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1. Historical review and motivation

• In 1917 the cosmological constant Λ was introduced by
Einstein to get static homogeneous universe in the present of
matter.

• In 1920 Slipher’s works showed that the light from galaxies
was redshifted indicating that they are moving away from us.

• In 1922 a matter dominated expanding universe without
cosmological constant was constructed by Friedmann.

• In 1923 in a letter to Weyl, Einstein says

“ If there is no quasi-static world, then away with
cosmological term.”

• In 1927 the conclusive discovery was made by Hubble

A linear expansion law relating redshift to distance which
made Friedmann models the standard geometrical framework.
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• The recent astronomical observations indicate that the
cosmological constant in our universe is not zero.

Not only it is not zero but also its contribution is quite
important and in fact it is responsible for almost 73% of the
energy of the universe ( dark energy).

The cosmological constant is important after all.

This means our universe might currently be in the de Sitter
phase.

• Beside from this observation, another motivation to study
de Sitter space comes from inflation era in which we assume
that the universe was also described by de Sitter phase.

• Another interesting feature of dS space is that it has
cosmological horizon in which one can associate a temperature
and entropy

S =
A

4G

Like black hole, we would like to understand this entropy for
dS as well.

Since the horizon of dS space is observer dependent, it is
even difficult to say where the quantum microstates that we

would like to count are supposed to be.
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1. de Sitter space and its properties

1.1 Coordinates

Let’s start with the Einstein-Hilbert action coupled to matters

S =
1

16πG

∫

ddx
√−g(R− 2Λ) + Sm

To get the de Sitter space we consider the case with Λ > 0.

The Einstein equation reads

Rµν − 1

2
gµνR = −gµνΛ + 8πGTµµ

We may consider the matter action as follows

Sm =

∫

ddx
√−g[−1

2
gµν∂µφ∂νφ− V (φ)]

In order not to have an additional contribution from the
potential to the cosmological constant at the classical level we
assume that

min (V (φ)) = 0
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For pure dS space where the energy-momentum tensor of
the matter field vanishes, one may consider the spacetime as a
solution of the Einstein equation for an empty spacetime with
a positive constant vacuum energy

T vac
µν =

Λ

8πG
gµν → Rµν − 1

2
gµνR = −gµνΛ

Therefore the only non-trivial component of the Einstein
equation is

R =
2d

d− 2
Λ > 0

An interesting observation about the dSd space is its
embedding into the flat d + 1 dimensional space time. In
d + 1 dimensional Minkowski spacetime the Einstein equation
is trivially satisfied

0 = d+1R ≡ gABRAB forA,B = 0, ..., d
= R+Rdd

If we set Rdd = − 2d
d−2 Λ( which means positive constant

curvature of embedded space) one gets

R =
2d

d− 2
Λ (dS Space)
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In fact the dSd space can be realized as a hypersurface
described by the following algebraic equation in flat d + 1
dimensional Minkowski space

−X2
0 +X2

1 + · · · +X2
d = l2

The dS metric is the induced metric from the flat space

dS2 = ηABdXAdXB|ηABXAXB=l2

From the constraint one gets

dXd =
ηµνX

µdXν

√

l2 − ηµνXµXν

and therefore the metric reads

gµν = ηµν +
XµXν

l2 − ηµνXµXν

It is then easy to write the Einstein equation for this metric.
Doing so we find

R =
d(d− 1)

l2
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Comparing with the Einstein equation we had which was written
in terms of the cosmological constant one finds

Λ =
(d− 1)(d− 2)

2l2

Therefore the dSd in the flat d + 1 dimensional Minkowski
space is a hyperboloid

X+( )l 2 0 2

l X , X , ..., X

S

X

X

1 2 d

d-1

0

0
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Let us know study different coordinates systems with will
be used later. The different coordinates systems are good for
different purpose.

Global coordinates: τ, θi, i = 1, · · · , d− 1

This is the simplest one and can be found by just looking at
the constraint. In fact different coordinates systems correspond
to the different way one can solve the constraint.

Let’s decompose the constraint as follows

−X2
0 + (X2

1 + · · · +X2
d) = l2

so the solution is

X0 = l sinh
τ

l
, Xi = lωi cosh

τ

l
, for i = 1, ..., d

for −∞ < τ < ∞. Here
∑

i ω
2
i = 1 parameterize a Sd−1

sphere

ω1 = cos θ1 0 ≤ θ1 < π
ω2 = sin θ1 cos θ2 0 ≤ θ2 < π
· · · = · · ·
ωd = sin θ1 · · · sin θd−1 0 ≤ θd−1 < 2π
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The metric is given by

dS2 = −dτ2 + l2 cosh2 τ

l
dΩ2

d−1

In this coordinates dSd space looks like a d− 1 sphere which
starts out infinity large at τ = −∞ then shrinks to its minimum
finite size that τ = 0 and then grows again to infinite size at
τ = ∞.

In this coordinates system

• ∂
∂θd−1

is the only Killing vector

• ∂
∂τ is NOT a Killing vector

• This breaks conservation of the energy so the Hamiltonian
is not well-defined
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Conformal coordinates: T, θi, i = 1, · · · , d− 1

Looking at the metric in the global coordinates one may write

dS2 = cosh2 τ

l
(− dτ2

cosh2 τ
l

+ l2dΩ2
d−1)

=
1

cos2 T
l

(

−dT 2 + l2dΩ2
d−1

)

where

cosh
τ

l
=

1

cos T
l

, −π
2
<
T

l
<
π

2

There is one-to-one correspondence between this and the global
coordinates and therefore it covers entire space.

In this coordinates system

• ∂
∂θd−1

is the only Killing vector

• ∂
∂τ is NOT a Killing vector

• This breaks conservation of the energy so the Hamiltonian
is not well-defined
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Any null geodesic with respect to the conformal metric is also
null in the conformally rescaled metric

dS̃2 = cos2
T

l
dS2 = −dT 2 + l2dΩ2

d−1

Therefore this coordinates system is useful for studying the
causal structure of the dS space.
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Planer (Inflationary) coordinates: t, xi, i = 1, · · · , d− 1

Consider the constraint and decompose into two parts

(−X2
0 +X2

d) + (X2
1 + · · · +X2

d−1) = l2

One may also consider a situation

−X2
0 +X2

d = l2 − x2e−2t/l

X2
1 + · · · +X2

d−1 = x2e−2t/l (x2 = xix
i)

which may solve as follows

X0 = l sinh
t

l
− x2

2
e−t/l

X0 = l cosh
t

l
− x2

2
e−t/l

Xi = xie
−t/l

for −∞ < xi <∞ and −∞ < t <∞.
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Let’s consider X0 −Xd which turns out to be

X0 −Xd = −le−t/l ≤ 0

Therefore this coordinates does not cover the entire spacetime.
In fact it just cover only half of it which in our convention it is
given by the following figure.

X0

Xd

X0 X0 XdXd == −

l
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The corresponding metric is

dS2 = −dt2 + e−2t/ldxidx
i

In this coordinates system

• ∂
∂xi

for i = 1, .., d− 1 are the Killing vectors

• ∂
∂t is NOT a Killing vector

• This breaks conservation of the energy so the Hamiltonian
is not well-defined
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Static coordinates: t, r, θi, i = 1, ...d− 2

There is another way to solve the constraint in which it is
decomposed as follows

(−X2
0 +X2

d) + (X2
1 + · · · +X2

d−1) = l2

with

−X2
0 +X2

d = l2 − r2

X2
1 + · · · +X2

d−1 = r2

which can be solved by the following parametrization

X0 =
√

l2 − r2 sinh
t

l

Xd =
√

l2 − r2 cosh
t

l
Xi = rωi, i = 1, ....d− 1
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It is easy to see that

X0 +Xd =
√

l2 − r2et/l ≥ 0

X0 −Xd = −
√

l2 − r2e−t/l ≤ 0

Therefore this coordinates system can not cover whole
spacetime. In fact it just cove quarter of it which in our
convention is given by the following figure

X0

Xd

X0 X0 XdXd == −

l
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The corresponding metric is given by

dS2 = −(1 − r2

l2
)dt2 +

dr2

1 − r2

l2

+ r2dΩ2
d−2

In this coordinate system

• ∂
∂t and ∂

∂θd−2
are Killing vectors

• Hamiltonian is well-defined in the static coordinates but
unitarity is threatened by the existence of the horizon at
r = l . Note that in this coordinates 0 ≤ r < l.
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There is a more general solution with the same symmetry as
the static coordinates. Consider the following ansatz

dS2 = −eB(r)A(r)dt2 +
dr2

A(r)
+ r2dΩ2

d−2

From Einstein equation one finds

dB

dr
= 0,

d

dr
[(1 − A)rd−3] =

d− 1

l2
rd−2

which can be solved as follows

B(r) = B0, A(r) = 1 − r2

l2
− 2M

rd−3

where M is the integration constant. B0 can also be absorbed
by a rescaling of t.

For M = 0 this is dS space in the static coordinates. For non
zero M it is a black hole in dS space with mass M which is
called Schwarzschild-dS space.
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1.2 Causal structure (Penrose diagram)

Using a conformal factor Ω2 = cos2 T one may bring in the
points at infinity to a finite position so that the whole spacetime
is shrink into a finite region called Penrose diagram.

Since a conformal map does not change the causal structure,
this may use to study the causal structure of the dS space,
though the distances are highly distorted.

We would like to study causal structure in various coordinates
in terms on the Penrose diagram.

dS̃2 = cos2 TdS2 = −dT 2 + l2dΩ2
d−1

One may write this as follows

−dT 2 + dθ2
1 + sin2 θ1 dΩ

2
d−2, 0 < θ1 < π
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1) North and South poles are timelike line.

2) Every point in the interior represents an Sd−2.

3) A horizontal slice is an Sd−1.

4) I− and I+ are past and future null infinity. They are the
surfaces where all null geodesics originate and terminate.

5) The dashed lines are the past and future horizons of an
observer at the south pole.

Therefore no single observer can see entire spacetime.
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1) An observer in the south pole cannot see anything past
the diagonal line stretching from the north pole at I− to south
pole at I+:O− region .

2) O+ is the only part that an observer in south pole can
send a signal to.

3) The planer coordinate we were talking about covers O−

region. (In our notation)

4) Changing t→ −t the coordinates will cover O+ region.

5) O−
⋂

O+ is the part accessible to the observer on the
south pole (causal diamond). This is the part with is covered
by static coordinates.
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Let us to arrive at Penrose diagram from static coordinates.
Starting from, t, r, θi one defines

U = −ex−/l, V = e−x+/l

where

x± = t± l

2
ln

1 + r/l

1 − r/l
Therefore we have

UV = −1 − r/l

1 + r/l

The metric in this coordinates (Kruskal) is given by

ds2 =
l2

(1 − UV )2
[

−4dUdV + (1 + UV )2dΩ2
d−2

]

This coordinates cover all of the dS space

UV = −1,
r

l
= 0, Poles

UV = 0,
r

l
= 1, Horizons

UV = 1,
r

l
= ∞, I±
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The entire region of the dS space is drawn by a Penrose
digram which is a square given by |UV | = 1.

−
1

U
V

=

−
1

U
V

=

1UV=

1UV=

V
=
0

U
=
0

V U

The static patch is the region with U > 0 and V < 0.

∂

∂t
=
U

l

∂

∂U
− V

l

∂

∂V

So the norm of the Killing vector is

| ∂
∂t

|2 =
4UV

(1 − UV )2

UV = 0, null
UV > 0, spacelike
UV < 0, timelike
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1.3 Thermal property

Consider a circle with radius l : X2
1 +X2

2 = l2.

X1 = l cos θ, X2 = l sin θ

The geodesic distance between two points on the circle is given
by

d(θ, θ′) = l(θ − θ′)

Let’s consider a quantity P (X,X ′) = 1
l2
δijXiX

′
j which is

1

l2
δijXiX

′
j = cos θ cos θ′ + sin θ sin θ′ = cos(θ − θ′)

So

d(θ, θ′) = l cos−1 P (X,X ′)

One may generalize it for higher sphere or dS space. In the
case of the dS space given by ηµνXµXν = l2 one has

P (X,X ′) =
1

l2
ηµνXµX

′
ν, d(1, 2) = l cos−1 P (X,X ′)
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For example

• In static coordinates:

l2P (X,X ′) = −
√

(r2 − l2)(r′2 − l2) cosh
t− t′

l
+ rr′ cos Θ

where Θ is the geodesic distance of two points on the unit
Sd−2.

• In planer coordinates:

l2P (X,X ′) = −l2 cosh
t− t′

l
+

1

2
e
−t−t′

l δij(x
i − yi)(xj − yj)

Consider a scalar field in dS space

S = −1

2

∫

ddx
√−g[(∇φ)2 +m2φ2]

The Green function G(X,Y ) = 〈0|φ(X)φ(Y )|0〉 obeys

(∇2 −m2)G(X,Y ) = 0

Since dS space is maximally symmetric, the Green function
depends on X and Y only through P (X,Y ).

26



For any function f(P ) one can see

l2(∇2 −m2)f(P ) = (1 − P 2)
d2f

dP 2
− Pd

df

dP
−m2l2f

Therefore one has

[

(1 − P 2)
d2

dP 2
− Pd

d

dP
−m2l2

]

G(P (X,Y )) = 0

Which as solution in terms of hypergeometric functions

G = const.F (h+, h−,
d

2
,
1 + P

2
)

where

h± =
1

2

[

(d− 1) ±
√

(d− 1)2 − 4m2l2
]

Since the above equation is symmetric under P → −P there
is another solution

G = const.F (h+, h−,
d

2
,
1 − P

2
)

One parameter family of dS invariant Green function
corresponding to a linear combination of these solutions.

Gα(X,Y ) = 〈α|φ(X)φ(Y )|α〉
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An observer moving along a timelike geodesic sees a thermal
bath of particles when the scalar field is in the vacuum state.

de Sitter space is naturally associated with a temperature.

One way to see this:

Consider an observer sitting in south pole. In this case

P (X,X ′) = − cosh
t− t′

l
= − cosh

τ

l

On the other hand the Green function is a function of P

G(P (X,Y )) = G(cosh
τ

l
)

The Green function is periodic in imaginary time under τ →
τ + 2πil and therefore is thermal Green function and the
temperature in given by the inverse of the period

TdS =
1

2πl

One can also associate entropy which is the same as black
hole and is given by

S =
A

4G
where A is the area of the horizon.
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Why dS is difficult?

1) dS space is inconsistent with supersymmerty: there is no
supergroup that includes the isometries of dS space and has
unitary representation.

2) We have not been able to embed it in string theory (up to
KKLT model).

3) Horizon is observer dependent: difficult to see where the
quantum microstate we would like to count are in fact supposed
to be.
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3. dS/CFT correspondence

From what we have learned in AdS/CFT correspondence one
may hope that some kind of holography can also be applied
here and could help us to understand the quantum gravity on
dS.

There is a naive observation:

Consider a AdS space with radius l, under l → il one gets

Λ −→ −Λ

AdS −→ dS

SO(2, d) −→ SO(1, d+ 1)

Gravity on dS is dual to a Euclidean CFT.

One can make this statement more precise which is in fact
what is known as dS/CFT correspondence.
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How to define conserved charges?

The deviation of the metric and other fields near spatial
infinity from the vacuum provides a way to define conserved
charges like mass, angular momentum....

Equivalently the conserved charges can be computed from
the asymptotic symmetries of a space time.

For example the eigenvalue of an asymptotic timelike Killing
vector will give the mass.

There are two basic problems to apply this definition for dS
space (spacetime which is asymptotically dS):

1. There is no spatial infinity.

2. There is no globally defined asymptotic timelike Killing
vector.

Fortunately there is a way to proceed generalizing the Brown-
York construction to define stress tensor on the Euclidean
boundary and by using this quantity to define mass or other
charges for spaces which are asymptotically dS.
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In d dimensions the Einstein equations with positive
cosmological constant can be derived from the action

I = Ibulk + IGH

− 1

16πG

∫

M

ddx
√−g(R+ 2Λ) +

1

8πG

∫

∂M

dd−1x
√
hK

here

• IGH is Gibbons-Hawking surface term which is needed to
get a well-defined Euler-Lagrange variation.

• M is d-dimensional Manifold with Newton’s constant G
with spatial Euclidean boundary ∂M.

• gµν is the bulk metric.

• hµν and K are induced metric and the trace of the extrinsic
curvature of the boundary. The extrinsic curvature is defined
by Kµν = −∇(µnν) where nν is outward pointing unit vector.

• A useful length scale in the model is given by

l =

√

(d− 1)(d− 2)

2Λ

For example in the vacuum dS solution, l is the radius of dS
space.
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In general this action is divergent when evaluated on a
solution of the equations of motion due to infinite volume of
the spacetime.

For example in the case of dS space and in the inflationary
coordinates one has (d = 3)

I ∼ 1

8πG

∫

d2xe2t/l

(−1

l

)

which diverges as t→ ∞.

The divergence can be canceled by adding local boundary
counterterms that do not affect the equations of motion.

In our case we have

Itotal = I +
1

8πG

∫

∂M

d2x
√
h
1

l

For dS space with two boundaries at t→ ±∞, ∂M±, we have

Itotal = I +
1

8πG

∫

∂M+

d2x
√
h
1

l
+

1

8πG

∫

∂M−

d2x
√
h
1

l

which has the same solution as the previous action but is finite.
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One can generalize it for a general space which is
asymptotically dS. For d =, 3, 4, 5 the counterterms are given
by

Ict =
1

8πG

∫

∂M+

d2x
√
hLct +

1

8πG

∫

∂M−

d2x
√
hLct

where

Lct =
d− 2

l
− l2

2(d− 3)
R

• The second term is present for d > 3.

• R is the intrinsic curvature of the boundary.

• The calculations are preformed by cutting off the dS space
at finite time and then sending the surface to infinity.

The total action is then

Itotal = Ibulk + IGH + Ict

We can now compute the Euclidean boundary stress tensor
which measures the response of the spacetime to changes of
the boundary metric (Brown-York prescription).

Consider a spacetime with the metric

ds2 = gijdx
idxj
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One may rewrite it as follows

ds2 = gijdx
idxj = −N2

t dt
2 + hµν(dx

µ + V µdt)(dxν + V νdt)

So hµν is the metric induced on surface with fixed time.

Suppose uµ is the future pointing unit normal to this surface,
then the extrinsic curvature is given by

Kµν = −hi
µ∇iuν

The stress tensor associated to the boundary is given by

Tµν = − 2√
h

δItotal
δhµν

=
1

8πG

[

Kµν −Khµν − d− 2

l
hµν − lGµν

d− 3

]

where Gµν is the Einstein tensor of h.

In global coordinates ( on the boundary t→ −∞)

Tθθ = − l

16πG
, Tφφ = − l

16πG
sin2 θ
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• One can always decompose the metric hµν on the equal
time surfaces as follows

hννdx
µdxν = Nρdρ

2 + σab(dφ
a + Uadρ)(dφb + U bdρ)

where φa are angular variables parameterizing closed surfaces.

• Suppose the boundary has an isometry generated by a
Killing vector ξµ . One can show that Tµνξ

ν is divergenceless
and therefore we can define conserved charge associated to ξµ.

• Consider nµ be the unit normal on a surface of fixed ρ.
Then the conserved charge is defined

Q =

∮

Σ

dd−2φ
√
σnµξνTµν

Physically this means that a collection of observers on the
hypersurface whose metric is hµν would all observe the same
value of Q provided this surface had an isometry generated by
ξµ.

Since there is no globally timelike Killing vector, it is difficult
to see how the mass can be defined in dS space. There is
however an proposal for this using the above construction.

Consider the case where ρ is the coordinate associated with
the asymptotic Killing vector that is timelike inside the static
patch but spacelike at I−.
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The mass of an asymptotically dS space is

M =

∮

Σ

dd−2φ
√
σNρn

µnνTµν

One may also define momenta as

Ja =

∮

Σ

dd−2φ
√
σσabnνT

bν
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Consider the Brown-York stress tensor Tµν for a spacetime
which is asymptotically dS. One may ask the following
questions:

1. What would be the boundary conditions for the metric if
we want the stress tensor to be finite?

2. What is the most general diffeomorphism which preserves
this boundary conditions?

The first question can be answered by perturbing dS space
and computing Tµν and then one may answer to the second
question which will be

The conformal group of the (d− 1)-dimensional Euclidean
space.

This is one of the main hints of the dS/CFT correspondence
which says

Quantum gravity on dSd is dual to a (d− 1)-dimensional
Euclidean conformal field theory residing on the past boundary

I− of dSd.

This CFT may be non-unitary!

To see how this works, let’s consider an explicit example;
dS3.
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Consider dS3 space in the planar coordinates (l = 1)

ds2 = −dt2 + e−2tdzdz̄

Consider a perturbation around this metric gij + γij so that

ds2 = gijdx
idxj = −dt2 + e−2tdzdz̄ + γijdx

idxj

which can be recast into the following form

ds2 = −Ndt2 + hµν(dx
µ + V µdt)(dxν + V νdt)

Therefor the induced metric reads

hzz = γzz, hzz̄ =
1

2
e2t + γzz̄, hz̄z̄ = γz̄z̄

The outward pointing unit normal vector is also given by

nµ = (1 − γtt

2
, 0, 0)

So we find

Kzz = −∂zγtz +
1

2
∂tγzz

Kzz̄ = −1

2
e−2t(1 +

γtt

2
) − 1

2
(∂z̄γtz + ∂zγtz̄ − ∂tγzz̄)

K = −2 − γtt + 4e2tγzz̄ − 2e2t(∂z̄γtz + ∂zγtz̄ − ∂tγzz̄)
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Using the definition of Brown-York stress tensor one finds

Tzz =
1

4G

[

hzz − ∂zhtz +
1

2
∂thzz

]

+ O(h2)

Tzz̄ =
1

4G

[

1

4
e−2thtt − hzz̄ +

1

2
(∂z̄htz + ∂zhtz̄ − ∂thzz̄

]

+O(h2)

Requiring the stress tensor to be finite one leads to the
boundary conditions

gzz̄ =
e−2t

2
+ O(1),

gtt = −1 + O(1),
gzz = O(1),
gtz = O(1).

The most general diffeomorphism ξ which preserves this
boundary conditions can be written as

ξ = U(z)∂z +
1

2
U ′(z)∂t + O(e2t) + C.C.

From bulk dS3 theory this is a diffeomorphism while from
boundary point of it is two dimensional diffeomorphism of the
complex plane and a Weyl transformation.
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A three dimensional diffeomorphism is equivalent to a two
dimensional conformal transformation.

The asymptotic symmetry group of gravity in dS3 is the
conformal group of the complex plane

This is a first hint that the dual theory is a Euclidean conformal
field theory.
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Using this diffeomorphism one may see how the stress tensor
transform under this diffeomorphism

δξTzz = −U∂Tzz − 2U ′Tzz −
1

8G
U ′′′

So the central charge of the dual CFT is

c =
3l

2G

One may reach to the same central charge using Wayl
anomaly. We saw in global coordinates

Tθθ = − l

16πG
, Tφφ = − l

16πG
sin2 θ

So

K = hµνKµν = − 1

8πGl
Comparing with

T = − c

24π
and using R = 2/l2 one gets the same result as above.
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One can compute correlation function of CFT operators that
couple to bulk fields (much similar to AdS/CFT)

Consider a massive scalar field. In static coordinates one has

1

r
∂r(rV (r)∂rΦ) − 1

V (r)
∂tΦ +

1

r2
∂2

φ −m2Φ2 = 0

where

V (r) = 1 − r2

l2
.

Near the boundary I− which is at r → ∞ we get

Φ ∼ r−h±

with
h± = 1 ±

√

1 −m2l2

One may impose the boundary condition

lim
r→∞

Φ(r, t, φ) = r−h−Φ−(t, φ)

Therefore the two point function of an operator O coupled
to Φ on the boundary can be evaluated in the same way as
AdS/CFT correspondence.
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lim
r→∞

∫

I−
dtdt′dφdφ′

(rr′)2

l2
(

Φ(r, t, φ)
↔

∂r∗ G(r, t, φ; r′, t′, φ′)
↔

∂r′∗
Φ(r′, t′, φ′)

)

where dr∗ = (−V (r))−1/2dr.

Using the Green function we find

〈O(t, φ)O(t′, φ′)〉 =
const.

(cosh ∆t
l − cos∆φ)h+

The dimension of the CFT operator is given by h+ which
could be complex for highly massive scalar field. So the CFT

could be non-unitary!

We note however that in studying this correspondence one
uses the dS in the planer patch. So it is nature to ask:

How does the holography for dS space work for other
patches?
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4. dS/dS correspondence

Statement of de Sitter Holography

The dSd static patch is dual to two conformal field theories on
dSd−1 cut off at an energy scale 1/R and coupled to each

other as well as to (d− 1)-dimensional gravity.

The static patch of d-dimensional dS space with radius R
can be foliated by dSd−1 slices

ds2 = sin2
(w

R

)

ds2dsd−1
+ dw2

O
S

The warp factor sin2(w/R) is maximal with the finite value
at central slice w = πR/2 and dropping monotonically on each
side until reaches zero at the horizon w = 0, π.

The region near horizon (low energy in static patch) is
isomorphic to d-dimensional AdS space foliated by dSd−1 slices
and hence constitutes a CFT on dSd−1 at low energy.

45



Localized graviton

CFT on dS
d−1

CFT on dS
d−1

00 00 00

1

R

 dS  static patch (spatial)
d

S
o

E=0                     E=                      E=0     

g  =0             g  =1            g   =0

• D-brane probes of this region exhibit the same physics:
Both are equivalent to CFT on dSd−1 for energy 0 < E ≪ 1

R.

• Probes constructed from bulk gravitons range from energy
0 up to 1/R and upon dimensional reduction their spectrum
exhibits the mass gap expected of d − 1 dimensional CFT on
dS.

• Dimensionally reducing to d− 1 dimensional effective field
theory also yields a finite d−1 dimensional Plank mass→ Lower
dimensional theory has also gravity.
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Let us consider pure gravity in d dimensional dS space. The
differential equations of linearized gravity can be recast to a
one dimensional quantum mechanical system with the following
potential

V =
1

l

(

(d− 2)2

4
− d(d− 2)

4

1

cosh2 z
l

)

It is a volcano shape potential which has a single bound state
at zero energy, separated from a continuum modes by a mass
gap of order 1

l2
.

The zero mode solution is

ψ =
(

cosh2 z

l

)(2−d)/2

It is a normalizable solution to the wave equation with E = 0.

Therefore there is a d−1 dimensional graviton on the central
slice at z = 0.

One may also write the lower dimensional Planck scale in
terms of d dimensional theory

Md−3
d−1 = lMd−2

d
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• Lower dimensional Plank mass is consistent with that
generated by a renormalization of Newton constant from S
degrees of freedom cut off at the scale 1/R.

1

GN,d−1
∼Md−3

d−1 ∼ RMd−2
d ∼ (RMd)

d−2

(

1

R

)d−3

∼ S

(

1

R

)d−3

∼ SMd−3
UV

The picture

Written in a dSd−1 slicing, dSd has the form of a Randall-
Sundrum system.

Localized graviton

QFTQFT
d−1 d−1

00
g <<1

g
00= 1 g

00
<<1

At higher energies E → 1
R AdS and dS differ:

• In AdS, the warp factor diverges towards the UV → d − 1
dimensional gravity decouples.

• In dS, the warp factor is bounded → a dynamical d − 1
dimensional graviton.
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In the RS construction one truncates the warp factor at a
finite value of the radial coordinate by including a brane source
with extra degree of freedom. In the dS case, the additional
brane source is unnecessary.

A smooth UV brane at which the warp factor turns around is
built in to the geometry.

M

1/L

BULK BRANE

M   L>>1

Classical Gravity

in dSd

Gravity + 2 CFTs

in dS
d−1

?

Quantum

Gravity

d

d

M
d−1

• On d-dimensional gravity side, one has local effective field
theory up to Md ≫ 1/R.

• Above Md quantum gravity effects become important in
the bulk and one has to UV complete the system.

• Using gravity side one can study the d − 1 dimensional
theory in the range of energy 1/R < E < Md.
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One can use AdS/CFT correspondence to study some
properties of this duality.

dS slicing of dS:

ds2dSd
=

R2

cosh2(z)
(ds2dSd−1

+ dz2)

dS slicing of AdS:

ds2AdSd
=

R2

sinh2(z)
(ds2dSd−1

+ dz2)

So

ds2AdSd
=

1

tanh2(z)
ds2dSd

We can use this to map the physics of dS to dynamics in AdS,
albeit with unusual actions. Namely this leads to

• Scalars with position dependent masses.

• Gravity with a position dependent Newton constant.

By applying the AdS/CFT dictionary to the resulting system,
this allows us to make a direct comparison of UV behavior of
the d− 1 dual of dSd to the UV behavior of a strongly coupled
CFT.
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gmn → f2gmn

X → f−
d−2
2 X

√−g → fd√−g

−√−g(∂X)2 → −√−g(∂X)2 −√−g(d−2)
2 X2(∇2ω)

−√−g(d−2)2

4 X2(∇ω)2

√−gR → fd−2√−g(R− 2(d− 1)(∇2ω)
−(d− 2)(d− 1)(∇ω)2)

−√−gξRX2 → −√−gξRX2 + 2
√−gξ(d− 1)(∇2ω)

+
√−gξ(d− 2)(d− 1)(∇ω)2

−2
√−gΛ → −2fd√−gΛ

Table 1: Transformations under conformal rescaling;
f = tanh z, ω = log f
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Under this conformal map one has:

• The bulk action for a free, massive scalar field in dSd

S =

∫

ddx
√−g

(

−(∂µX) − (M2 + ξR)X2
)

maps to scalar field in AdS with mass

M2
total = tanh2(z)

(

M2 + ξd(d− 1)
)

− d(d− 2)

4

(

1 + tanh2(z)
)

where we used R = −d(d− 1) for the AdSd.

In the UV (z = 0) the original dS mass term M scales to
zero, as does the original ξ term. Instead we get the universal
result

M2
total = −d(d− 2)

4
for all ξ, M.

1 2 3 4 5 6

-6

-5

-4

-3

-2

-1
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That is we get a conformally coupled scalar in AdS,
independent of what values of the parameters M and ξ we
started with in dS! The corresponding UV dimension of the
dual operator is

∆O =

{

d
2
d
2 − 1

This ensures that the < OO > two point function for the
second choice reduces to the usual 1

|x|d−2 behavior of a scalar

field in d dimensions.

• Starting with the Einstein-Hilbert action in dS

S = Md−2
d

∫

ddx
√−g(R− 2Λ)

where Λ = 1
2(d− 1)(d− 2), we get a new gravitational action

in AdS

S =

∫

ddx
√−g(Mdf)d−2

(

R + (d− 2)(d− 1)(∇ω)2 − 2f2Λ
)

Close to the boundary the graviton looks like a flat space
graviton! The possible boundary behaviors are z0, z1, as
opposed to z0, z4 in AdS. Still this couple to energy-momentum
tensor with dimension d− 1.
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Conformal Anomaly

AdS/CFT instructs us to evaluate the bulk action on a given
solution in order to calculate the boundary partition function
for a given boundary metric. This quantity has divergences
due to the infinite volume of AdS. One needs to add local
counterterms.

However in even boundary dimensions (odd bulk dimension
d) there are in addition log(z) terms and they represent the
conformal anomaly.

For the standard Einstein Hilbert action on the dSd−1 sliced
AdSd background we get

Son−shell =
−2(d− 1)

16πGN

∫

dz

sinhd(z)

Expanding in powers of z around z = 0 one finds

∫

dz

sinh3(z)
= − 1

2z2
− log(z)

2
+ O(z0)

∫

dz

sinh5(z)
= − 1

4z4
+

5

12z2
+

3

8
log(z) + O(z0)

∫

dz

sinh7(z)
= − 1

6z6
+

7

24z2
− 259

720z2
− 5

16
log(z) + O(z0)

The log terms give the conformal anomaly evaluated on dS2,
dS4 and dS6 respectively.
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Now let us repeat the same exercise for the gravitational
action with position dependent GN . The position dependence
of Md is Md(z) = tanh(z)Md which gives an extra factor of
tanhd−2(z). Up to terms that remain finite as z → 0

Son−shell =

∫

tanhd−2(z)
dz

sinhd(z)

=

∫

1

sinh2(z)

dz

coshd(z)
=

−1

z
+ O(z)

For all d the only divergent term is a universal −1
z and there

are no logarithms. The conformal anomaly vanishes.

One possible interpretation:

• Lower dimensional gravity screens the central charge to
be zero, just like is well known from 2d gravity on string
theory worldsheets. In this scenario one does not even need a
conformal field theory beyond scales 1/R since the gravitational
dressing will also make any FT a CFT.

• In the same spirit the universal UV dimension of the scalar
fields can be understood as gravitational dressing.
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• Naively one would think that gravitational dressing should
bring the operator dimension to d − 1 so that one can add it
to the action. But the (d− 1)/2± 1/2 we find is consistent as
long as we only add products of the form O1

d/2O
2
d/2−1 to the

action. We know that the coupling of the two CFTs has to be
achieved via its boundary interactions.

• Continuity across the UV brane in the original dS space
means that the value of the field at the boundary in one AdS
(dual to CFT 1) appears as a boundary condition in the second
AdS (dual to CFT 2).

• The discussion of multi-trace operators uses precisely the
product operator O = O1

d/2O
2
d/2−1 in order to achieve boundary

conditions of the type we want, at least in a folded version of
our duality: instead of one scalar field living in 2 copies of AdS
there one has 2 decoupled scalar fields in one copy of AdS.

• Since we are dealing with gravity in addition to scalar fields,
for us the 2 copies of AdS are more appropriate in order to
avoid having 2 gravitons living in the same space.
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Some comments on dS/dS correspondence

• The de Sitter space is a particularly symmetric example of
a Randall-Sundrum system. Bulk gravity calculations allow one
to probe some of the basic physics of induced gravity.

• We computed several quantities determining how the lower
dimensional theory behaves at energies above the cutoff. This
resulted in a holographic verification that the total central
charge and heat capacity is zeroed out and that a simple
asymptotic dressing of operator dimensions arises. These are
both features familiar in 2d gravity plus matter systems. Direct
couplings between the two CFTs are also required.

• The duality naturally can also be extended to situations
with changing cosmological constant, such as inflation.

• Repeated application of our duality allows one to go to
sufficiently low dimensions, that is two or one, so that gravity
becomes non-dynamical and its effects reduce to constraints.

• The motivation for this dual formulation is ultimately to
provide a framework for the physics of accelerated expansion
in the real universe. Although at large radius and low energies
the effective weakly coupled description remains the bulk d
dimensional one, the description in terms of d− 1 dimensional
physics may shed light on the physics of inflation and dark
energy.
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