New 4d Lagrangians From 6d RG-Flows

Evyatar Sabag

Technion

Razamat, Sabag, Zafrir - 1907.04870
Razamat, Sabag - to appear
Regional conference
September 18, 2019

Compactification from 6d to 4d

- One can generate classes of $4 \mathrm{~d} \mathcal{N}=1$ SCFTs by Compactifying 6d $(1,0)$ SCFTs on a Riemann surface
- Closed Riemann surface
- Give fluxes to $U(1)$ subgroups of the 6 d global symmetry
- Riemann surfaces with punctures (boundaries)

6d $(1,0)$ SCFTs

- Focusing on SCFTs described by a stack of M5branes probing a $\mathbb{C}^{2} / \Gamma_{A D E}$ singularity
\qquad

$s u_{k}$	$s u_{k}$	$\mathbb{C}^{2} / \mathbb{Z}_{k}$	$s u_{k}$					

$$
\xrightarrow{x_{0,1,2,3,4,5}}
$$

$M 5^{\prime} s$

$s O_{2 p+6}$	$s O_{2 p+6}$		$\underline{S O}$	\| $s p_{2 p-2}$	So ${ }_{2 p+6}$	$\left\|s p_{2 p-2}\right\|$	$\mathrm{SO}_{2 p+6}$
		3					

- Separating the M5-branes along the singularity line we find the tensor branch description from which we can read the quiver
- M. Del Zotto J. J. Heckman, A. Tomasiello, C. Vafa. 1407.6359

Known 4d Lagrangians

- Class S_{k} - Compactification of the 6d SCFT described by N M5's probing a \mathbb{Z}_{k} singularity
$-k=\mathbf{1}($ Class $S) N=2,3$ and $k=N=2$: All theories are known (D. Gaiotto 0904.2715, A. Gadde et al. 1003.4244, S. S. Razamat et al. 1610.09178)

- Other Cases: Free trinions and flux tubes are known
D. Gaiotto et al. 1503.05159

Known 4d Lagrangians

- Minimal class S_{D} - Compactification of 6d SCFT described by one M5 probing a D_{N+3} singularity
- $\boldsymbol{N}=\mathbf{1}$: All theories with partial 6d symmetry rank are known (H. Kim, S. S. Razamat, C. Vafa, G. Zaftir 1709.02496)

$\mathbf{- N} \boldsymbol{>}$ 1: Only flux tubes are known (H. Kim et al. 1802.00620)

From 6d flows to 4d flows (1907.04870)

- In A-type $6 d(1,0)$ SCFTs a vacuum expectation value (VEV) to an operator running from one end of the quiver to the other can lower \mathbb{Z}_{k} to \mathbb{Z}_{k-1}

6d

- If we put the 6 d SCFT on a Riemann surface with fluxes and give the same VEV, it cannot remain a constant VEV due to the fluxes spatial profile and becomes space dependent

From 6d flows to 4d flows

- When taking the Riemann surface to be small, the space dependent VEV appears as additional minimal punctures on the surface

From 6d flows to 4d flows

- Changing the energy scales s.t. we first take the Riemann surface to be small and then give the VEV, we find a 4d constant VEV that can lower k and add minimal punctures when we have flux

New class S_{D} Lagrangians

- Main idea: Using similar 4d flows on known class S_{D} models by giving VEV to an operator running from one end of the quiver to the other (in the 6d quiver)
- Using such flows on class S_{D} tori we find new three punctured spheres (trinions) Lagrangians

Rank 1 E-String Lagrangians

- In the case of $N=1$ (Rank 1 E-String) this theory has three maximal punctures
- We can generate all $N=1$ theories of any genus, flux and punctures

Rank 1 E-String Lagrangians

- The superconformal index forms irreps of E_{8}

$$
I=1+p q(248(g-1)+3(g-1))+\cdots
$$

- E_{8} is the global symmetry of the 6 d SCFT
- In 4 d it appears as a subgroup of same rank
$-E_{8} \rightarrow E_{7} \times U(1)_{t}$
- $248 \rightarrow \mathbf{1 3 3}+\left(t^{2}+t^{-2}\right) \mathbf{5 6}+\left(1+t^{4}+t^{-4}\right)$
$-E_{7} \rightarrow S O(12) \times U(1)_{a}$
- $\mathbf{1 3 3} \rightarrow \mathbf{6 6}+\left(a^{2}+a^{-2}\right) \mathbf{3 2}+\left(1+a^{4}+a^{-4}\right)$
- $\mathbf{5 6} \rightarrow \mathbf{3 2}^{\prime}+\left(a^{2}+a^{-2}\right) \mathbf{1 2}$
$-S O(12) \rightarrow S U(4)_{c} \times S U(4)_{d}$
- $66 \rightarrow(15,1)+(6,6)+(1,15)$
- $32 \rightarrow(4,4)+(\overline{4}, \overline{4})$
- $32^{\prime} \rightarrow(\overline{4}, 4)+(4, \overline{4})$
- $12 \rightarrow(6,1)+(1,6)$

Minimal S_{D} Lagrangians

- In the case of $\mathrm{N}>1$ we find something very nontrivial
- We can glue N such trinions to generate a trinion with three maximal punctures

Minimal S_{D} Lagrangians

- The superconformal index of a genus g surface $I=1+p q\left(\boldsymbol{A d j}_{S O(4 N+12)}(g-1)+3(g-1)\right)+\cdots$
- $S O(4 N+12)$ is the global symmetry of the 6d SCFT - In 4d it appears as a subgroup of same rank

Summary

- We found 4d Lagrangians for three punctured spheres (trinions) in class S_{D} with two $S U(2)^{N}$ maximal and one $S U(2)$ puncture
- We found 4d Lagrangians for all the theories for the entire minimal class S_{D}
- An infinite amount of 6d SCFTs for which we know all the compactifications to $\mathbf{4 d}$ (<10 until now)
- All other punctures can be found by RG flows breaking the maximal punctures symmetries
- All genus g surfaces can be built by gluing maximal punctures

