Eikonal, black holes and conformal bootstrap

Andrei Parnachev

Trinity College, University of Dublin

• • = • • = •

Introduction

Heavy states \simeq black holes in dual CFT.

- Thermalization of heavy states in CFTs
- New (and better) handle on strongly coupled finite temperature CFTs
- Correlators in CFTs with large central charge
- Inelastic gravitational scattering.

Based on work with R. Karlsson, M.Kulaxizi, G.S. Ng, P. Tadic (Dublin): 1812.03120, 1904.00060, 1907.00867, 1909.05775

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction: the eikonal phase

High energy gravitational scattering amplitude (large s, finite t) is described by the eikonal phase (a.k.a. the phase shift)

 $\mathcal{A} \sim e^{i \delta(s,b)}$

where b is the impact parameter. This is the result of the summation of infinite number of diagrams, but comes from the exponentiation of

Introduction: shock wave

The phase shift can also be obtained by studying the propagation of a null geodesic in a shock wave background ($v = x^-, u = x^+$)

Introduction: scattering in Anti de Sitter

Similar expressions exist for scattering in AdS_{d+1} (D = d + 1). A factor of b^{-D+4} becomes a propagator in H_{d-1} . AdS/CFT correspondence relates scattering amplitude to

$$\int_{x_3}\int_{x_4}e^{ip_3x_3+ip_4x_4}\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)
angle$$

Introduction: heavy-light scattering

Consider light particle of mass *m* and energy *E* scattering off a heavy particle of mass *M*. Assume $M \gg E \gg m$.

$$\delta^{(1)} = Eb\left(\frac{R_s}{b}\right)^{D-4}, \qquad R_s^{D-3} \sim G_N M$$

Higher order terms can in principle be computed. R/b is the expansion parameter. E.g.

$$\delta^{(2)} = Eb\left(\frac{R_s}{b}\right)^{2D-6}$$

Introduction: scattering in AdS and holography

We study heavy-light scattering in AdS of radius R. Two dimensionless parameters: R_s/R and b/R.

We compute the phase shift to all orders in both R_s/R and b/R. The resulting formula reduces to the flat space result in the $R \rightarrow \infty$ limit.

CFT object is the (heavy-light)² $\langle \mathcal{O}_H \mathcal{O}_H \mathcal{O}_L \mathcal{O}_L \rangle$ correlator.

向下 イヨト イヨト

Outline

Phase shift in AdS

 $(Heavy-light)^2$ correlator in CFT CFT in d = 2CFT in d > 2Lightcone limit

Summary

.

臣

Phase shift in AdS

Consider heavy-light scattering in AdS of radius R. Study null geodesics in the asymptotically AdS_{d+1} black hole of mass M.

$$ds^{2} = -f dt^{2} + f^{-1}dr^{2} + r^{2}d\Omega_{d-1}^{2}$$

where

$$f = 1 + \frac{r^2}{R^2} - \frac{\mu R^{d-2}}{r^{d-2}}$$

and

$$\mu \simeq \frac{G_N M}{R^{d-2}} = \frac{\ell_P^{d-1} M}{R^{d-2}}$$

 $\mu pprox (R_s/R)^{d-2}$ in the small μ regime.

・ 同 ト ・ ヨ ト ・ ヨ ト

Э

Phase shift in AdS

Killing vectors ∂_t and ∂_{φ} (isometries w.r.t. time translation and rotation of S^{d-1}) give rise to conserved quantities p^t and p^{φ} :

$$p^{t} = \left(1 + \frac{r^{2}}{R^{2}} - \frac{\mu R^{d-2}}{r^{d-2}}\right) \frac{\partial t}{\partial \lambda}, \qquad p^{\varphi} = r^{2} \frac{\partial \varphi}{\partial \lambda},$$

where λ is an affine parameter. Null geodesics are labeled by the impact parameter *L*;

$$e^{2L}=rac{p^t+p^arphi}{p^t-p^arphi}$$

Minkowski results are recovered in the flat space limit: $R_s/R \ll 1$ ($\mu \ll 1$) and also $L \approx b/R \ll 1$.

< ロ > < 同 > < 三 > < 三 >

Phase shift in AdS

In the following set R = 1. Null geodesic equation $g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu} = 0$ (derivatives w.r.t. affine parameter λ) takes the form

$$\frac{1}{2}\left(\frac{\partial r}{\partial \lambda}\right)^2 + V_{eff}(r) = \frac{1}{2}(p^t)^2$$

where

$$V_{eff}(r) = \frac{(p^{\varphi})^2}{2} \left(1 + \frac{1}{r^2} - \frac{\mu}{r^d}\right)$$

For $\mu = 0$ all null geodesic reimerge at the same point $t = \pi, \varphi = \pi$. Deviation from it parameterized by $\Delta x(L) = (\Delta t, \Delta \varphi)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Phase shift in AdS

The resulting phase shift $\delta = -p^{\mu}\Delta x_{\mu}$ can be expanded

$$\delta = \sum_{k=1}^{\infty} \delta^{(k)} \mu^k$$

We computed all $\delta^{(k)}$. For example,

$$\delta^{(1)} \simeq e^{-(d-1)L} {}_2F_1(rac{d}{2}-1, d-2, rac{d}{2}+1, e^{-2L})$$

In the small impact parameter regime $L \ll 1$ we recover the Minkowski result. The radius of convergence of the series corresponds to the null geodesic entering the black hole horizon.

CFT in d = 2**CFT** in d > 2**Lightcone limit**

(Heavy-light)² correlator in CFT

State-operator correspondence in CFT. Conformal dimension of the operator Δ is the energy of the state on a sphere.

Recall $\mu \simeq (\ell_P/R)^{d-2}MR = \Delta_H/C_T$ where C_T is the central charge of the CFT: $\langle T_{\mu\nu}T_{\alpha\beta}\rangle \sim C_T$ (here $T_{\mu\nu}$ is the stress tensor)

We will consider the limit $\Delta_H, C_T \to \infty$, μ fixed and will study expansion in powers of μ . This corresponds to considering a heavy state in the CFT – does it thermalize? (looks like a black hole in the dual gravity)

< ロ > < 同 > < 三 > < 三 >

CFT in d = 2**CFT** in d > 2**Lightcone limit**

$(Heavy-light)^2$ correlator in CFT

Similar to the shock wave situation, the phase shift can be obtained from a CFT amplitude

$$\int_{x} e^{ipx} \langle \mathcal{O}_{H}(0) \mathcal{O}_{H}(\infty) \mathcal{O}_{L}(1) \mathcal{O}_{L}(z,\bar{z}) \rangle, \qquad z, \bar{z} = e^{i(\Delta t \pm \varphi)}$$

• 3 >

CFT in d = 2**CFT in** d > 2**Lightcone limit**

CFT in d = 2

In the d = 2 case the stress-tensor sector of the correlator is known to all orders in μ (Virasoro vacuum block):

$$\langle \mathcal{O}_H(0)\mathcal{O}_H(\infty)\mathcal{O}_L(1)\mathcal{O}_L(z)
angle\simeq rac{1}{\left(\sin\left[ar{lpha}\pi+rac{ar{lpha}}{2}(\Delta t\pmarphi)
ight]
ight)^{\Delta_L}}$$

where $\bar{\alpha} = \sqrt{1-\mu}$. The integral picks up the pole where the argument of the sin vanishes and the phase shift is simply

$$\delta = rac{1}{2} p^{-} (\Delta t + arphi) = \pi \sqrt{-p^2} e^{-L} \left(rac{1}{\sqrt{1-\mu}} - 1
ight)$$

which agrees exactly with the gravity result.

イロト イポト イヨト イヨト

Phase shift in AdS
(Heavy-light)2 correlator in CFT
SummaryCFT in d = 2
CFT in d > 2
Lightcone limit

CFT in d > 2

In d > 2 the exact CFT answer for the correlator is not known. The correlator can be decomposed into *conformal blocks*.

 $\mathcal{O}(\mu)$ term comes from the conformal block of $\mathcal{T}_{\mu
u}$ in the direct channel

$$\mathcal{O}_H imes \mathcal{O}_H - \mathcal{T}_{\mu
u} - \mathcal{O}_L imes \mathcal{O}_L$$

In the cross-channel

$$\mathcal{O}_{H} \times \mathcal{O}_{L} - [\mathcal{O}_{H}\mathcal{O}_{L}]_{n,\ell} - \mathcal{O}_{H} \times \mathcal{O}_{L}$$

where $[\mathcal{O}_H \mathcal{O}_L]_{n,\ell} = \mathcal{O}_H \ \partial^\ell \ \Box^n \mathcal{O}_L$ are heavy-light double trace operators.

イロト イポト イヨト イヨト

Э

CFT in d = 2CFT in d > 2Lightcone limit

CFT in d > 2

The stress-tensor exchange at $\mathcal{O}(\mu)$ fixed by Ward identity and reproduces $\mathcal{O}(\mu)$ phase shift.

Correlator at $\mathcal{O}(\mu^2)$ is a result of an infinite sum over *double stress* tensor operators: $T_{\mu\nu}\partial_{\alpha}\ldots\partial_{\beta}\Box^n T_{\gamma\delta}$. Higher orders involve summing over multi stress operators.

Need to know OPE coefficients for all spins! Things simplify in the lightcone limit $\bar{z} \to 1$.

Phase shift in AdS
(Heavy-light)2 correlator in CFT
SummaryCFT in d = 2
CFT in d > 2
Lightcone limit

Lightcone limit

d=4 correlator at $\mathcal{O}(\mu)$:

$$\langle \mathcal{O}_H \mathcal{O}_H \mathcal{O}_L \mathcal{O}_L \rangle^{(1)} \simeq [(1-z)(1-\bar{z})]^{-\Delta_L} f_3(z)$$

Make an ansatz

$$\langle \mathcal{O}_H \mathcal{O}_H \mathcal{O}_L \mathcal{O}_L \rangle^{(2)} \sim b_{33} f_3^2 + b_{24} f_2 f_4 + b_{15} f_1 f_5$$

 $\langle \mathcal{O}_H \mathcal{O}_H \mathcal{O}_L \mathcal{O}_L \rangle^{(3)} \sim b_{333} f_3^3 + b_{234} f_2 f_3 f_4 + \dots$

and similarly for all values of k for $\mathcal{O}(\mu^k)$ coefficients. Here

$$f_a(z) = (1-z) {}_2F_1(a, a, 2a, 1-z)$$

Bootstrap and solve for $b_{i_1...i_k}$.

イロト イポト イヨト イヨト

Phase shift in AdS
(Heavy-light)2 correlator in CFT
SummaryCFT in d = 2
CFT in d > 2
Lightcone limit

Bootstrapping the lightcone correlator

Consider stress-tensor contribution (k = 1 term in the ansatz):

$$\langle \mathcal{O}_H \mathcal{O}_H \mathcal{O}_L \mathcal{O}_L \rangle^{(1)} \sim (\alpha_0 + \alpha_1 z + \ldots) + (\beta_0 + \beta_1 z + \ldots) \log z$$

with α_i, β_i known Δ_L -dependent coefficients. The cross channel produces

$$\langle \mathcal{O}_H \mathcal{O}_H \mathcal{O}_L \mathcal{O}_L \rangle^{(1)} \sim (P_0^{(1)} + P_1^{(1)} z + ...) + (\gamma_0^{(1)} + \gamma_1^{(1)} z + ...) \log z$$

where $\gamma(n, \ell) = \gamma_n^{(1)} / \ell + \mu^2 \gamma_n^{(2)} / \ell^2 + ...$ and similarly $P(n, \ell)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Phase shift in AdS (Heavy-light)² correlator in CFT Summary CFT in d = 2CFT in d > 2Lightcone limit

Bootstrapping the lightcone correlator

This determines $P_n^{(1)}, \gamma_n^{(1)}$ and all terms $\sim \log^2 z$ at $\mathcal{O}(\mu^2)$. This determines **all** coefficients in the ansatz at $\mathcal{O}(\mu^2)$:

$$egin{aligned} &\langle \mathcal{O}_{H} \mathcal{O}_{L} \mathcal{O}_{L}
angle^{(2)} &\simeq rac{(1-ar{z})^{2}}{[(1-z)(1-ar{z})]^{\Delta_{L}}} \left(rac{\Delta_{L}}{\Delta_{L}-2}
ight) imes \ &\left[(\Delta_{L}-4)(\Delta_{L}-3)f_{3}(z)^{2} + rac{15}{7}(\Delta_{L}-8)f_{2}(z)f_{4}(z)
ight. \ &\left. + rac{40}{7}(\Delta_{L}+1)f_{1}(z)f_{5}(z)
ight] \end{aligned}$$

Agrees with the $\mathcal{O}(\mu^2)$ phase shift.

伺下 イヨト イヨト

Phase shift in AdS (Heavy-light)² correlator in CFT Summary Lightcone limit

Bootstrapping the lightcone correlator

One can continue this procedure and compute the lightcone correlator to any desired order in $\boldsymbol{\mu}$

We can read off the OPE coefficients $C_{OPE}(\mathcal{O}_L, \mathcal{O}_L, T_{\mu\nu}^k)$ to leading order in $1/C_T$. We did not use holography, but recover the OPE coefficients which have been computed using holography (and get many more).

・ 同 ト ・ ヨ ト ・ ヨ ト

Summary

- Computed phase shift in AdS to all orders in μ; reproduced Minkowski results in flat space limit.
- Leading and subleading terms (in d = 2 all terms) in the eikonal phase are reproduced by a CFT computation of a heavy-heavy-light-light correlator. This hints at thermalization of a generic heavy state.
- Lightcone limit of the (heavy-light)² correlator can be computed to any desired order. OPE coefficients computed.

A (10) × (10)

To do list

- Find closed form of heavy-heavy-light-light correlator.
- Symmetry of the lightcone correlator?
- Understand thermal CFTs from the OPE point of view. Role of double trace operators? Non-universality of subleading twist?
- Applications. Hydrodynamics, thermalization, quantum chaos...
- Inelastic scattering...

Thank you!

向下 イヨト イヨト