Third Crete Regional Meeting in String Theory

June 23 – July 2 2005 Orthodox Academy of Crete Kolymbari – Greece

Geometrical fluxes and

Scherk–Schwarz deformations

Costas Kounnas

Laboratoire de Physique Théorique Ecole Normale Supérieure, Paris

In collaboration with

J.-P. Derendinger, P.M. Petropoulos and F. Zwirner

1. Introduction

• Superstrings and M-theory compactifications can give 4d vacua with exact or (spontaneously) broken supersymmetries.

• Phenomenologically interesting are those with

 $N = 8, 4 \rightarrow N = 1 \rightarrow N = 0$

• The underlying D = 10 theories encode $N \ge 4$ constrained structure which can be used to obtain useful information on the effective N = 1 supergravity.

• The 4d N = 1 theories, typically include moduli fields whose vacuum expectation values are undetermined. Some of these moduli are the: dilaton field Φ , internal metric fields G_{IJ} , and *p*-form fields F^p

Generating a potential for some of the moduli is essential in order to :

- reduce the number of massless scalars
- induce supersymmetry breaking
- determine the (3+1)d geometry

In the $N \ge 4$ supergravity theories, the only available tool for generating a non-trivial potential is the "gauging".

"Gauging" \rightarrow We introduce in the theory a gauge group *G* acting on the vector fields of the gravitational and the vector supermultiplets. The important fact is: The kinetic terms of the fields in the gauged theory, remain the same as in the ungauged theory.

In the language of $N = 1 \quad (\longleftarrow N \ge 4)$

The gauging modifications are non-trivial for the the superpotential W.

The Kähler potential K remains the same as in the ungauged theory.

To be more precise consider the case of superstring constructions with an N = 4 supersymmetry:

- Heterotic on T^6
- Type IIA or IIB on $K3 \times T^2$
- Type IIA, IIB on orientifolds
- Type IIA, IIB asymmetric (4,0)
- • •

2. N = 4 Gauging $\leftrightarrow N = 1$ Superpotential

Independently of our starting point, the scalar manifold M of the induced N = 4 effective supergravity is identical for all superstring constructions.

$$\begin{split} M = & \left(\frac{SU(1,1)}{U(1)}\right)_S \times \left(\frac{SO(6,6+n)}{SO(6) \times SO(6+n)}\right)_{T_A,U_A,Z_I} \\ \text{After } Z^2 \times Z^2 \text{ orbifold (CY) projections} \end{split}$$

 $N = 4 \rightarrow N = 1$ and $M \rightarrow K$

$$\begin{split} K &= \left(\frac{SU(1,1)}{U(1)}\right)_{S} \times \left(\frac{SO(2,2+n_{1})}{SO(2) \times SO(2+n_{1})}\right)_{T_{1},U_{1},Z_{1}^{I}} \\ &\times \left(\frac{SO(2,2+n_{2})}{SO(2) \times SO(2+n_{2})}\right)_{T_{2},U_{2},Z_{2}^{I}} \\ &\times \left(\frac{SO(2,2+n_{3})}{SO(2) \times SO(2+n_{3})}\right)_{T_{3},U_{3},Z_{3}^{I}} \end{split}$$

$$K = -\log \left(S + \bar{S}\right)$$
$$-\log \left((T_1 + \bar{T}_1)(U_1 + \bar{U}_1) - (Z_1 + \bar{Z}_1)^2 \right)$$
$$-\log \left((T_2 + \bar{T}_2)(U_2 + \bar{U}_2) - (Z_2 + \bar{Z}_2)^2 \right)$$
$$-\log \left((T_3 + \bar{T}_3)(U_3 + \bar{U}_3) - (Z_3 + \bar{Z}_3)^2 \right).$$

The above choice of parameterization is a solution to the N = 4 constraints after $Z^2 \times Z^2$ orbifold projections $N = 4 \rightarrow N = 1$:

S-manifold

$$\begin{split} |\phi_0|^2 - |\phi_1|^2 &= \frac{1}{2} &\longrightarrow \\ \phi_0 - \phi_1 &= \frac{1}{(S + \bar{S})^{1/2}}, \qquad \phi_0 + \phi_1 = \frac{S}{(S + \bar{S})^{1/2}} \end{split}$$

 T_A, U_A, Z_A^I -manifolds

$$\begin{aligned} |\sigma_A^1|^2 + |\sigma_A^2|^2 - |\rho_A^1|^2 - |\rho_A^2|^2 - |\Phi_A^I|^2 &= \frac{1}{2} \\ (\sigma_A^1)^2 + (\sigma_A^2)^2 - (\rho_A^1)^2 - (\rho_A^2)^2 - (\Phi_A^I)^2 &= 0 \end{aligned}$$

$$\begin{split} \sigma_A^1 &= \frac{1 + T_A U_A - (Z_A^I)^2}{2Y_A^{1/2}}, \qquad \sigma_A^2 = i \frac{T_A + U_A}{2Y_A^{1/2}} \\ \rho_A^1 &= \frac{1 - T_A U_A - (Z_A^I)^2}{2Y_A^{1/2}}, \qquad \rho_A^2 = i \frac{T_A - U_A}{2Y_A^{1/2}} \\ \Phi_A^I &= \frac{i Z_A^I}{2Y_A^{1/2}}, \qquad K_A = -\log Y_A \end{split}$$

The superpotential of the N = 1 supergravity is determined by the gravitino mass terms in N = 4 after the $Z^2 \times Z^2$ orbifold projections. Gravitino mass term: $e^{K/2} W =$

 $(\phi_0 - \phi_1) f_{IJK} \Phi_1^I \Phi_2^I \Phi_3^I + (\phi_0 + \phi_1) \bar{f}_{IJK} \Phi_1^I \Phi_2^I \Phi_3^I$

$$\Phi_{A}^{I} = \left\{ \sigma_{A}^{1}, \sigma_{A}^{2}; \rho_{A}^{1}, \rho_{A}^{2}, \Phi_{A}^{I} \right\}$$

Both f_{IJK} \overline{f}_{IJK} are the gauge structure constants of the N = 4 "mother" theory.

In the heterotic, the term proportional to f_{IJK} give rise to a perturbative "electric gauging". The term proportional to \bar{f}_{IJK} provide the non-perturbative "magnetic gauging".

• What is the origin of $f_{IJK} \bar{f}_{IJK}$ in the superstrings and *M*-theory?

• What are the deformation parameters of the 2d σ -model in correspondence with the N = 4 gauging coefficients $f_{IJK} \bar{f}_{IJK}$?

3. Fluxes and N = 4 Gauging

In general, the breaking of SUSY requires a gauging with non-zero f_{IJK} involving the fields

 $\begin{array}{ccc} \sigma_A^1, \ \sigma_A^2; \ \rho_A^1, \ \rho_A^2 & \longrightarrow \mbox{gauging involving the} \\ & N = 4 \ \mbox{graviphotons} \\ & \longrightarrow \mbox{gauging of the R-symmetry} \end{array}$

In string and M-theory, f_{IJK} and \bar{f}_{IJK} are generated by non-zero FLUXES: Electric and Magnetic fluxes, RR and fundamental *p*-form fields:

• **3-form fluxes** H^3 , in the NS-sector of heterotic, type IIA and type IIB

• F^p , p-form fluxes, in M-theory and in the RR sector of type IIA and type IIB • F^2 2-form fluxes, in heterotic ($E_8 \times E_8$ or SO(32)) as well as in type I

• ω^3 3-form geometrical fluxes, in all strings and M-theory

Special cases have already been studied:

• H^3 in heterotic

Derendinger, Ibanez, Nilles, 85, 86; Dine, Rohm, Seiberg, Witten, 85; Strominger, 86; Rohm, Witten, 86.

Simultaneous presence of NS, RR H^3 and F^3 in Type IIB.

- Frey, Polchinski, 02;
- Giddings, Kachru, Polchinski, 02;
 - Kachru, Schulz, Trivedi, 03;
- Kachru, Schulz, Tripathy, Trivedi, 03; Derendinger, Kounnas,

Petropoulos, Zwirner, 04.

• ω^3, H^3, F^2 , exact string solution via freely acting orbifold.

Generalization of the Scherk–Schwarz deformation to superstring theory.

 \longrightarrow

- Rohm, 84;
- Kounnas, Porrati, 88; Ferrara, Kounnas,
 - Porrati, Zwirner, 89;
- Kounnas, Rostand, 90;
- Kiritsis, Kounnas, 96; Kiritsis, Kounnas,
- Petropoulos, Rizos, 99;
- Antoniadis, Dudas, Sagnotti, 99;
- Antoniadis, Derendinger, Kounnas, 99; Derendinger, Kounnas,
 - Petropoulos, Zwirner, 04;

.

See also F. Zwirner, J. Louis, ... talks

4. Some examples of Geometrical Fluxes

• Breaking of supersymmetry a la Scherk-Schwarz

In the language of freely acting orbifolds, this corresponds to a twist induced by an R-symmetry operator and a shift in one internal coordinate.

The gravitino becomes massive due to the modification of the boundary conditions (in D = 4 Planck mass units)

$$m_{3/2}^2 = g^2 \; \frac{Q^2}{R^2}$$

Q is the R-symmetry charge g_s is the string coupling constant R is the compactification radius of the shifted coordinate. What is the induced superpotential in the effective N = 1 description?

What is the flux interpretation of this specific model in the heterotic or type IIA orientifolds?

Choose the R-symmetry operator which induces the rotation in the *ij* plane

$$Q_{ij} = \oint dz \left[\Psi_i \Psi_j + x_i \partial x_j - (i \leftrightarrow j) \right]$$

 $\Psi_i \rightarrow 2$ -d world sheet left-handed fermions x_i the internal compactified coordinates.

Strictly speaking, the operator Q is not well defined, since the internal coordinates are compactified \rightarrow only discrete rotations are permitted \leftrightarrow the crystallographic symmetries of the momentum lattice. Switching on the deformation on the world sheet

$$\delta S_{ws} = F_{ij}^{(k)} \ Q_{ij} \ \bar{\partial} x_k \,,$$

corresponds to switch on a non-zero $F_{ij}^{(k)}$ \rightarrow a magnetic flux of the graviphotons

$$A_M^{(k)} = G_M^k + B_M^k, \quad M = i, j$$

 G_M^k and B_M^k are the D = 10 metric and antisymmetric tensor fields compactified on a S^1 cycle associated with x^k .

Only discrete rotations make sense \rightarrow quantization of the magnetic fluxes.

The structure constant coefficients f_{IJ}^K of the N = 4 gauged supergravity are given in terms of the magnetic fluxes $F_{ij}^{(k)}$. The induced superpotential in the N = 1language (after the $Z_2 \times Z_2$ projections) reads

$$W = e^{-K/2} F_{2,3}^1 (\sigma_1^1 + \rho_1^1) \sigma_2^2 \sigma_3^2$$
$$= N_{flux} 1 (T_2 + U_2) (T_3 + U_3)$$

 x^k is taken in the 1st complex plane x^i and x^j in the second and third planes

Some comments are in order:

• The shifted direction has to be taken left-right symmetric; that is the reason of the $\sigma_1^l + \rho_1^l$ combination

• The choice of l = 1, 2 corresponds to the two directions of the 1st complex plane. The two choices are equivalent via $U_1 \leftrightarrow 1/U_1$ duality transformation • The twisted directions are taken only left-moving. The R-symmetry operators in heterotic are left-moving. This is the reason that only the σ_i^l appear in the superpotential. Here also the choice of l = 2is equivalent to the l = 1 by means of U_i duality transformations

Having the N = 1 superpotential and the Kähler potential

$$K = -\log(S + \bar{S}) - \sum_{A=1}^{3} [\log(T_A + \bar{T}_A) + \log(U_A + \bar{U}_A)]$$

we can determine the potential.

The potential is flat in the field directions S, T and U with broken supersymmetry. (no-scale model)

$$\frac{G_S G_{\bar{S}}}{G_{S\bar{S}}} = \frac{G_{T_1} G_{\bar{T}_1}}{G_{T_1 \bar{T}_1}} = \frac{G_{U_1} G_{\bar{U}_1}}{G_{U_1 \bar{U}_1}} = 1$$

$$\frac{V}{N^2} = \frac{|T_2 - \bar{U}_2|^2 |T_3 + U_3|^2 + |T_3 - \bar{U}_3|^2 |T_2 + U_2|^2}{2^6 ReSReU_1 ReT_1 ReU_2 ReT_2 ReU_3 ReT_3}$$

 $T_A = \overline{U}_A, \quad A = 2, 3$ at the minimum

The gravitino mass is *independent* of the moduli $T_A, U_A, A = 2, 3$

$$m_{3/2}^2 = \frac{N^2}{(S+\bar{S})(U_1+\bar{U}_1)(T_1+\bar{T}_1)} = g_s^2 \frac{Q^2}{R_1^2}$$

• $SU(2)_k \times SU(2)_{k'}$ - gauging in heterotic

The N = 1 superpotential is determined from the left- and right- moving structure constants of the left- and right-moving $SU(2)_k \times SU(2)_{k'}$. This generates non trivial σ_A and ρ_A terms in the superpotential

 $W = e^{-K/2} A_l (\sigma_1^l \sigma_2^l \sigma_3^l + \rho_1^l \rho_2^l \rho_3^l)$

$$W = iN (T_1 + U_1)(T_2 + U_2)(T_3 + U_3)$$

+iN (T_1 - U_1)(T_2 - U_2)(T_3 - U_3)
+N' (T_1U_1 + 1)(T_2U_2 + 1)(T_3U_3 + 1)
+N' (T_1U_1 - 1)(T_2U_2 - 1)(T_3U_3 - 1)

After minimization of the potential:

$$\begin{aligned} \frac{G_S G_{\bar{S}}}{G_{S\bar{S}}} &= 1\\ \frac{G_{T_A} G_{\bar{T}_A}}{G_{T_A \bar{T}_A}} &= \frac{G_{U_A} G_{\bar{U}_A}}{G_{U_A \bar{U}_A}} = 0, \qquad A = 1, 2, 3\\ T_A &= \bar{T}_A = U_A = \bar{U}_A = 1 \qquad A = 1, 2, 3 \end{aligned}$$

The potential is negative with runaway behavior in the S direction

$$V = -2 \ m_{3/2}^2 = -2 \ \frac{N^2 + {N'}^2}{(S + \bar{S})}$$

This is precisely the form of the Dilaton potential in the heterotic theory on $SU(2)_k \times SU(2)_{k'}$.

Indeed, because of the central charge deficit $\delta \hat{c}$ coming from the $SU(2)_k \times SU(2)_{k'}$ six - dimensional compactification

$$\delta \hat{c} = -\frac{4}{k+2} - \frac{4}{k'+2}$$

a negative potential is generated which in the Einstein frame takes precisely the above form with

$$N^2 = \frac{2}{k+2}, \qquad \qquad N'^2 = \frac{2}{k'+2}$$

• $SU(2)_k \times SU(2)_{k'}$ perturbative and nonperturbative gauging in heterotic

$$W = -iS \ W[SU(2)_k] + W[SU(2)_{k'}]$$

$$W = S N (T_1 + U_1)(T_2 + U_2)(T_3 + U_3)$$

+ S N (T_1 - U_1)(T_2 - U_2)(T_3 - U_3)
+ N' (T_1U_1 + 1)(T_2U_2 + 1)(T_3U_3 + 1)
+ N' (T_1U_1 - 1)(T_2U_2 - 1)(T_3U_3 - 1)

After minimization of the potential:

$$\frac{G_S G_{\bar{S}}}{G_{S\bar{S}}} = \frac{G_{T_A} G_{\bar{T}_A}}{G_{T_A \bar{T}_A}} = \frac{G_{U_A} G_{\bar{U}_A}}{G_{U_A \bar{U}_A}} = 0, \qquad A = 1, 2, 3$$
$$S = \frac{N'}{N}, \quad T_A = \bar{T}_A = U_A = \bar{U}_A = 1, \quad A = 1, 2, 3$$

$$V = -3m_{3/2}^2$$

This is similar to the stabilization of all the moduli found recently in Type IIA, D_6 orientifold, by combining the RR-fluxes and the geometrical fluxes suitably.

The N = 4 gauging found in type IIA was based is based on $SU(2)_k \times E^3_{k'}$

> Derendinger-Kounnas-Petropoulos- Zwirner

Conclusion

Illustration and application of a general method that relates the N = 1 effective Kähler potential and the superpotential to a consistent orbifold and/or orientifold projections of gauged N = 4 supergravity.

Derivation of the effective superpotential $N = 4 \rightarrow N = 1$ for the main moduli in the presence of general fluxes

 ω^3 , H^3 H^2 In heterotic ω^3 , H^3 H^2 In Type II asymmetric ω^3 , H^3 , F^6 , F^4 , F^2 , F^0 in Type IIA F^1 , F^3 , H^3 , ω^3 in Type IIB

We identify the correspondence between various admissible fluxes, N = 4 gauging and N = 1 superpotential terms.

Construction of explicit examples with different features:

• Stabilization of four moduli, $V \ge 0$: No-scale models.

• Stabilization of less than four moduli, V > 0: de Sitter like, runaway solutions with possible cosmological interest.

• Models based on compact "gaugings", V < 0: Domain-Wall Solutions, Five-brane solutions with non trivial Dilaton or else.

• Models which admit a supersymmetric AdS_4 vacuum with all moduli stabilized.