi Holography

The variation of the on shell bulk action with respect to the canonical variable

Ai gives the canonical momentum Πi at the ”boundary” ρ0.

Πi is interpreted as the regularized 1-pt function in the presence of external

sources - the latter are the values of Ai at the boundary.

Finally, to reach the asymptotic boundary at ρ → ∞ one invokes a further

technical step, [sometimes called holographic renormalization], such as to ob-

tain finite 1-pt functions from which all correlation functions of the boundary

CFT can be found.

Schematically we have

1
√

γ

δI

δAi(ρ0, xi)

∣∣∣
on−shell

= Πi(ρ0, xi) ∼ρ0→∞ 〈J i(xi)〉Ai



The canonical form of the action is

I = −
∫

dρ

∫
d3x
√

γ
[
ΠiȦi −H(Πi, Ai)

]
,

H(τ, τ̄ ; Πi,Bi) =
1

e2

1
√

γ
γij

(
E iEj − BiBj

)
=

i

τ − τ̄

1
√

γ
γij(Π

i − iBiτ)(Πj − iBj τ̄) ,

Πi =
2

e2
E i + i

θ

4π2
Bi , E i =

√
γEi , Bi =

√
γBi ,

with Ei = F i0 and Bi = 1
2
εijkFjk the usual electric and magnetic fields. It is

crucial that we have solved the Gauss Law constraint ∂iE i = 0.

Next we consider canonical transformations in the bulk from the set of vari-

ables (Ai,Πi) to the new set (Ãi, Π̃i) via a generating functional of the 1st

kind

F[Ai, Ãi] =
i

2

∫
ρ= fixed

d3x
√

γAi(ρ, xi)ε
ijkF̃jk(ρ, xi) .



This canonical transformation leaves the Hamiltonian invariant H = H̃ if

1
√

γ

δF
δAi

= iB̃i ≡ Πi ,
1
√

γ

δF
δÃi

= iBi ≡ −Π̃i

Under the above transformations the Hamiltonian retains its from up to a

τ → −1/τ transformation i.e.

H̃ = H

(
−

1

τ
,−

1

τ̄
, Π̃i, B̃i

)
[The above is the θ 6= 0 extension of an old observation by Deser, Teitelboim

(76) regarding the duality invariance of the action of electromagnetism.]

The two dual bulk actions, one written in terms of (Ai,Πi) and the other in

terms of (Ãi, Π̃i), which give respectively at ρ =∞,

〈Ji〉Ai = iB̃i = −εijkpjÃk , 〈J̃i〉Ãi
= −iBi = εijkpjAk.

Since the Hamiltonians are dual as above, one expects that the parameters

in the above 2-pt functions will be related by τ → −1/τ .



We can also prove the above statement: From the above 1-pt functions we

can calculate the corresponding 2-pt functions by functionally differentiating

with respect to Ai and Ãi as

δÂi(x̄)

δAj(x̄)
= Mj

i(x̄− ȳ) =

∫
d3p

(2π)3
eip̄(x̄−ȳ)Mj

i(p̄)

J ik(p̄) = −εijlpjMk
l (p̄)

Ĵ ik(p̄) = εijlpj(M−1)k
l (−p̄)

and I get

εiαβJ ik(p̄) = −
(
pαMk

β(p̄)− pβMk
α(p̄)

)
Finally, using Mi

j(p̄)(M−1)j
k(p̄) = δi

k we obtain

Ĵic(p̄)J
ik(p̄) = −pαpβ

[
Mk

α(p̄)(M−1)β
c (p̄)− δα

βδk
c

]



We make the following ansatz for the the matrix δÃi/δAj

δÃi

δAj
= C1

1

p2
Πij + C2εijk

pk

|p|
+ (ξ − 1)

pipj

p2
,

where ξ plays as usual the role of gauge fixing, necessary for its inversion.

Then we find, independently of ξ

〈JiJk〉〈J̃kJ̃j〉 = −Πij ,

with Πij defined previously.

It is easy to verify that the parameters in the 2-pt functions 〈JiJk〉 and 〈J̃kJ̃j〉

are related by the S-transformation o.e.d.



The above S-transformations, combined with the trivial transformation

τ → τ + 1 ,

form the SL(2,Z) group [Witten (03)]. This transformation is the boundary

image of the bulk shift of the θ-angle

θ → θ + 2π .

INTRIGUING REMARK:

The parameters in 2-pt functions of spin=1 currents in 3-d CFTs appear

to correspond to measurable physical quantities i.e. Ohmic and Hall con-

tactivities in Fractional Quantum Hall Systems. Their values at different

critical points [i.e. different plateaus] are related one to the other with the

action of SL(2, Z), or a subgroup if it [e.g. Dolan, Lütken, (02)]. This is a

phenomenological observation that asks for an explanation.



Outlook

• Think of some unknown 3-d CFT that has spin=1 currents. To detect

them, we couple external U(1) gauge fields to the currents and ”mea-

sure” the current’s (linear) response. Suppose then that the (linear)

response must be given by the boundary values of the electric field or

canonical momenta of a U(1) field on AdS4. Then, there should exist

at least another fixed point where the (linear) response is given by the

boundary value of the transformed electric field or canonical momenta.

• Study models with bulk electric and magnetic charges. This will lead

to 3-d models with particle-vortex duality properties .



4. Overview and Way to Go: Duality Transformations in Linearized

Higher-Spin Gauge Theories on AdS4

• I suggested that Higher-Spin Holography [Type-H] is qualitative different

form the standard Supergravity Holography [Type-S]. Only the former

can yield a holographic description of free theories.

• I proposed to use Type-H Holography ”bottom-up” in order to get

information for gravitational theories from non-gravitational ones. Of

particular importance is the AdS4/CFT3 case.

• As an application of the above proposal, I used dynamical information of

3-d CFTs [double-trace deformations] to argue that one of the salient

features of Type-H Holography is a generalization of electric/magnetic



duality to higher-spin fields. It is then natural to suggest that this duality

[S-duality?] property should be the guiding principle for connecting

String Theory to Higher-Spins.

In the U(1) theory, any bulk canonical transformation would correspond to

some transformation of the parameters in the boundary correlation functions.

However, only duality transformations give the boundary the S-transformation.

CONJECTURE [Leigh, Petkou (03)]: A similar phenomenon exists for all

higher-spin fields on AdS4 i.e. there exist canonical duality transformations

that induce in the boundary the S-transformation on 2-pt functions of higher-

spin currents. Moreover, these duality transformations play - at the linearized

level - a similar role to the electric/magnetic dualities of the U(1) theory;

namely they are symmetries of the equations of motion and also of the bulk



action [Deser, Teitelboim (76), Henneaux, Teitelboim (04), Deser (05)]. In

the sense that the action is invariant - up to a total ”time” derivative -

when the duality transformations are implemented in terms of the gauge-fixed

canonical variables: the quadratic Hamiltonian is invariant and the kinetic

term Π · Q̇ gives a total ”time” derivative.

In other words, to prove our conjecture we need to do a Hamiltonian analysis

of the linearized higher-spin actions around AdS4 and write them in a form

similar to electromagnetism.

[Leigh, Petkou to appear (soon)]


