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Why Loop Quantum Gravity?

@ Assumption: Einstein gravity in 4d can be quantised.

@ Perturbative quantisation leads to co countertermes,
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@ Perhaps only the series in Newton’s constant is bad ?

o Non-trivial UV fixed point (asymptotic safety) [Weinberg]
o Exact renormalisation group [Reuter]
o Euclidean path integrals [Gibbons, Hawking]
o Dynamical triangulations [Ambjgrn, Loll]

@ However, the nonperturbative canonical
quantisation of gravity has, so far, failed. —>» LQG



Outline of this talk

% What makes Loop Quantum Gravity different ?

How do the calculations work ?
What has been achieved ?
What are the problems ?

... with emphasis on the physics, not the maths

Loop variables and spin networks

Quantisation — unusual Hilbert spaces

Quantised area and volume

Implementing constraints — physical Hilbert space

Applications and key problems



Canonical quantisation of gravity
N N
A _
mh= (0 o)

“coordinates”: dreibein e,,* on the hypersurface

“momenta”: extrinsic curvature K, of the surface
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Two major technical problems

1 Einstein gravity has nonlinear constraints.

H = 0, 11,,* — L=NHy+ N,H,,
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Hamiltonian constraint diff constraint
Hy=e! (Habﬂab . %H2) — eR®) H, = D,,TI,"
Hard to solve once quantised. (Lorentz constraint
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2 Resulting functional differential equations ill-defined.
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Considerable improvement: Ashtekar variables

Perform a transformation on phase-space,

(ema7 Ham) —> (EamyAma)

inverse densitised 3-bein: E,™ :=ee,™
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Ashtekar connection: A, = —=€uwpcWmbe + Y e (Mne — =emall)
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Barbero-Immirzi parameter
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The Hamiltonian constraint becomes very simple when 7y = =i,
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The Barbero-Immirzi parameter

inverse densitised 3-bein: E,™ :=ee,™

1
Ashtekar connection: A,,, 1= — 5 CabeWmbe + 7y e (Ing — §€maﬂ)
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H[N] = /Zd?’:c N

@ Old literature: take 7y = .
Simple Hamiltonian, but complex phase space.

@ New literature: take 7y real



Loop variables

(\ su(2) valued connection

@ holonomy: h.[A] = Pexp / A 7, dz™,

m

o flux: Fg [E, fl= / fa eman”’“dx” Adx™.
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Wave functions ...

over all dreibein functions: W [ema(x)]

over all Ashtekar connections: W | A, (x)]

over the connectionsona curve C : W [P / At (x)]
C

Ulen'(x)] <= Wlhe[A]], VlhelA]],...



Spin network wave functions

spatial surface

Clebsch-Gordan coeff.

\P[A] graph, spins, intertwiners —
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U only feels A on curves: like §-function basis.



% We have not done anything yet !
We have just introduced fancy new variables !

What is the difference with “old” canonical quantisation ?

v' Loop variables and spin networks
Quantisation — unusual Hilbert spaces
Quantised area and volume
Implementing constraints — physical Hilbert space

Applications and key problems



They key ingredient: the inner product

Wave functions labelled by a graph, spins, Clebsch-Gordan coefficients,

Ur oy hel Al

LQG uses an inner product which leads to uncountable basis,
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only nonzero if graphs equal



Loss of weak continuity

(Ur.yier | Yo gngon) =
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e;el’ ° .
only nonzero if graphs equal

Consequence: loss of weak continuity (and the Stone-Von Neumann theorem)

continuous deformation in ¥

&

discontinous deformation in H



Compare with Yang-Mills in Fock quantisation

One-point functions:

(Wr[A]) = (1[¥r[4]) =0,

(We[A]) = <exp [ie ﬁ A,de#D — exp [-% 7{ 7{ dat'da” Ay (z — y)]

Correlators of Wilson loops:

<\IJF17{C}[A] | ‘IIFQ,{C} - 6F1 F2 9

(W, [A] | Wr, [A]) = exp [—% él dat 7& dy” A (z — y)



* LQG uses a weird Hilbert space (non-separable)

What are the consequences?
How do operators behave on this Hilbert space?

v Loop variables and spin networks
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Area operator

Given a spin network wave function ¥
and given a two-dimensional surface in ¥
what is the expectation value of the area ? ‘
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Volume operator

= lim ZV Qr) = hm Z
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Y @ vanishes on 3-valent vertices
@ limiting procedure subtle
@ surface orientation needs averaging

@ spectrum of ¢ = V2 unknown

\

/ action of V unknown




% Funny Hilbert space — quantised area & volume

Still need to implement the constraints !
This is usually “the hard part” !
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Constraint 1: Gauss constraint

Gauss’ constraint expresses the fact that the Ashtekar connection is a bit like an
SU(2) gauge field. In Maxwell:

m=-—=0 Gauss’ law

0Ag r (1" = Fom)y

{I°, Hlpp=0 —>» 9,11 =~0

In gravity it’s just like in gauge theory,

inverse densitised dreibein
(B, =ee,™)

D, E,™ ~ 0

wrt. Ashtekar connection \-j‘

Gauss’ constraint in absence of sources implies vanishing charge.

This is easy to implement: just make sure all SU(2) indices are contracted.



Constraint 2: Diffeomorphism constraint

Spin-network states not automatically diffeomorphism invariant.

Diffeomorphism-invariant states are infinite sums of spin networks.

W) aifs = > g[¥)

diffeomorphisms g
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diffeos g1 diffeos go

reduces to single term \j



Constraint 3: Hamiltonian constraint

@ The commutator of two Hamiltonians does not close in the strict Lie-Poisson
algebra sense:

diffeomorphism generator
{HIN), HM]} =

E mE~an —
/ d*z (No,M — M9,N) —*—~— E,” F%

det £/
field-dependent structure function \j

@ No choice: implement Hamiltonian constraint as operator equation.




Rewriting tricks

Barbero-Immirzi parameter

'y
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det E N

need to 1mp1ement these in terms
of holonomies and fluxes



Rewriting tricks
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Action of the Hamiltonian constraint

@ Let’s look at the first term, which classically is

EmEn
H, = / d%Naib(eabCme) .
>

Vdet E

plaquette 4 volume —v

Hy = Z N (va) €™ Tr ((hﬁPmn(e)_hgfvmn(e)) hy " [y, V])
[0

L— act on each node



In pictures

Ay =" Nwa) €™ T ((hopn 0= 0) 1o [ V])
(6%

The action is a bit tricky, however, the net effect is

J3

@ Spin j of the trace.

@ Orientation of the plaquette J2
Ambiguous: @ Operator ordering. 3

@ Action of V itself not known. Ph

@ Ambiguities in V.



Claimed achievements

@ Loop quantum cosmology V-1

Not derived from the full LQG formalism.
LQG methods to quantise a mini-superspace action.

Inverse volume operator spectrum bounded. scale factor
Recent work: this is not the case in the full theory.

@ Black hole entropy

Find a way to select kinematical states
satisfying the “isolated horizon” conditions.

The total number of states with a given (area) can then be counted.

S(A) ~ A

Barbero-Immirzi parameter enters.



% Many ambiguities, and regularisation dependence

Are there any consistency checks ?
Is the constraint algebra satisfied ?
Do we see long-range correlations ?

v' Loop variables and spin networks
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Requirement 1: off-shell closure

Classically:
{mpm), HNY} = /E Bz (MO N — N0y M)g™ D, .

Quantum theory:

[fI[M] , ﬁ[N]] (1/;} - /Zd% (M8, N — N0y M)g™ Dy |1)) .

but D,,
Only a check on [¢) such that exp (a.D,,)

) !
) = 0 done !

) does not exist, only exp (D)

[H[N], HIN|[9) = — =0



The importance of closure

Compare string theory:

(T + T ) =0 —>»  Cx Ty +T-)|) = 0

Why incorrect ?

any Casimir
for instance C = (J? — number)

butkeep (744 —T7__)[¢p) =0

Incorrect mass spectrum !

Because the constraint algebra is not implemented !



Requirement 2: long-range correlations

o In lattice gauge theory, neighbouring sites talk:

SRl REhhhh ®----- ®------ ®----
1 | e !
Vo —> —(dwra—ou) : : : :
a 1 1 1 1
Rt SRRLEEl SEbbh SELEAS! Sbh
@ In loop quantum gravity, the operators act only at one node,
€
\



Requirement 2: long-range correlations

@ In loop quantum gravity, the operators act only at one node,

€

\

@ Can there be long-range correlations?
Waves, propagating gravitons, classical solutions?

@ Loop quantum gravity not “gravity put on a coordinate lattice”
(lattice quantum gravity).

@ Spin foams try to repair this problem.
Still suffer from ambiguities of the Hamiltonian approach.



* The good
Four-dimensional.
No new degrees of freedom or symmetries.
“Discretisation” at the Hilbert-space level.

% The bad
Constraint algebra not verified (if possible at all).
Are long-range correlations possible?
Not a single physical, interpretable state known.
No approximation methods around simple state.
Not discussed: matter couplings, anomalies.



