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Plan of the Talk

¥ Brief Review of BFSS Matrix Model ideas

¥ DLCQ of string/M- theory on AdSp×Sq bg’s.

¥ Some facts about the ten dim. Max. SUSic

plane-wave,

¥ Lessons from DLCQ of M-theory on the 11d.

plane-wave bg., the BMN matrix model:

• A quick review on giant gravitons and

introduction of: the Tiny Gravitons

¥ The proposal for DLCQ of

strings on AdS5×S5 or plane-wave background,

the Tiny Graviton Matrix Theory (TGMT).

¥ Analysis of and Evidence for the Model.

¥ Summary, works in progress and a to-do-list.
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• According to BFSS conjecture

The Discrete Light-Cone Quantization (DLCQ)

of M-theory on the flat 11 dim. space in the

sector with J units of the light-cone momen-

tum is described by a

U(J) SUSic Quantum Mechanics, i.e. a

U(J) 0 + 1 dim. SYM theory with 16 SUSY.

• This theory is describing or described by a

dynamics of J D0-branes.

Remarks:

• D0-branes are 1/2 BPS objects.

• SUSY is a crucial ingredient for the consis-

tency of the conjecture.

• The BFSS matrix Model has been extended

to describe DLCQ of M-theory on weakly curved

backgrounds. It is done by adding proper de-

formations to the 0 + 1 SYM action. There is

a one-to-one relation between the background

and the deformations [W. Taylor & M. van

Raamsdonk ’98, ’99].
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I Q1: What about the strongly curved back-

grounds? Namely, AdS4,7×S7,4 or the 11 dim.

plane-wave, as the max. SUSic 11 dim. bg’s.)

I Q2 Does DLCQ of M-theory on the above

bg’s admit a Matrix theory formulation?

Challenge: D0-branes are NOT 1/2 BPS ob-

jects on the above bg’s.

¥ Ingredients of DLCQ:

• (Globally defined) Light-like Killing vector.

• Compactification along light-like direction.

Consider AdSp+2 × Sq+2 geometry:

ds2 = R2
A

(
− cosh2 ρdτ2 + dρ2 + sinh2 ρdΩ2

p

)

+ R2
S

(
cos2 θdψ + dθ2 + sin2 θdΩ2

q

)

light-like geodesics

i) Insdie AdS along the radial direction ρ.

ii) Inside sphere and along the ψ direction, at

ρ = θ = 0, RAτ = ±RSψ.

Only ii) is appropriate for the purpose of DLCQ

and the light-like compactification.
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• Next, let us follow the light-like observer

and elaborate on the geometry seen by this

observer ....

Systematically this geometry is known as the

Penrose limit of the original background.

For the AdSp+2 × Sq+2 background, that is

ds2 = −2dx+dx− − µ2(~x2
p + κ2~x2

q )(dx+)2

+ d~xpd~xp + d~xqd~xq

where κ = Rs
RA

and

µ is an arbitrary parameter of dimension of en-

ergy (length−1).

This is a PLANE-WAVE geometry.

It has a globally defined light-like Killing vector:

p+ =
∂

∂x−
.
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• For (p, q) = (2,5) or (5,2):

ds2 = −2dx+dx− − µ2(X2
i +

1

4
X2

a )(dx+)2

+ dXidXi + dXadXa

i = 1,2,3 and a = 1,2, · · · ,6. This is the max.

SUSic 11 dim. plane-wave bg. (There is of

course also an 11d four-form: F+ijk = µεijk.)

Therefore, DLCQ of M-theory

on the AdS4,7 × S7,4 is the same as

the one on the 11 dim. plane-wave background,

which is the plane-wave (or BMN) Matrix theory.

• For (p, q) = (3,3):

ds2 = −2dx+dx− − µ2(X2
i + X2

a )(dx+)2

+ dXidXi + dXadXa

i, a = 1,2,3,4. This metric supplemented with

F+ijkl =
µ

4!gs
εijkl , F+abcd =

µ

4!gs
εabcd

eφ = gs = const.

is the max. SUSic type IIB 10 dim. bg.

Similarly, DLCQ of type IIB strings on the

AdS5 × S5 geometry is the same as DCLQ of

strings on the 10d plane-wave background.
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Bosonic Isometries of the 10d plane-wave

• Translation along x− and x+:

H = P− = i
∂

∂x+

p+ = −i
∂

∂x−

• SO(4)i × SO(4)a rotations, generated by:

Jij, Jab.

• There are 16 other isometries not manifest

in the above coordinate system, (Ki, Li) and

(Ka, La):

[Ki, Lj] = µp+δij ; [Ka, Lb] = µp+δab

[Ki, Ka] = [La, Lb] =[Ki, La] = [Ka, Li] = 0

Altogether, #isometries=2 + 12 + 16 = 30.

Note:

dim (so(4,2)× so(6)) = 30

dim (Iso(9,1)) = 55

dim (Iso(8)) = 36.
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Fermionic Isometries of the 10d plane-wave

SO(8) fermions can be decomposed into the

SO(4)× SO(4) spinors as:

• (Complexified) 8s → (ψαβ, ψ
α̇β̇

)

• (Complexified) 8c → (ψ
αβ̇

, ψα̇β)

α, α̇ = 1,2 are the SO(4) Weyl indices.

¥ Supercharges:

I Kinematical supercharges: qαβ, qα̇β̇, and

their complex conjugates, # = 16.

I Dymanical supercharges: Qαβ̇, Qα̇β, and

their complex conjugates, # = 16.

¥ Kinematical SUSY:

{qαβ, q†ρλ} = 2δρ
αδλ

βP+

{qα̇β̇, q†ρ̇λ̇} = 2δ
ρ̇
α̇δλ̇

β̇
P+

[qαβ, H] = µqαβ , [qα̇β̇, H] = −µqα̇β̇

[qαβ, P+] = 0
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¥ Dynamical SUSY:

{Qαβ̇, Q†ρλ̇} = 2δρ
αδλ̇

β̇
H + 2µδλ̇

β̇
(σij)ρ

αJij

+ 2µδρ
α(σab)λ̇

β̇
Jab

{Qα̇β, Q†ρλ̇} = 0

{Qα̇β, Q†ρ̇λ} = δ
ρ̇
α̇δλ

βH + 2µδλ
β(σ

ij)ρ̇
α̇Jij

+ 2µδ
ρ̇
α̇(σab)λ

βJab

[Qαβ̇, H] = [Qα̇β, H] = 0

[Qαβ̇, P+] = [Qαβ̇, P+] = 0

For the full SUSY algebra see [D. Sadri, M.M.

Sh-J, hep-th/0310119, RMP 76 (2004) 853].

Remarks

• The plane-wave SUSY algebra can be ob-

tained as the Penrose contract of PSU(2,2|4).

• The dynamical part of the SUSY algebra is

PSU(2|2)× PSU(2|2)× U(1)H × U(1)p+

which is a subalgebra of psu(2,2|4) w/ 16 susy.

• p+ is at the center of the whole plane-wave

SUSY, i.e. it commutes with all supercharges.

This should be contrasted with the flat space.
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Penrose diagram of the plane-wave

By a series of coordinate transformations and

analytic extension on the range of coordinates,

the plane-wave metric can be brought to a

form conformal to the Einstein static universe

(conformal to R× S9):

ds2 =
1

µ2

1

|eiψ − sinαeiβ|2
(
− dψ2 + sin2 αdβ2

+ dα2 + cos2 αdΩ2
7

)

α ∈ [0, π/2], β ∈ [0,2π], ψ ∈ R.

β 

α

ψ

α=0
α=π/2

The ψ = β, α = π/2 is the

casual boundary of the plane-wave, which is

one dimensional light-like.
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Lessons From the BMN matrix Model

BMN Matrix model is a deformation of 0 + 1

dim. U(J) SYM by bosonic and fermionic mass

terms plus a cubic CS term:

H = R−Tr

[
Π2

I −
1

4
[XI , XJ]2 + ψ†ΓI[XI , ψ]

+ (
µ

R−
)2X2

i +
1

4
(

µ

R−
)2X2

a +
µ

R−
ψ†ψ

+
µ

3!R−
εijkXiXjXk

]

where I = {i, a} = 1,2, · · ·9.

• BMN Matrix model can be obtained from

quantization (discretization) of super-membrane

in the light-cone gauge

on the 11d plane-wave bg.

This is done by replacing Poisson brackets with

commutators and super-embedding coordinates

with J×J matrices in the LC gauge fixed super-

membrane action.
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• Zero energy solutions, 1/2 BPS configura-
tions, of the BMN matrix model are concentric

Fuzzy two spheres, S2
F

which in the continuum (M-theory) limit, i.e.
J, R− →∞, p+ = J/R− = fixed, go over to

Membrane Giant Gravitons.

¥ Giant Gravitons, A quick review
———————–

• Dp-branes are objects carrying p + 1-form
RR-charges proportional to their volume form.
• (Topologically) spherical D-brane can’t carry

the corresponding RR charge. It can, however,
carry electric dipole moment of the RR form.
• In the absence of any other force a spherical

brane would collapse under its own tension.
• The electric dipole can be used to stabilize

the brane, iff we have a moving brane in the
corresponding background RR flux.

• Such a magnetic form-field flux exists in
AdSp+2×Sq+2, (p, q) = (2,5), (3,3), (5,2) soln’s.

• It turns out that it is possible to stabilize
spherical p or q branes in AdSp+2×Sq+2 spaces,

12



that is,

spherical D3-branes in AdS5×S5 geometry and

spherical M2 and M5 branes in AdS4,7 × S7,4.

• This is possible only when the branes are

moving with the speed of light, i.e. when they

are following a light-like geodesic and hence

they are like graviton, the Giant Gravitons.

• Giant Gravitons are 1/2 BPS objects in the

above backgrounds.

• Their size is then fixed by their angular mo-

mentum J as:
(

Rgiant

RAdS

)p−1

=
J

N

where

(RAdS)p+1 = (lp)
p+1N.

Therefore,
(

Rgiant

lp

)p−1

=

(
lp

RAdS

)2

J

What if J takes it minimal value J = 1?

In this case we call them Tiny Gravitons, as

we’ll momentarily see, they can become very

small in the Planck units.
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I Tiny Membrane Gravitons:

Rtiny =
l3p

R2
Ads4

Remarks:
M5branes do not become tiny in AdS4×S7 bg,
while they do become tiny in AdS7 × S4 bg.

As tiny membranes, by definition, carry one
unit of the angular momentum, and they are
1/2 BPS objects, they may be used to give a
DLCQ description of M-theory on the AdS4 ×
S7 bg, or the 11d plane-wave. That is,

tiny membrane gravitons play the role
of D0-branes of BFSS in this DLCQ.

In fact the BMN matrix model is nothing but
the theory of J tiny gravitons, i.e.

11d plane-wave matrix theory
≡

tiny (membrane) graviton matrix theory.

In this viewpoint a giant membrane of radius
Rgiant ∼ K is a bound state of K tiny mem-
brane gravitons blown up onto a fuzzy two
sphere.
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I Tiny 3-brane Gravitons:

Rtiny =
l2p

RAds5

OR R4
tiny =

1

N
l4p

Q: Can we use the same observation, but now

with tiny three branes, for DLCQ formulation

of type IIB strings on the 10d plane-wave bg?

The Tiny Graviton Matrix Theory conjecture:

The DLCQ of type IIB strings on the Max.

SUSic 10d plane-wave and/or the AdS5 × S5

background in the sector with J units of the

light-cone momentum is a

theory of J tiny three-brane gravitons,

a 0 + 1 dim. U(J) SUSY gauge theory

with PSU(2|2)× PSU(2|2)× U(1)H SUSY

In other words, similarly to the 11d case,

Nonperturbative formulation of type IIB strings

on the 10d plane-wave is described by a

quantized three brane theory.

Q: How do we quantize a three brane theory?

What is the Hamiltonian of the TGMT?
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DBI action for a 3-brane on the plane-wave bg

S =
1

l4p

∫
dτd3σ

√
−det (Gµν∂aXµ∂bX

ν) +
∫

C4

where Xµ = Xµ(σr, τ), r = 1,2,3 and

µ ∈ {+,−, I}, I = 1,2, · · · ,8.

Note that we have set the gauge field on the

brane to zero. To be discussed further later.....

Fixing the light-cone gauge:

X+ = τ

g0r = Gµν∂0Xµ∂rX
ν = 0

Note: the latter leads to “level matching”

condition.

• The momenta:

p+ =
∂LBI

∂(∂τX+)
; P I =

∂LBI

∂(∂τXI)

Hl.c. = − ∂LBI

∂(∂τX−)

• p+ is a constant of motion and may be used

to eliminate ∂τX− for other d.o.f, the XI’s.
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H =
1

2p+

∫
d3σ

[
P2

I +
1

g2
s
det grs + (µp+)2X2

I

− µp+

3gs

(
εijklX

i{Xj, Xk, Xl}

+ εabcdX
a{Xb, Xc, Xd}

)]

where

grs = ∂rX
I∂rX

I = ∂rX
i∂rX

i + ∂rX
a∂rX

a

{F, G, H} = εrps∂rF ∂pG ∂sH

are the Nambu 3-brackets, a direct generaliza-
tion of the Poisson bracket, and

det grs =
1

3!

(
{XI , XJ , XK}{XI , XJ , XK}

)
.

(One may add fermionic terms as well. For
more details of LC gauge fixing see [D. Sadri
& M.M.Sh-J, hep-th/0312155,].)

After adding the fermions and the gauge
fields, the full Hamiltonian enjoys the

PSU(2|2)× PSU(2|2)× U(1)H invariance.

To quantize the above action, similarly to the
membrane case, it is enough to quantize the
Nambu brackets.
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De tour on Nambu brackets:

A Nambu p-bracket is defined as:

{A1, A2, · · · , Ap} = εr1r2···rp
∂A1

∂σr1

∂A2

∂σr2
· · · ∂Ap

∂σrp

where Ai = Ai(σ
r), r = 1,2, · · · , p.

• Properties of N.B.
1) Cyclicity & Exchange property:

{A1, A2, · · · , Ap} = −{A2, A1, · · · , Ap}
{Ap, A1, · · · , Ap−1} = (−1)p−1{A2, A1, · · · , Ap}
(Note that εi1i2···ip = (−1)p−1εipi1···ip−1.)

2) Jacobi Identity:

εi1i2···i2p−1×
×

{
Fi1, Fi2, · · · , Fip−1

, {Fip, Fip+1
, · · · , Fi2p−1

}
}

= 0

3) Associativity:

{F1, F2, · · ·, Fp−1, FpGp} =

{F1, F2, · · · , Fp−1, Fp}Gp + {F1, F2, · · · , Fp−1, Gp}Fp

4) Trace property:
∫

dpσ {F1, F2, · · · , Fp−1, Fp} = 0
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5) By-part Integration:
∫

dpσ{F1, F2, · · · , Fp−1, Fp}Gp =

−
∫

dpσ{F1, F2, · · · , Fp−1, Gp}Fp

Note: 5) is a result of 3)+4).

Quantization of Nambu Brackets

• Nambu EVEN brackets
i) A(σi) ←→ Â (matrices or operators).

ii)

{F1, F2, · · · , F2p} ←→[F̂1, F̂2, · · · , F̂2p]

≡ ip

(2p)!
εi1i2···i2p F̂i1F̂i2 · · · F̂i2p

.

iii)
∫

d2pσ ? ←→ Tr?̂.

• Remarks:
It is not possible to perform quantization for
p ≥ 2 and maintain all the five properties of
the classical Nambu brackets. In particular,
with the above prescription associativity is lost.
BUT, trace and by-part properties survive, be-
cause

εi1i2···i2p = −εi2pi1···i2p−1.
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• Nambu ODD brackets

Obviously the above procedure for even N.B.

cannot be extended to odd N.B. while keeping

the trace property......

The way out [hep-th/0406214]

Replace the Nambu (2p− 1)-bracket with

a Nambu 2p-bracket:

{F1, F2, · · · , F2p−1} ←→ [F̂1, F̂2, · · · , F̂2p−1,L2p+1]

L2p+1 is a given matrix (operator) closely re-

lated to the chirality operator in 2p dimensions.

In particular, for the case of our interest, p = 2:

{A, B, C} ←→[A, B, C, L5] =

1

4!

(
[A, B][C, L5] + [C, L5][A, B]

− [B, L5][A, C]− [A, C][B, L5]

+ [A, L5][B, C] + [B, C][A, L5]

)
.

Now we can quantize the 3-brane action.......

End of De tour on Nambu brackets
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Quantization of the LC Hamiltonian

• Replace:

p+ ←→ J

R−
XI(σ), PI(σ) ←→ XI , JΠI (J × J matrices)

ψαβ(σ), ψα̇β̇(σ) ←→
√

Jψαβ,
√

Jψα̇β̇

1

p+

∫
d3σ ? ←→ R− Tr?̂

{F, G, K} ←→ 1

J
[F̂ , Ĝ, K̂, L5]

• Definition of L5:

L5 is a hermitian J × J matrix and

TrL5 = 0

L5
2 = 1J×J.

• The string theory (continuum) limit is then:

J, R− →∞, p+ =
J

R−
, µ, gs = fixed
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Full Hamiltonian of TGMT

H = R−Tr

[
1

2
Π2

I +
1

2

(
µ

R−

)2

X2
I

+
1

2 · 3!g2
s
[XI , XJ , XK, L5][XI , XJ , XK, L5]

− µ

3!R−gs

(
εijklX

i[Xj, Xk, Xl, L5]

+ εabcdX
a[Xb, Xc, Xd, L5]

)

+

(
µ

R−

) (
ψ†αβψαβ − ψ†α̇β̇ψα̇β̇

)

+
2

gs

(
ψ†αβ(σij)ρ

α [Xi, Xj, ψρβ, L5]

− ψ†αβ(σab)λ
β [Xa, Xb, ψαλ, L5]

)

− 2

gs

(
ψ†α̇β̇(σij)ρ̇

α̇ [Xi, Xj, ψρ̇β̇, L5]

− ψ†α̇β̇(σab)λ̇
β̇

[Xa, Xb, ψα̇λ̇, L5]
)]

.
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• The above action is invariant under

PSU(2|2)× PSU(2|2)× U(1)H.

For the representation of the superalgebra gen-

erators in terms of the J×J matrices see [hep-

th/0406214].

• The above action has an extra Z2 symmetry

which exchanges the two PSU(2|2) factors. Or

equivalently it exchanges Xi and Xa directions.

• The action is the Hamiltonian for a

0 + 1 dim. U(J) gauge theory,

in the temporal gauge,

under which all the fields transform

in the adjoint of U(J):

Φ → UΦU−1, U ∈ U(J)

and Φ = {XI ,ΠI , ψ}.

• L5 is also transforming in the adjoint.

• Although a gauge theory, the TGMT is not

a Yang-Mills theory.
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• To obtain the physical states we should im-

pose the Gauss law constraint:
(
i[XI ,ΠI] + 2ψ†αβψαβ + 2ψ†α̇β̇ψα̇β̇

)
|phys〉 = 0

This is the e.o.m for the only component of

the gauge field A0.

The Gauss law constraint is the

quantized version of the g0r = 0 condition.

• DLCQ vs. Covariant formulation

dim(plane−wave Isometries) = dim(AdS5 × S5).

unlike the flat or the BFSS case.

In the plane-wave we do not have J+− and J+I

boosts and p+ commutes with all the SUSY

generators.

Therefore, compared with the BFSS case,

TGMT has a better chance of capturing the

covariant information of string on AdS5 × S5.
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Evidence for the TGMT conjecture

• The fact that the TGMT Hamiltonian is in-

variant under the expected SUSY.

and that the superalgebra is a big one (with 16

SUSY), puts severe restrictions on the form of

the Hamiltonian. (To my knowledge, however,

there is no no-go theorem on this.)

• 1/2 BPS (zero energy) solutions.

VB = R−Tr

[
1

2

(
µ

R−
Xi − 1

3!gs
εijkl[X

j, Xk, Xl, L5]

)2

+
1

2

(
µ

R−
Xa − 1

3!gs
εabcd[X

b, Xc, Xd, L5]

)2

+
1

4g2
s

(
[Xa, Xb, Xi, L5]

2 + [Xi, Xj, Xa, L5]
2
) ]

.

All four terms are +ve definite and hence to

have zero energy, they should all vanish:

[Xj, Xk, Xl, L5] = εijkl
µgs

R−
Xi

[Xb, Xc, Xd, L5] = εabcd
µgs

R−
Xa

[Xa, Xb, Xi, L5] = [Xa, Xi, Xj, L5] = 0.
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All the solutions of these equations has been

classified in

[M.M. Sh-J, M. Torabian, hep-th/0501001].

• They are all in the form of Fuzzy three Spheres

S3
F either in Xi and/or Xa directions. As some

particular examples, the solutions to

Xa = 0 , [Xj, Xk, Xl, L5] = εijkl
µgs

R−
Xi

gives the concentric S3
F in the Xi direction,

centered at Xa = 0. (There are a similar class

of solutions with Xi ↔ Xa.)

• These soln’s are classified by J × J represen-

tations of SO(4). For the irreducible rep., that

is a single fuzzy sphere of radius (in units of

ls):

R2 =
µgs

R−
J = µp+gs.

In the continuum (string theory) limit it recov-

ers the commutative giant 3-brane graviton.

• The reducible reps, then generically give con-

centric giants.
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• One should compare the above result with a

generic S3
F result in which

R2 = l2J

with l being the fuzziness scale. In our case

l2fuzziness =
µgs

R−
l2s = l2p

√
1

N
= l2tiny.

The string theory limit can be understood as

ltiny → 0 keeping lp, Rgiant fixed, that is

J, N →∞ , gs, lp, J
2/N = fixed.

There is a one-to-one correspondence between

the half BPS configurations of N = 4 U(N)

SYM with R-charge J, the chiral primary opts,

and the fuzzy sphere soln’s of the TGMT.

Both of them are labeled by representations of

group of permutations of J objects, SJ.

[hep-th/0501001].
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• Spectrum of fluctuations about the single
giant fuzzy sphere solution has been worked
out in [hep-th/0406214] and shown that it ex-
actly matches with that of a spherical D3-
brane in the plane-wave (or AdS5 × S5) back-
ground. (The latter has been worked out in

[D. Sadri, M.M. Sh-J, hep-th/0312155].
This is a non-trivial test, because in the DBI
action we started with, we had not included
the gauge fields living on the brane.

• One can also work out the effective coupling
of these fluctuation modes [hep-th/0406214].
The effective coupling about the single giant
vacuum is:

geff =
R−

µ
√

gs

1

J
=

1

µp+√gs

Expressed in terms of the N = 4 U(N) SYM
parameters:

g2
eff =

N

J2
=

1

g2
where g2 is the effective coupling for strings on
plane-wave S. Minwalla, et.al.[hep-th/0205089].

Q: What about the X = 0 vacuum?!
Where are type IIB fundamental strings?
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¥ 2nd part of the conjecture

———————–

In the string theory limit the X = 0 vacuum

becomes strongly coupled and

Fundamental type IIB strings are

non-perturbative objects about the X = 0

vacuum.

(Remark: This is very similar to the M5-brane

giants in the BMN matrix model,

[J. Maldacena, M.M. Sh-J, M. van Raamsdonk,

hep-th/0211139].)

• Evidence: the spectrum of small BPS fluc-

tuations (in a R−
µ expansion) about the X = 0

vacuum, exactly matches with the spectrum of

SUGRA modes (BPS spectrum of strings) in

the plane-wave bg.

More works in this direction is under way .....
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¥ Summary and a short to-do-list

———————–

• Tiny Graitvons may be used as “D0-branes”

to give a matrix theory, 0+1 dim. gauge the-

ory, formulation for string/M- theory on the

curved backgrounds, such as AdS-spaces and

the plane-waves.

• The plane-wave string theory, in the DLCQ

description, admits a matrix theory formula-

tion, the TGMT. It is a SUSY gauge theory

(though not a SYM!) with SUSY

PSU(2|2)× PSU(2|2)× U(1)H.

• In the formulation of TGMT, we introduced

an extra traceless J×J matrix L5, which squares

to identity.

The L5 is reminiscent of the eleven dimensional

origin of the type IIB theory. It is related to

the 11th circle [hep-th/0501001].

• The µ → 0 (flat space) limit, is it a smooth

one? Is the TGMT in that limit related to

IKKT or (2+1) SYM/T2 (Susskind-Sethi model)?
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• As the causal boundary of the plane-wave

is one-dimensional light-like, the DLCQ de-

scription is the holographic description. There-

fore, TGMT is the holographic formulation of

strings on plane-wave.

• How and where does TGMT fit in the

AdS/CFT duality?!

5
5AdS   xS

C
onvensional A

dS
/C
F
T

4−dim
 H
olographic D

ual

D
LC

Q

1−
di
m
 H
ol
og

ra
ph

ic
 D
ua

l

Needs

further clarifications

IIB
with    units of 5−form fluxN

Type       Superstring on         

0+1−dim U(J) gauge theory 
with PSU(2|2)xPSU(2|2)xU(1) superalgebra

Tiny Graviton Matrix Theory
N3+1−dim U(N)     =4 SYM theory

• Interesting observation: fuzziness l, the

“size of tiny gravitons” is

l4tiny =
1

N
l4p .

That is, the 1/N expansion has now a

geometric meaning.

• 1
J vs. 1

N expansion?!
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• Lower SUSY solutions?!

Other D-brane solutions?!

• Connection to Verlinde’s String Bit Model?!

• For finite R− we expect strings to have wind-

ing modes, where are they?

• Does TGMT satisfy the duality requirements

and in particular SL(2,Z) duality of type IIB?

• Can we “quantize” an M5-brane theory in

the same way we did for a 3-brane?

That is, by replacing the Nambu five brackets

which appear in the M5-brane Hamiltonian

[e.g. see, hep-th/0211139], by Nambu six

brackets and introduction of L7?

Are the quantized giant M5-branes in the

form of S5
F?!

If the above is correct, can we have a matrix

theory formulation of six dimensional (0,2)

theory (on R× S5)?

There are much more things to be
done on the TGMT.......
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