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Why Loop Quantum Gravity?

Assumption: Einstein gravity in 4d can be quantised.

Perturbative quantisation leads to ∞ counterterms,
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Perhaps only the series in Newton’s constant is bad ?

Non-trivial UV fixed point (asymptotic safety) [Weinberg]

Exact renormalisation group [Reuter]

Euclidean path integrals [Gibbons, Hawking]

Dynamical triangulations [Ambjørn, Loll]

However, the nonperturbative canonical

quantisation of gravity has, so far, failed. LQG



Outline of this talk

F What makes Loop Quantum Gravity different ?

How do the calculations work ?
What has been achieved ?
What are the problems ?
. . . with emphasis on the physics, not the maths

Loop variables and spin networks

Quantisation → unusual Hilbert spaces

Quantised area and volume

Implementing constraints → physical Hilbert space

Applications and key problems



Canonical quantisation of gravity
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Two major technical problems

1 Einstein gravity has nonlinear constraints.

H = ∂tea
mΠm

a − L = NH0 +NaHa ,

Hamiltonian constraint
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Hard to solve once quantised.
(
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2 Resulting functional differential equations ill-defined.

H0(x)Ψ[e] = 0 , Ha(x)Ψ[e] = 0
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Considerable improvement: Ashtekar variables

Perform a transformation on phase-space,
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The Hamiltonian constraint becomes very simple when γ = ±i,
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The Barbero-Immirzi parameter

inverse densitised 3-bein: Ẽa
m := e ea

m

Ashtekar connection: Ama := −1
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Ẽm
a Ẽ
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Old literature: take γ = ±i.
Simple Hamiltonian, but complex phase space.

New literature: take γ real



Loop variables

su(2) valued connection

holonomy: he[A] = P exp

∫

e
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Wave functions . . .

over all dreibein functions: Ψ
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Spin network wave functions
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Ψ only feels A on curves: like δ-function basis.



So far . . .

F We have not done anything yet !

We have just introduced fancy new variables !
What is the difference with “old” canonical quantisation ?

X Loop variables and spin networks

Quantisation → unusual Hilbert spaces

Quantised area and volume

Implementing constraints → physical Hilbert space

Applications and key problems



They key ingredient: the inner product

Wave functions labelled by a graph, spins, Clebsch-Gordan coefficients,

ΨΓ,{j},{C}
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LQG uses an inner product which leads to uncountable basis,
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Loss of weak continuity
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Consequence: loss of weak continuity (and the Stone-Von Neumann theorem)

continuous deformation in Σ

discontinous deformation in H



Compare with Yang-Mills in Fock quantisation

One-point functions:

〈ΨΓ[A] 〉 = 〈1 |ΨΓ[A] 〉 = 0 ,
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So far . . .

F LQG uses a weird Hilbert space (non-separable)

What are the consequences?
How do operators behave on this Hilbert space?

X Loop variables and spin networks

X Quantisation → unusual Hilbert spaces

Quantised area and volume

Implementing constraints → physical Hilbert space

Applications and key problems



Area operator

Given a spin network wave function Ψ
and given a two-dimensional surface in Σ
what is the expectation value of the area ?
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Volume operator

V̂ (Ω) = lim
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vanishes on 3-valent vertices

limiting procedure subtle

surface orientation needs averaging

spectrum of q = V 2 unknown

action of V̂ unknown



So far . . .

F Funny Hilbert space → quantised area & volume

Still need to implement the constraints !
This is usually “the hard part” !

X Loop variables and spin networks

X Quantisation → unusual Hilbert spaces

X Quantised area and volume

Implementing constraints → physical Hilbert space

Applications and key problems



Constraint 1: Gauss constraint

Gauss’ constraint expresses the fact that the Ashtekar connection is a bit like an

SU(2) gauge field. In Maxwell:

Π0 =
δL

δȦ0

≈ 0 Gauss’ law

(Πm = F 0m)

{Π0,H}PB = 0 ∂mΠm ≈ 0

In gravity it’s just like in gauge theory,

inverse densitised dreibein

(Ẽa
m = e ea

m)

DmẼa
m ≈ 0

wrt. Ashtekar connection

Gauss’ constraint in absence of sources implies vanishing charge.

This is easy to implement: just make sure all SU(2) indices are contracted.



Constraint 2: Diffeomorphism constraint

Spin-network states not automatically diffeomorphism invariant.

Diffeomorphism-invariant states are infinite sums of spin networks.

|Ψ〉diff =
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Constraint 3: Hamiltonian constraint

The commutator of two Hamiltonians does not close in the strict Lie-Poisson

algebra sense:

diffeomorphism generator
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field-dependent structure function

No choice: implement Hamiltonian constraint as operator equation.



Rewriting tricks

Barbero-Immirzi parameter
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n
b

√

det Ẽ
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need to implement these in terms

of holonomies and fluxes



Rewriting tricks
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aẼa
m

}

Ashtekar curvature

=
1

γ

{

Am
a(x) ,

1

γ3/2

∫ {Ẽa
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Action of the Hamiltonian constraint

Let’s look at the first term, which classically is

H1 =

∫

Σ
d3xN

Ẽm
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In pictures

Ĥ1 =
∑

α
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The action is a bit tricky, however, the net effect is
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Ambiguous:

Spin j of the trace.

Orientation of the plaquette

Operator ordering.

Action of V itself not known.

Ambiguities in V̂ .
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Claimed achievements

Loop quantum cosmology

Not derived from the full LQG formalism.

LQG methods to quantise a mini-superspace action.

Inverse volume operator spectrum bounded.

V −1

scale factor

Recent work: this is not the case in the full theory.

Black hole entropy

Find a way to select kinematical states

satisfying the “isolated horizon” conditions.
Σ

The total number of states with a given 〈area〉 can then be counted.

S(A) ∼ A

Barbero-Immirzi parameter enters.



So far . . .

F Many ambiguities, and regularisation dependence

Are there any consistency checks ?
Is the constraint algebra satisfied ?
Do we see long-range correlations ?

X Loop variables and spin networks

X Quantisation → unusual Hilbert spaces

X Quantised area and volume

X Implementing constraints → physical Hilbert space

Applications and key problems



Requirement 1: off-shell closure

Classically:

{
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The importance of closure

Compare string theory:

(T++ + T−−)|ψ〉 ≈ 0 C × (T++ + T−−)|ψ〉 ≈ 0

any Casimir

for instance C = (J2 − number)

but keep (T++ − T−−)|ψ〉 ≈ 0

Incorrect mass spectrum !

Why incorrect ? Because the constraint algebra is not implemented !



Requirement 2: long-range correlations

In lattice gauge theory, neighbouring sites talk:

∇φ 1

a

(

φx+a−φx

) x x+a

In loop quantum gravity, the operators act only at one node,

ε

H



Requirement 2: long-range correlations

In loop quantum gravity, the operators act only at one node,

ε

H

Can there be long-range correlations?

Waves, propagating gravitons, classical solutions?

Loop quantum gravity not “gravity put on a coordinate lattice”

(lattice quantum gravity).

Spin foams try to repair this problem.

Still suffer from ambiguities of the Hamiltonian approach.



Summary

F The good

Four-dimensional.

No new degrees of freedom or symmetries.

“Discretisation” at the Hilbert-space level.

F The bad

Constraint algebra not verified (if possible at all).

Are long-range correlations possible?

Not a single physical, interpretable state known.

No approximation methods around simple state.

Not discussed: matter couplings, anomalies.


