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Introduction and Motivations

• The critical dimension for superstrings in flat space is d =

10. In dimensions d < 10, the Liouville mode is dynamical

and should be quantized as well (Polyakov). We will call

these strings non-critical. The total conformal anomaly

vanishes for the non-critical strings due to the Liouville

background charge.

• There are various motivations to study non-critical strings.

First, non-critical strings can provide and alternative to

string compactifications. Second, non-critical strings are

expected to provide a dual description to gauge theories.

• Examples of backgrounds one wishes to study are
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where ~x = (x1, ..., xd−1), and with other background

fields turned on, which may provide a dual description of

gauge theories. Depending on the form of the warp factor

a2(ϕ), the gauge theory can be confining, or at a conformal

fixed point.

• A complication: The d-dimensional supergravity low-energy

effective action contains a cosomlogical constant type term

of the form
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d
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x
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which vanishes only for d = 10. This implies that low

energy approximation E ≪ l−1
s is not valid when d 6= 10,

and the higher order curvature terms of the form
`

l2sR
´n

cannot be discarded (see Cobi Sonnenschein’s lectures in

this conference)

• In addition: interesting target space curved geometries

include Ramond-Ramond (RR) field fluxes, and we face the

need to quantize the strings in such backgrounds.

• The aim: to construct a covariant formulation of the non-

critical superstrings, that will allow us to quantize the strings

in curved backgrounds with RR fields.

• We start by considering fermionic strings propagating on a

linear dilaton background

ds
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= ηijdx

i
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, Φ = − Q√

2
ϕ (3)

where i, j = 1, ..., 2n, n = 0, 1, 2, 3, x ∈ S1 of radius

R = 2/Q, Q =
√

4 − n, and Φ is the dilaton field.

• Since a flat background with constant dilaton field is not

a solution of the non-critical string equations, the linear

dilaton background will be used by us to make the dictionary

between the NSR non-critical strings and the covariant non-

critical strings.

• This dictionary will be used in order to couple the non-

critical strings to curved backgrounds with RR fields.



NSR Non-Critical Superstrings

• The (2n + 2)-dimensional fermionic strings with n =

0, 1, 2, 3, are described in the superconformal gauge by

2n + 1 matter superfields Xi, i = 1, . . . , 2n + 1 ≡ D,

and by a Liouville superfield Φl (Kutasov,Seiberg). In

components we have (xi, ψi), (ϕ, ψϕ). As usual, we have

two ghost systems (β, γ) and (b, c).

• The central charges are given by (2n + 1, (2n + 1)/2),

(1 + 3Q2, 1/2), 11 and −26. The total central charge

is given by 3(2n + 1)/2 + 1/2 + (1 + 3Q2) − 15 =

3(n +Q2 − 4). It vanishes for

Q(n) =
√

4 − n (4)

• The stress energy tensor of the system reads

T = Tm + Tghost (5)
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2n+1
X
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β∂γ − 1

2
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• We choose an euclidean metric for the bosonic space xi.

However, one of the boson, which we take to be x2n+1 ≡ x

is compactified on S1 of radius 2
Q.

• We define Ψ = ψ + iψl and ΨI = ψi + iψi+n (with

I = 1, . . . , n). These are bosonized in the usual way

by introducing the bosonic fields H for ∂H = i
2ΨΨ† and

∂HI = i
2Ψ

IΨ†I where Ψ† = ψ−iψl, Ψ†I = ψi−iψi+n.
We have

H
i
(z)H

i
(w) ∼ − log(z − w)

H(z)H(w) ∼ − log(z − w) (8)

• We define the spin fields Σ± = e±
i
2H , and Σa =

e±H
1±...±Hn, where the index a runs over the independent

SO(2n) spinor representation.

• Supersymmetry:

For the (2n + 2)-dimensional strings we can construct in

the −1
2 picture 2n+2 candidates for supercurrents

e
−φ2+ i

2

“

±H±H1±...±Hn±Qx
”

(9)

However, only 2n of them are mutually local w.r.t each

other and close a supersymmetry algebra.

• Combining the left and right sectors, one gets an N = 2

supersymmetry algebra in 2n-dimensional space. Type

IIA and type IIB strings are distinguished in the way we

choose the supersymmetry currents from the left and right



sectors. When the target space allows chiral supersymmetry

(n = 1, 3), type IIA and type IIB have (1, 1) and (2, 0)

target space supersymmetry, respectively.

• In order to work in a covariant formalism we will see that

it is convenient to use a bigger superspace with double the

amount of supersymmetric coordinates. Such supespace

arises naturally when considering the critical superstrings

compactified on CY4−n manifolds (Berkovits).

• Consider the simplest model with D = 1 (n = 0). We

have the bosonic fields (x, ϕ). In this case there is only one

nilpotent supercharge. We can choose the corresponding

supercurrent q+(z) in the form

q+(z) = e
−φ2−iH2 −ix

, (10)

which gives the supercharge Q+

Q+ =

I

e−
1
2φ−

i
2H−ix , (11)

with Q2
+ = 0.

• One can write another supercurrent in the form

q−(z) = e−
φ
2+iH2 +ix . (12)

However, it is not local w.r.t. q+(z).

• There is also a supercurrent from the right sector, which

we will denote by q̄. If we choose, the same supercurrents

(q+, q̄+) or (q−, q̄−) in the left and right sector, we get



type IIB with 0+0-dimensionalN = 2 supersymmetry (the

two supercharges are nilpotent). If, on the other hand, we

choose different supercurrents in the left and right sectors

(q+, q̄−) or (q−, q̄+) we get type IIA.

• The affine current

R =
2i

Q(n)
∂x (13)

corresponds to the U(1)R symmetry. q+ and q− have

R-charges ±1.

• Note that while the target space is two-dimensional, the

supersymmetry structure is that of two dimensions less. This

structure will persist in higher dimensions, namely in 2n+2

dimensions we will have 2n-dimensional supersymmetry

algebra for the non-critical superstrings.

• In order to construct the covariant hybrid formalism we

need to work in a bigger superspace. This can be seen, for

instance, by noticing that we have in the NSR formalism

four fermionic variables (ψ, ψϕ) and (b, c). Thus, we

need two target superspace fermionic coordinates and their

conjugate momenta, for each of the left and right sectors.

• In order to double the superspace, we add one more

supercharge

Q+̇ =

I

e−
1
2φ−

i
2H+ix

(14)

which has the property that

{Q+, Q+̇} =

I

e−φ−iH (15)



Similarly, we introduce

Q−̇ =

I

e−
1
2φ+ i

2H−ix
(16)

which has the same property

{Q−, Q−̇} =

I

e
−φ+iH

(17)

Using the two charges Q+, Q+̇ (or Q−, Q−̇) we will

construct a superspace with two fermionic coordinates θ+

and θ+̇ (or θ− and θ−̇). We will follow the hybrid formalism

in order to construct the covariant description of the strings

in this superspace.



Covariant Non-Critical Superstrings

• We construct superspace variables as the dimension zero

combinations

θ
+

= cξe
−3

2φ+ i
2H+ix

, θ
+̇

= e
1
2φ+ i

2H−ix
(18)

The variables θ+ and θ+̇ have regular OPE, and

q+(z)θ
+
(w) ∼ 1

(z − w)
, q+̇(z)θ

+̇
(w) ∼ 1

(z − w)
(19)

• The conjugate momenta to θ+ and θ+̇ are the dimension

one objects

p+ = bηe
3
2φ−

i
2H−ix , p+̇ = e−

1
2φ−

i
2H+ix

(20)

and

p+(z)θ
+
(w) ∼ 1

(z − w)
, p+̇(z)θ

+̇
(w) ∼ 1

(z − w)
(21)

• The fermionic fields θ+, θ+̇, p+, p+̇ have singular OPE’s

with the field x. A way to solve this problem is to redefine

the variable x:

x
′
= x+ 2i(φ+ κ) (22)

such that

{Q+, Q+̇} =

I

∂(ϕ− ix′) (23)



• The next step we rewrite the ghost fields in terms of

new chiral bosons ω and ρ by imposing the following two

equations

b = p+ǫ
ω−ρ , − γ2b = p+̇e

ω+ρ
(24)

The conformal spin of the combinations eω−ρ and eω+ρ is

1 and 0, respectively.

• Their stress energy tensor

Tω,ρ = (∂ω)
2 − ∂

2
ω − (∂ρ)

2 − ∂
2
ρ (25)

• To summarize: we replaced the four bosons variables

(x, ϕ, β, γ) and four fermion variables (ψ, ψϕ, b, c) in

the NSR formulation by four bosons variables (x′, ϕ, ω, ρ)

and four fermion variables (p+, θ
+, p+̇, θ

+̇). Let us

now compute the total conformal charge to check the

consistency of the above manipulations. We have the

following contributions

(−2)
p
+̇
θ+̇

+ (−2)p+θ+ + (1 − 6)ω +

(1 + 6)ρ + (1 − 12)x′ + (1 + 12)ϕ = 0 (26)

• There is another set of variables that will be usefull when

considering curved target spaces with RR background fields.

It is given by

Π++̇ = ∂(ϕ− ix′) , Π++̇ = ∂(ϕ + ix′) − 2θ+∂θ+̇

d+ = p+ , d+̇ = p+̇ + θ
+
Π++̇ (27)



which satisfy the algebra

d+(z)d+̇(w) ∼
Π++̇

(z − w)

Π
++̇

(z)Π++̇(w) ∼ −2

(z − w)2

d+(z)Π++̇(w) ∼ 0

d+̇(z)Π++̇(w) ∼ 0

d+(z)Π
++̇

(w) ∼ −2
∂θ+̇

(z − w)

d+̇(z)Π
++̇

(w) ∼ −2
∂θ+

(z − w)
(28)

• We will use the notation (++̇,
++̇,+, +̇) for the superspace

indices

x++̇ = ϕ− ix′, x++̇ = ϕ+ ix′, θ+, θ+̇
(29)

• Let us compute the spectrum in the new variables. It is

convenient to find the inverse map between the original

variables and the new supersymmetric variables. Bosonizing

the fermions θ+, θ+̇, p+ and p+̇ by

θ+ = eα, p+ = e−α, θ+̇ = eβ, p+̇ = e−β (30)

• The BRST cohomology consists of states at ghost numbers

zero, one and two. At ghost number one there are two



types of vertex operators. In the NS sector we have

Tk = e
−φ+ikx+plϕ (31)

Locality with respect to the space-time supercharges Q+

(and Q+̇) projects on half integer values of the momentum

in the x-direction

x : k ∈ Z +
1

2
(32)

The introduction of a second supercharge does not change

the constraint on the spectrum and it is needed for the

construction of the covariant formalism.

• In the Ramond sector we have the vertex operators

Vk = e−
φ
2+ i

2ǫH+ikx+plϕ (33)

where ǫ = ±1. Locality with respect to the space-time

supercharges Q+ and Q+̇ implies k ∈ Z + 1
2 for ǫ = 1

and k ∈ Z for ǫ = −1.

• The Liouville dressing is determined by requiring conformal

invariance of the integrated vertex operators. Thus, the

coefficient pl has to be a solution to the equation

k2

2
− 1

2
pl (pl − 2) =

1

2
(34)

This equation can be solved by pl = 1 ± k. Furthermore

the locality constraint requires pl ≤ Q
2 = 1.



• In supersymmetric variables we have

Tk = e

“

α(−3
2+k)+β(1

2−k)+ω+(−2+k)(2ρ+ix′L)+plϕ

”

(35)

and in the R sector, for ǫ = ±, we have

Vk,ǫ=+1 = e

“

β (1
2−k)+α (−1

2+k)+ω+(−1+k) (2 ρ+ix′L)+plϕ

”

Vk,ǫ=−1 = e

“

α (−1+k)−β k+(−1+k) (2 ρ+i x′L)+plϕ

”

(36)

• From equations we immediately see that, in the case of

NS vertex operators, we need that the momentum k must

be half integer in order to rewrite it in terms of the new

variables, and for the R sector we have that for ǫ = +1

k must be half integer, while for ǫ = −1, the momentum

should be an integer. This is the way that the locality

with respect to the space-time supercharges in the NSR

formalism is realized in the hybrid variables.

• Let us examine the Liouville-independent states. By setting

pl = 0, the conformal invariance (and the Dirac constraint)

implies that k = ±1 and we can have only the state

V+1,ǫ=−1 = p+̇ (37)

• By the definition of the supercurrent q+̇ = p+̇. The vertex

operator V+1,ǫ=−1 describes the single fermion of the open

string theory. It is massless and it does not depend on the

coordinate x′.



• Combining left and right sectors, we have for constant RR

fields of IIB/A string theories the vertex operators

V
A
RR = q+̇q̄−̇ , V

B
RR = q+̇q̄+̇ (38)

where q̄+̇ and q̄−̇ are the right moving charges.

• The coupling of the RR vertex operators to the space-time

RR fields strength F αβ is

F
+̇−̇
q+̇q̄−̇ , F

+̇+̇
q+̇q̄+̇ (39)

• Thus we find one RR scalar both for IIA and IIB. In Type

IIB this corresponds to a self-dual 1-form field strength in

two dimensions. In Type IIA this corresponds to a 2-form

field strength, or alternatively, its scalar Hodge dual.

• Ramond-Ramond Fields: In d = 4 the there are 4 RR

degrees of freedom. In type IIB it a 1-form (or its hodge

dual 3-form) and in type IIA it is a self-dual 2-form.

• In d = 6 the there are 16 RR degrees of freedom. In type

IIB these are a 1-form (or its hodge dual 5-form) and a

self-dual 3-form, and in type IIA these are 0-form (or its

hodge dual 6-form) and a 2-form (or its hodge dual 4-form).

• In d = 8 the there are 64 RR degrees of freedom. In type

IIB these are a 1-form (or its hodge dual 7-form) and a

3-form (or its hodge dual 5-form), and in type IIA these

are 0-form (or its hodge dual 8-form) and a 2-form (or its

hodge dual 6-form) and a self-dual 4-form.

• The bosonic part of the target space effective action takes



the form

S =
1

2k2
d

Z

d
d
x
√
G(e

−2Φ
(R + 4(∂Φ)

2
+

10 − d

α′ −

1

2 · 3!
H2) − 1

2 · n!
F 2
n) (40)

• For instance, consider curved backgrounds with RR fields,

with constant dilaton and vanishing NS-NS field, which will

be considered later. Then, the field equations imply that

the scalar curvature is

l
2
sR = d− 10 (41)

• One class of such backgrounds of type IIA non-critical

strings are AdSd spaces with a constant dilaton e2Φ = 1

N2
c

and a d-form RR field Fd

l
2
sF

2
d = 2(10 − d)d!N

2
c (42)

• Using the supersymmetric variables the classical action for

IIB in the flat background is given by

SIIB =
1

α′

Z

dzdz̄
“1

2
Π++̇Π

++̇
+ d+∂̄θ

+ + d+̇∂̄θ
+̇ +

d̄+∂θ̄
+

+ d̄+̇∂θ̄
+̇

”

+ S
flat
B (43)

where SB is the action for the chiral bosons ω, ω̄ and ρ, ρ̄.



• The the classical action for IIA in the flat background takes

the form

SIIA =
1

α′

Z

dzdz̄
“1

2
Π++̇Π

++̇
+ d+∂̄θ

+ + d+̇∂̄θ
+̇ +

d̄−∂θ̄
−

+ d̄−̇∂θ̄
−̇

”

+ S
flat
B (44)

• In order to couple the system to the background, we

introduce the curved vielbein EA
M where the A are tangent

superspace indices and M are curved superspace indices.

We will use the notation (++̇,
++̇,+, +̇) for the tangent

superspace indices, andZM for the curved target superspace

coordinates.

• The the new supersymmetric variables are given by

Π
A

= E
A
M∂Z

M
, Π

A
= E

A
M ∂̄Z

M
(45)

• We have

(G+ B)AB = E
M
AEBM (46)

• The action for IIB in curved space can be written as

SIIB =
1

α′

Z

dzdz̄((G + B)ABΠAΠ
B

+ d+Π̄+

+d+̇Π̄
+̇

+ d̄+Π
+

+ d̄+̇Π
+̇

”

+ d+̇d̄+̇F
+̇+̇

+ SB (47)

• Similarly, the action for type IIA takes the form

SIIA =
1

α′

Z

dzdz̄((G + B)ABΠAΠ
B

+ d+Π̄+



+d+̇Π̄
+̇

+ d̄−Π
−

+ d̄−̇Π
−̇
) + d+̇d̄−̇F

+̇−̇
+ SB (48)

• SB is the action for the chiral bosons ρ and ω. In order

to write the action SB for the chiral bosons we notice that

the field ρ depends on x and therefore couples to the U(1)

connection AR
M of the R-symmetry. The action SB reads

SB = S
flat
B +

Z

dzdz̄
“

∂̄Z
M
A
R
M∂ρ+ ∂Z

M
A
R
M ∂̄ρ̄

”

(49)

• Consider the example of AdS2 background of type IIA non-

critical string (Verlinde) Let Z, Z̄ denote the coordinates

on AdS2. The dilaton Φ, the metric G and the RR 2-form

F take the form

e2Φ =
1

N2
c

, GZZ̄ = − 1

2(Z − Z̄)2
, FZZ̄ =

8Nc

(Z − Z̄)2

(50)

• We denote the curved superspace coordinates by ZM =

(Z, Z̄,Θ+̇, Θ̄−̇). In addition there are two free variables

(Θ+, Θ̄−) needed for the extension of the superspace.

The tanget space coordinates are denoted by zA =

(z, z̄, θ+̇, θ̄−̇), and in addition we have (θ+, θ̄−). For the

simplicity of the notation we denote Θ = Θ+̇, Θ̄ = Θ̄−̇

and θ = θ+̇, θ̄ = θ̄−̇.

• The curved quantities ΠA are related to the flat ones by

the vielbein ΠA = EA
M∂Z

M where

Ez
Z =

1

(Z − Z̄ − ΘΘ̄)



Ez
Θ =

Θ

(Z − Z̄ − ΘΘ̄)

E
θ
Z =

Θ − Θ̄

(Z − Z̄ − ΘΘ̄)3/2
(51)

Eθ
Θ =

1

(Z − Z̄ − ΘΘ̄)1/2
− ΘΘ̄

(Z − Z̄ − ΘΘ̄)3/2
(52)

• The action takes the form

SIIA =

Z

d2z
“

ΠzΠ̄z̄d+̇E
θ
M ∂̄Z

M + d+∂̄θ
+ +

d̄−̇E
θ̄
M∂Z̄

M
+ d̄−∂θ̄

−
+ F

+̇−̇
d+̇d̄−̇

”

(53)

where F +̇−̇ = 8Nc is the constant RR field strength.

• In order to enlarge the possible conformal backgrounds

of non-critical strings, open strings can be included. In

Klebanov-Maldacena a Born-Infeld type term corresponding

to Nf branes-antibranes uncharged system has been added

Sopen =
−2Nf

2k2
d

Z

ddx
√
Ge−Φ

(54)

which allows for gravity solutions such as AdS5 × S1. In

our framework, such a term is generated by considering

worldsheets with boundaries.

• The inclusion of open string vertex operator can be done

in the same way as for the closed deformations. The only



difference is that the vertex operator has to placed on

the boundary of the worldsheet. The general form of the

massless boundary vertex operator is

Vopen =

I

dz(∂θαAα+ΠmAm+dαW
α+ . . .) (55)

where Aα, Am,W
α are superfields. The lowest component

of the superfields Am is represented by the gluon field and

Wα = ψα + . . . has the gluino as the lowest component.

• In the D=1 case, the only massless vertex operator which is

independent of Liouville field is a constant gluino field and

the coupling reduces to

Vopen =

I

ψαqα (56)

where qα is the supercurrent.



Open Problems

• What backgrounds are consistent backgrounds of non-

critical strings?

• Are there dual field theories?

• The D-branes of non-critical strings.

• How does the pure spinor formalism work for non-critical

strings (Work in progress)


