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The Discrete Light-Cone Quantization (DLCQ)
of M-theory on the flat 11 dim. space in the
sector with J units of the light-cone momen-
tum is described by a

U(J) SUSic Quantum Mechanics, i.e. a
U(J) 041 dim. SYM theory with 16 SUSY.

e [ his theory is describing or described by a
dynamics of J DO-branes.

e DO-branes are 1/2 BPS objects.

e SUSY is a crucial ingredient for the consis-
tency of the conjecture.

e T he BFSS matrix Model has been extended
to describe DLCQ of M-theory on weakly curved
backgrounds. It is done by adding proper de-
formations to the 0 + 1 SYM action. There is
a one-to-one relation between the background
and the deformations |
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> . What about the strongly curved back-
grounds? Namely, AdSs 7 x S or the 11 dim.
plane-wave, as the max. SUSic 11 dim. bg’'s.)

> Does DLCQ of M-theory on the above
bg’'s admit a Matrix theory formulation?
Challenge: DO-branes are NOT 1/2 BPS ob-
jects on the above bg's.

B Ingredients of DLCQ:

e (Globally defined) Light-like Killing vector.
e Compactification along light-like direction.
Consider AdS,4, x S4T2 geometry:

ds? = Ri(— cosh? pdr2 + dp? + sinh? deg)

+ R3(cos® 0dip + d6? + sin® 0d$27)
light-like geodesics
i) Insdie AdS along the radial direction p.
i) Inside sphere and along the 9 direction, at
p=0=0, Ryt = £Rg?.

Only ii) is appropriate for the purpose of DLCQ
and the light-like compactification.



e Next, let us follow the light-like observer
and elaborate on the geometry seen by this
observer ....

Systematically this geometry is known as the
Penrose limit of the original background.

For the AdS,4, x S92 background, that is

ds? = —2dxTdx™ — ,LLQ(fZ% + lizfg)(diﬁ_l_)Q
+ dipdi, + dZqdZ,

where x = % and
A

L IS an arbitrary parameter of dimension of en-
ergy (length—1).

It has a globally defined light-like Killing vector:
0
p+ —

or—



e For (p,q) = (2,5) or (5,2):
1
ds?® = —2dxVda™ — p? (X7 + ZXC%
1=1,2,3anda=1,2,---,6. This is the max.
SUSic 11 dim. plane-wave bg. (There is of
course also an 11d four-form: Fy ;. = ue;jk.)

) (dz)?

DLCQ of M-theory
on the AdS, 7 x S7* is the same as
the one on the 11 dim. plane-wave background,
which is the plane-wave (or BMN) Matrix theory.

e For (p,q) = (3,3):
ds? = —2dzTdz™ — ,UJQ(XiQ + Xg)(da:+)2
1,a =1,2,3,4. This metric supplemented with

T T
Fyiikl = Tgseijkl , Fyabed = Tgseabcd

e? = gs = const.

iIs the max. SUSic type IIB 10 dim. Dbg.
Similarly, DLCQ of type IIB strings on the
AdSs x S° geometry is the same as DCLQ of

strings on the 10d plane-wave background.
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Bosonic Isometries of the 10d plane-wave

e Translation along z— and zT:

0

H=P_ =1
Z(?:I:"‘

0]
+ —
p @a$_
e SO(4); x SO(4), rotations, generated by:
Jija Jab'

e [ here are 16 other isometries not manifest
in the above coordinate system, (K;, L;) and
(Ka,La):

[K;, L] = upTdij ; [Ka, Lyl = ppTdab
[KiaKa] — [LaaLb] :[KivLa] — [KavLi] =0
#isometries=2 4+ 12 + 16 = 30.

Note:
dim (so(4,2) x so(6)) = 30
dim (1so(9,1)) = 55

dim (Iso(8)) = 36.



Fermionic Isometries of the 10d plane-wave

SO(8) fermions can be decomposed into the
SO(4) x SO(4) spinors as:

o (Complexified) 8s — (¢q3, quﬁ-)

e (Complexified) 8¢ — (@bag, Va3)
a,& = 1,2 are the SO(4) Weyl indices.

B Supercharges:

» Kinematical supercharges:. A0 B 963 and
their complex conjugates, # — 16.

» Dymanical supercharges: Qaﬁ-,Qdﬁ, and
their complex conjugates, # = 16.

B Kinematical SUSY:
{qap: "} = 26553PT
{ng‘aqw)\} — 25252P+
[9as: H] = pa0p 5 las5 H]l = —na,4
[0, PT]1 =0



B Dynamical SUSY:
{Qup Q1P = 200031 + 2u53(a™ )51
+ 2M5op¢(0'ab)éjab
{Qap QP =0
{Qap, Q1) = 6563 H + 2u83( )5 T
+ 2u85 (0™ 5 ap
(Qu H] = [Qap, H] = 0
Qg PT1=1Qu4 PT1=0
For the full SUSY algebra see [D. Sadri, M.M.
Sh-J, hep-th/0310119, RMP 76 (2004) 853].

e [ he plane-wave SUSY algebra can be ob-
tained as the Penrose contract of PSU(2,2|4).
e T he dynamical part of the SUSY algebra is
PSU(2|2) x PSU(2|2) xU(1) g X U(l)pJr
which is a subalgebra of psu(2,2]4) w/ 16 susy.
e pT is at the center of the whole plane-wave
SUSY, i.e. it commutes with all supercharges.
This should be contrasted with the flat space.



Penrose diagram of the plane-wave

By a series of coordinate transformations and
analytic extension on the range of coordinates,
the plane-wave metric can be brought to a
form conformal to the Einstein static universe
(conformal to R x S9):

1 1

ds? = : .
u? et — sin aetP|2

( — dip? + sin? adB?
+ da? + cos® adQ?)
a € [0,7/2], B € [0,2x], ¥ € R.

=2 o

The v =08, a=n/2 is the
casual boundary of the plane-wave, which is
one dimensional light-like.
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Lessons From the BMN matrix Model

BMN Matrix model is a deformation of O + 1
dim. U(J) SYM by bosonic and fermionic mass
terms plus a cubic CS term:

H=R Trln? %[xf, X712 4 il [x] g

E(L

Hy2x2
—I-(R_) X’+4R_

252 | M 4
)2XG + vy

7
3'R_

where I = {i,a} =1,2,---9.

_I_

eiin X ' XIXF

e BMN Matrix model can be obtained from
quantization (discretization) of super-membrane
in the light-cone gauge
on the 11d plane-wave bg.
This is done by replacing Poisson brackets with
commutators and super-embedding coordinates
with JxJ matrices in the LC gauge fixed super-
membrane action.
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e Zero energy solutions, 1/2 BPS configura-
tions, of the BMN matrix model are concentric
Fuzzy two spheres, Sj%
which in the continuum (M-theory) limit, i.e.
J,R_ — oco,pt = J/R_ = fized, go over to

Membrane Giant Gravitons.

B Giant Gravitons, A quick review

e Dp-branes are objects carrying p + 1-form
RR-charges proportional to their volume form.
e (Topologically) spherical D-brane can’t carry
the corresponding RR charge. It can, however,
carry electric dipole moment of the RR form.
e In the absence of any other force a spherical
brane would collapse under its own tension.

e [ he electric dipole can be used to stabilize
the brane, we have a moving brane in the
corresponding background RR flux.

e Such a magnetic form-field flux exists in
AdS),12%xS5972, (p,q) = (2,5),(3,3),(5,2) soln’s.

e It turns out that it is possible to stabilize
spherical p or g branes in AdSp_|_2><Sq+2 spaces,
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that is,

spherical D3-branes in AdSg % S geometry and
spherical M2 and M5 branes in AdSq 7 x S"*%.
e [ his is possible only when the branes are
moving with the speed of light, i.e. when they
are following a light-like geodesic and hence
they are like graviton, the Giant Gravitons.

e Giant Gravitons are 1/2 BPS objects in the
above backgrounds.

e [ heir size is then fixed by their angular mo-

mentum J as:
—1
<Rgiant>p — i
Raqs N

(Rags)’ T = (Ip)PTIN.

where

T herefore,

-1 2
( Rgiant ) b — < lp > J
lp Rags

What if J takes it minimal value J =17
In this case we call them Tiny Gravitons, as
we'll momentarily see, they can become very
small in the Planck units.
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» Tiny Membrane Gravitons:

M5branes do not become tiny in AdS4 X S bg,
while they do become tiny in AdS7 x S bg.

As tiny membranes, by definition, carry one
unit of the angular momentum, and they are
1/2 BPS objects, they may be used to give a
DLCQ description of M-theory on the AdS4 X
S’ bg, or the 11d plane-wave. That is,

tiny membrane gravitons play the role
of DO-branes of BFSS in this DLCQ.

In fact the BMN matrix model is nothing but
the theory of J tiny gravitons, i.e.

11d plane-wave matrix theory

tiny (membrane) graviton matrix theory.

In this viewpoint a giant membrane of radius
Rgiant ~ K is a bound state of K tiny mem-
brane gravitons blown up onto a fuzzy two
sphere.
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» [iny 3-brane Gravitons:

Riiny = l}% OR Rzzftzn — il4

Adssg Y NP
Can we use the same observation, but now
with tiny three branes, for DLCQ formulation

of type IIB strings on the 10d plane-wave bg?

The Tiny Graviton Matrix Theory conjecture:

The DLCQ of type IIB strings on the Max.
SUSic 10d plane-wave and/or the AdSs x S°
background in the sector with J units of the
light-cone momentum is a
theory of J tiny three-brane gravitons,
a 04 1dim. U(J) SUSY gauge theory
with PSU(2|2) x PSU(2|2) x U(1)y SUSY

In other words, similarly to the 11d case,
Nonperturbative formulation of type IIB strings
on the 10d plane-wave is described by a
quantized three brane theory.
How do we quantize a three brane theory?
What is the Hamiltonian of the TGMT?
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DBI action for a 3-brane on the plane-wave bg

1
S = i / drd3o/— det (G X 9, X") + / Cy

where XH = XH*(¢",7), r=1,2,3 and
wef{+,—, 1}, I1=1,2,--- 8.

Note that we have set the gauge field on the

brane to zero. To be discussed further later.....

Xt =1
gor — G'u,yaOX'uaerV — O
Note: the latter leads to “level matching”

condition.
e [ he momenta:
pt= 9L . pr_ Obpi
8(8TX+) ’ 8(8TXI)
Hy. = — _
(0 X )

° p+ is a constant of motion and may be used
to eliminate 8, X~ for other d.o.f, the X!'s.
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1 1
H = —/d30' sz + —detgrs + (,LLp+)2X12
2pT 2

_I_
pp v
_ 3—(€ijk}lXZ{X]7 Xk7 Xl}

gs
+ €abea X {X°, X6, Xd})]
where
grs = Or X190, X! = 0, X'90, X" 4+ 9, X0, X

{F, G, H} = ErpgarF apG aSH

are the Nambu 3-brackets, a direct generaliza-
tion of the Poisson bracket, and

1
detgrs = o <{XI,XJ,XK}{XI,XJ,XK}) :

(One may add fermionic terms as well. For
more details of LC gauge fixing see [D. Sadri
& M.M.Sh-J, hep-th/0312155,].)

After adding the fermions and the gauge
fields, the full Hamiltonian enjoys the
PSU(2|2) x PSU(2|2) x U(1)y invariance.

To quantize the above action, similarly to the
membrane case, it is enough to quantize the
Nambu brackets.
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De tour on Nambu brackets:

A Nambu p-bracket is defined as:
0A1 0A> 0Ap

Do 92 Ho'p
where A, = A;(c"), r=1,2,--- ,p.

{A]_,AQ, L 7Ap} — 67”17“2...7“p

1) Cyclicity & Exchange property:
{A17A27 T 7Ap} — _{A27 A17 T 7Ap}
{Ap7 A17 e 7Ap—1} — (_1>p_1{A27 A].) e 7Ap}

(Note that €192 = (—1)P~ 1wt ip-1))

2) Jacobi Identity:
£1192°12p—1 5

X {FilaFiga"' 7Fip_17{Fip7Fip_|_17"' 7Fi2p_1}} =0

3) Associativity:

{F17F27"'7Fp—17FpGp}:
{F17F27"' 7Fp—17Fp}GP+{F17F27”' an—laGp}Fp

4) Trace property:
/dpa {F17F27"' an—lan} =0
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5) By-part Integration:
/dpo-{F].)FQ)"' an—lan}Gp:

_/dpa{F17F27"' an—laGp}Fp
Note: 5) is a result of 3)+44).

Quantization of Nambu Brackets

e Nambu EVEN brackets

i) A(o;) «—— A (matrices or operators).
i)

{Fy, Fo, -+, Iy} <—>[F]Z_; FQ»"' ,sz]

i) [d?Po % «—— Trk.

[
It is not possible to perform quantization for
p > 2 and maintain all the five properties of
the classical Nambu brackets. In particular,
with the above prescription associativity is lost.
BUT, trace and by-part properties survive, be-
cause

6217/2“.7/21? — _GZQPZ]'.“ZQP_]' ]
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e Nambu ODD brackets
Obviously the above procedure for even N.B.
cannot be extended to odd N.B. while keeping
the trace property......
The way out

Replace the Nambu (2p — 1)-bracket with
a Nambu 2p-bracket:

{F1,Fo, - ,Fop_1} «— [F1,Fo,- -+, Fop_1,L0,41]

Lo,41 is @ given matrix (operator) closely re-
lated to the chirality operator in 2p dimensions.
In particular, for the case of our interest, p = 2:

{A,B,C} «—[A,B,C,Lg] =
4 (1B + .21 B
- [BWEJS] [A7C] - [A7 C] Ba’ﬁ“5]

Now we can quantize the 3-brane action.......
End of De tour on Nambu brackets
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Quantization of the LC Hamiltonian

e Replace:

+< > J
R_

X:(o), Pi(o) — X1, gn! (J x J matrices)
1%6(0)7 waﬁ(a) — ﬁ¢aﬁ7 \/jwaﬁ
1 [ 3 R
p—-l-/d o x+—— R_ Trx

p

1 . o -
{FaGaK}<—> j[F7G7K7L5]

e Definition of Lg:

Lg is a hermitian J x J matrix and

T?“L5 =0
£J52 = 1347

e The string theory (continuum) limit is then:

J
t =" 4 gs = fized

J,R— — 00, p 7

21



2

1 5 1(p)\°
H=R_Tr 5ﬂ[+—<—> X?

+2-3!g§

I

(€5 X [X;, X Xy, L]
+ capeaX “[Xp, Xe, Xg, Ls])

+ () (9100 =015

2 g
+ (0T ()8, (X3, Xj, g, Ls]

- Y1) [Xa, Xp, o, Ls])
_ (B 1IN
o (10 LG [ X, X, 55, Ll

— wTdB(O'ab)é [XaaXbawd}\7£“5])] .
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e [ he above action is invariant under
PSU(2|2) x PSU(2|2) xU(1)g.

For the representation of the superalgebra gen-

erators in terms of the J x J matrices see

e The above action has an extra Z, symmetry
which exchanges the two PSU(2|2) factors. Or
equivalently it exchanges X; and X, directions.
e [ he action is the Hamiltonian for a
04+ 1 dim. U(J) gauge theory,
in the temporal gauge,
under which all the fields transform
in the adjoint of U(J):

® - UPUL, Ue U
and qD:{XIaﬂI?w}'

e L5 is also transforming in the adjoint.

e Although a gauge theory, the TGMT is not
a Yang-Mills theory.
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e [0 obtain the physical states we should im-
pose the Gauss law constraint:

(i, Y 4 261995 + 261595 5} [phys) = O

This is the e.o.m for the only component of
the gauge field Ap.
The Gauss law constraint is the
quantized version of the gg, = 0 condition.

e DLCQ vs. Covariant formulation
dim(plane — wave Isometries) = dim(AdSs x S°).
unlike the flat or the BFSS case.
In the plane-wave we do not have J+T— and J1!
boosts and pT commutes with all the SUSY
generators.
T herefore, compared with the BFSS case,
TGMT has a better chance of capturing the
covariant information of string on AdSs x S°.
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Evidence for the TGMT conjecture

e [he fact that the TGMT Hamiltonian is in-
variant under the expected SUSY.

and that the superalgebra is a big one (with 16
SUSY), puts severe restrictions on the form of
the Hamiltonian. (To my knowledge, however,
there is no no-go theorem on this.)

e 1/2 BPS (zero energy) solutions.

2
Lip oy 1 vk oyl
Vp=R_Tr = L-Xxi_ Ixd xR xt
B 5 (R_ 3!gsezﬂcl[ 5])

2
L[ 1 b d
~ [ Exa x° xc x? o
+2 (R_ 3!gS€abcd[ 5])

1 . :

+4—92 ([XaaXbaX%LS]Q + [XzanaXChLS]Q) .
S

All four terms are +4ve definite and hence to

have zero energy, they should all vanish:

:Xj7Xk7Xl7£“5: — e’ijklR— XZ

:XbaXca Xd7£“5: — EadeR— X

X% X Xt Lg] = [X% XY XT, L] = 0.
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All the solutions of these equations has been
classified in
[M.M. Sh-J, M. Torabian, hep-th/0501001].

e T hey are all in the form of Fuzzy three Spheres
S3. either in X* and/or X% directions. As some
particular examples, the solutions to

xe=0, [X/,x*x! 05 = eijkz‘];gs

X
gives the concentric S% in the X' direction,
centered at X% = 0. (There are a similar class

of solutions with X* « X))

e [ hese soln’s are classified by J x J represen-
tations of SO(4). For the irreducible rep., that
is a single fuzzy sphere of radius (in units of
ls):

__ H3Gs
==
In the continuum (string theory) limit it recov-
ers the commutative giant 3-brane graviton.

J = upTgs.

RQ

e [ he reducible reps, then generically give con-
centric giants.
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e One should compare the above result with a
generic S3 result in which

R? =1%J

with [ being the fuzziness scale. In our case

fuzziness — E s T 'p N — “tiny-

The string theory limit can be understood as
ltiny — O keeping Iy, Ryiqne fixed, that is

J,N — 00, gs,lp, J2/N = fixed.

There is a one-to-one correspondence between
the half BPS configurations of N = 4 U(N)
SYM with R-charge J, the chiral primary opts,
and the fuzzy sphere soln’'s of the TGMT.
Both of them are labeled by representations of
group of permutations of J objects, §;.
[hep-th/0501001].
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e Spectrum of fluctuations about the single
giant fuzzy sphere solution has been worked
out in [hep-th/0406214] and shown that it ex-
actly matches with that of a spherical D3-
brane in the plane-wave (or AdSs x S°) back-
ground. (The latter has been worked out in

[D. Sadri, M.M. Sh-J, hep-th/0312155].
This is a non-trivial test, because in the DBI
action we started with, we had not included
the gauge fields living on the brane.

e One can also work out the effective coupling
of these fluctuation modes [hep-th/0406214].
The effective coupling about the single giant
vacuum is:

R_ 1 1

g e — =
T g wptyes
Expressed in terms of the N =4 U(N) SYM
parameters:

5 N 1
geff — J?2 —
g2
where g» is the effective coupling for strings on
plane-wave S. Minwalla, et.al.[hep-th/0205089].

What about the X = 0 vacuum?!
Where are type IIB fundamental strings?
28



B 2nd part of the conjecture

In the string theory limit the X = 0 vacuum
becomes strongly coupled and

Fundamental type IIB strings are
non-perturbative objects about the X =0
vacuum.

(Remark: This is very similar to the M5-brane
giants in the BMN matrix model,

[J. Maldacena, M.M. Sh-J, M. van Raamsdonk,
hep-th/0211139].)

e Evidence: the spectrum of small BPS fluc-
tuations (in a % expansion) about the X =0
vacuum, exactly matches with the spectrum of
SUGRA modes (BPS spectrum of strings) in

the plane-wave bg.

More works in this direction is under way .....
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B Summary and a short to-do-list

e Tiny Graitvons may be used as “DO0O-branes”
to give a matrix theory, O+ 1 dim. gauge the-
ory, formulation for string/M- theory on the
curved backgrounds, such as AdS-spaces and
the plane-waves.

e T he plane-wave string theory, in the DLCQ
description, admits a matrix theory formula-
tion, the TGMT. It is a SUSY gauge theory
(though not a SYM!) with SUSY

PSU(2|2) x PSU(2|12) xU(1)y.

e In the formulation of TGMT, we introduced
an extra traceless JxJ matrix L5, which squares
to identity.

The Lg is reminiscent of the eleven dimensional
origin of the type IIB theory. It is related to
the 11" circle [hep-th/0501001].

e The u — 0 (flat space) limit, is it a smooth
one? Is the TGMT in that limit related to
IKKT or (241) SYM/T? (Susskind-Sethi model)?
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e As the causal boundary of the plane-wave
IS one-dimensional light-like, the DLCQ de-
scription is the holographic description. There-
fore, TGMT is the holographic formulation of
strings on plane-wave.

e How and where does TGMT fit in the

AdS/CFT duality?!

TypelIB Superstring oS, xS°
with N units of 5-form flux

Tiny Graviton Matrix Theory Needs

0+1-dim U(J) gauge theory —
, further clarifications
with PSU(2[2)xPSU(2]2)xU(1) superalgebra

[3+1-dim U(N) % =4 SYM theoa/

e Interesting observation: fuzziness [, the
“size of tiny gravitons” is
1.4
ltzny Nlp

That is, the 1/N expansion has now a
geometric meaning.

e - VS. % expansion?!

N
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e Lower SUSY solutions?!
Other D-brane solutions?!

e Connection to Verlinde's String Bit Model?!

e For finite R_ we expect strings to have wind-
ing modes, where are they?

e Does TGMT satisfy the duality requirements
and in particular SL(2,7) duality of type IIB?

e Can we ‘“‘quantize” an M5-brane theory in
the same way we did for a 3-brane?
That is, by replacing the Nambu five brackets
which appear in the M5b-brane Hamiltonian

. by Nambu six
brackets and introduction of L7
Are the quantized giant Mb5-branes in the
form of S32.7!
If the above is correct, can we have a matrix
theory formulation of six dimensional (0, 2)
theory (on R x S°)?

There are much more things to be
done on the TGMT.......
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