Exact Dimensional Deconstruction

Costis Papageorgakis 10th Regional Meeting on String Theory Kolymbari, 18th September 2019

w/ J. Hayling, V. Niarchos, R. Panerai, E. Pomoni and D. Rodríguez-Gómez [1809.10485, 1803.06177, 1704.02986]

Motivation

Dimensional deconstruction:

[Arkani-Hamed, Cohen, Georgi '01]

- Limit of circular quiver-gauge theories reproduces the KK spectrum of extra dimensions
- The circle in theory space becomes geometric!

Interesting because we can learn about

- $\diamond D > 4$
- Non-Lagrangian QFTs
- Complicated quantum dynamics in any D

from (simpler) lower-dimensional theories

Elements of dimensional deconstruction

Start with *N*-noded D-dim $U(k)^N$ circular-quiver gauge theory in flat space with

$$G^{(\alpha)} = G$$

 \Rightarrow Higgs such that $U(k)^N \rightarrow U(k)$ by considering

$$\langle Q^{(\alpha)} \rangle = \iota$$

and identifying

$$\frac{G}{v} \equiv g_{\text{dec}}^2 \qquad \frac{N}{Gv} \equiv 2\pi \widehat{R} \qquad \frac{1}{Gv} \equiv a$$

Recovers KK modes of D+1-dim theory on discretised $S^1_{\hat{R}}$

$$M_n^2 = 4v^2 G^2 \sin^2\left(\frac{\pi n}{N}\right) \simeq \left(\frac{2\pi n}{\widehat{R}}\right)^2$$

 \Rightarrow For $E \gg 1/a$ the D+1-dim theory completed by D-dim quiver

Q: Can we have $a \rightarrow 0$?

 \Rightarrow Yes if we take the limit

$$v \to \infty$$
 $N \to \infty$ $G \to \infty$

 \Rightarrow Produces continuum U(k) theory, with g_{dec}^2 and \widehat{R} fixed

- All considerations are Lagrangian
- ⇒ Continuum limit requires strong coupling

Challenges

- All considerations are Lagrangian
- \Rightarrow Continuum limit requires strong coupling
 - o Deconstruction of QFT_{D+1} correlation functions?
- $\Rightarrow~$ What is the precise $\text{QFT}_{D} \rightarrow \text{QFT}_{D+1}$ dictionary?

Challenges

- All considerations are Lagrangian
- ⇒ Continuum limit requires strong coupling
 - o Deconstruction of QFT_{D+1} correlation functions?
- $\Rightarrow~$ What is the precise ${\sf QFT}_D \rightarrow {\sf QFT}_{D+1}$ dictionary?
 - $\diamond~{\rm Rules}$ for deconstructing S^1 (and partially S^2) understood
- ⇒ How does one deconstruct general compact geometries?

Focus on SUSY examples and deconstruct S^1

 \Rightarrow Continuum limit is more controlled

- Moduli space is not lifted
- Can use the power of supersymmetric localisation
- Deconstruction leads to SUSY doubling
- \Rightarrow Deconstruct exact partition function of QFT_{D+1}

Deconstruction of exact PFs

Start with PF for the quiver-gauge theory (e.g. on S^D)

 \Rightarrow A "modular" quantity. Schematically:

$$\mathcal{Z} = \prod_{\alpha = -\frac{N}{2}}^{\frac{N}{2}} \mathcal{Z}^{(\alpha)}(a, b^{(\alpha)})$$

where

$$\mathcal{Z}^{(lpha)} = \mathcal{Z}^{(lpha)}_{\mathsf{vec}} \mathcal{Z}^{(lpha)}_{\mathsf{mat}}$$

 $\Rightarrow \mathcal{Z}_{\text{vec}}^{(\alpha)}, \, \mathcal{Z}_{\text{mat}}^{(\alpha)}$ known from SUSY localisation

The rules:

The rules:

 Identify all parameters between nodes (couplings, Coulomb-branch parameters, mass deformations etc.)

The rules:

- Identify all parameters between nodes (couplings, Coulomb-branch parameters, mass deformations etc.)
- $\diamond~$ Include a mass parameter $m^{(lpha)}\propto rac{lpha}{\widehat{R}}$ for the lpha-th node

The rules:

- Identify all parameters between nodes (couplings, Coulomb-branch parameters, mass deformations etc.)
- $\diamond~$ Include a mass parameter $m^{(\alpha)}\propto rac{lpha}{\widehat{
 ho}}$ for the lpha-th node
- $\diamond \ \text{Take} \ N \to \infty$

The rules:

- Identify all parameters between nodes (couplings, Coulomb-branch parameters, mass deformations etc.)
- $\diamond~$ Include a mass parameter $m^{(\alpha)}\propto rac{lpha}{\widehat{R}}$ for the lpha-th node

$$\diamond$$
 Take $N \to \infty$

$$\prod_{\alpha=-\frac{N}{2}}^{\frac{N}{2}} \mathcal{Z}^{(\alpha)}(a, b^{(\alpha)}) \to \prod_{\alpha=-\infty}^{\infty} \mathcal{Z}^{(\alpha)}(a, b, m^{(\alpha)})$$

Claim: This is the exact partition function of QFT_{D+1} on extra S^1

Example: Deconstructing 4D $\mathcal{N} = 2$ SQCD

Start with the following 3D $\mathcal{N} = 2$ quiver

Its full squashed- S^3 PF is given by

$$\begin{aligned} \mathcal{Z}_{3\mathrm{D}}^{\mathrm{quiver}} &= \prod_{\alpha} \frac{1}{k!} \int \prod_{b=1}^{k} \mathrm{d}\sigma_{b}^{(\alpha)} \Delta^{\mathrm{Haar}} \left(\sigma^{(\alpha)} \right) \prod_{b,c=1}^{k} \frac{\Gamma_{h} \left(\omega_{+} + \sigma_{b}^{(\alpha)} - \sigma_{c}^{(\alpha+1)} \middle| \omega_{1}, \omega_{2} \right)}{\widehat{\Gamma}_{h} \left(\sigma_{b}^{(\alpha)} - \sigma_{c}^{(\alpha)} \middle| \omega_{1}, \omega_{2} \right)} \\ &\times \prod_{b=1}^{k} \prod_{j=1}^{N_{f}} \Gamma_{h} \left(\frac{1}{2} \omega_{+} - \mu_{j}^{(\alpha)} + \sigma_{b}^{(\alpha)} \middle| \omega_{1}, \omega_{2} \right) \Gamma_{h} \left(\frac{1}{2} \omega_{+} - \sigma_{b}^{(\alpha+1)} + \mu_{j}^{(\alpha)} \middle| \omega_{1}, \omega_{2} \right) \end{aligned}$$

These are defined as

$$\Gamma_h(x|\omega_1,\omega_2) = \prod_{\ell \in \mathbb{N}^2} \frac{-x + (\ell_1 + 1)\omega_1 + (\ell_2 + 1)\omega_2}{x + \ell_1\omega_1 + \ell_2\omega_2}$$

Exact-deconstruction prescription gives:

$$\begin{aligned} \mathcal{Z}_{3\mathrm{D}}^{\mathrm{Dec}} &= \frac{1}{k!} \int \prod_{b=1}^{k} \mathrm{d}\sigma_{b} \prod_{\alpha=-\infty}^{\infty} \frac{\Gamma_{h}(\omega_{+} + \frac{\alpha}{R} \Big| \omega_{1}, \omega_{2})^{k}}{\widehat{\Gamma}_{h}(\frac{\alpha}{R} | \omega_{1}, \omega_{2})^{k}} \prod_{b\neq c} \frac{\Gamma_{h}\left(\omega_{+} + \sigma_{b} - \sigma_{c} + \frac{\alpha}{R} \Big| \omega_{1}, \omega_{2}\right)}{\Gamma_{h}\left(\sigma_{b} - \sigma_{c} + \frac{\alpha}{R} \Big| \omega_{1}, \omega_{2}\right)} \\ &\times \prod_{b=1}^{k} \prod_{j=1}^{N_{f}} \Gamma_{h}\left(\frac{1}{2}\omega_{+} \mp \sigma_{b} \pm \mu_{j} + \frac{\alpha}{R} \Big| \omega_{1}, \omega_{2}\right) \;. \end{aligned}$$

 \Rightarrow The $S^3 \times S^1$ PF of 4D $\mathcal{N} = 2$ SQCD with N_f flavours?

Not obvious. Use the identity

$$\prod_{\alpha=-\infty}^{\infty} \Gamma_h\left(x + \frac{\alpha}{R} \middle| \omega_1, \omega_2\right) = \mathfrak{x}^2 \left(\mathfrak{p}\mathfrak{q}\right)^{-\frac{1}{2}} \Gamma_e(\mathfrak{x}|\mathfrak{p}, \mathfrak{q})$$

for $\mathfrak{x} = e^{2\pi i R x}$, $\mathfrak{p} = e^{2\pi i R \omega_1}$, $\mathfrak{q} = e^{2\pi i R \omega_2}$ and

$$\Gamma_e(z|\mathfrak{p},\mathfrak{q}) = \prod_{\ell \in \mathbb{N}^2} \frac{1 - z^{-1}\mathfrak{p}^{\ell_1 + 1}\mathfrak{q}^{\ell_2 + 1}}{1 - z\,\mathfrak{p}^{\ell_1}\mathfrak{q}^{\ell_2}}$$

to arrive at

$$\begin{split} \mathcal{Z}_{3\mathrm{D}}^{\mathrm{Dec}} &= \frac{1}{k!} (\mathfrak{p}; \mathfrak{p})^k (\mathfrak{q}; \mathfrak{q})^k \oint \prod_{b=1}^k \frac{\mathrm{d} v_b}{2\pi i v_b} \prod_{b \neq c} \Gamma_e \left(v_b v_c^{-1} \Big| \mathfrak{p}, \mathfrak{q} \right)^{-1} \\ & \times \prod_{b=1}^k \prod_{j=1}^{N_f} \Gamma_e \left((\mathfrak{p}\mathfrak{q})^{\frac{1}{4}} (v_b s_j^{-1})^{\pm} \Big| \mathfrak{p}, \mathfrak{q} \right) \end{split}$$

 \Rightarrow This is precisely the expected result for $\mathcal{Z}_{S^3\times S^1}^{\mathcal{N}=2\,\text{SQCD}}$

Deconstructing 4D PFs with $\frac{1}{2}$ -BPS defects

 \Rightarrow Bypass Lagrangian deconstruction and directly reproduce the $S^3 \times S^1$ PFs in the presence of defects from 3D

Exact deconstruction gives:

- 1) $S^3 \times S^1$ PFs with (2,2) surface operators [Gadde, Gukov '14]
- 2) $S^3 \times S^1$ PFs with (4,0) surface operators new
- 3) $S^3 \times S^1$ PFs with codimension-one defects new

More Exotic Applications

The following theories are also related by deconstruction:

- \diamond 4D $\mathcal{N}=2$ circular quiver and 6D (2,0) theory on T^2
- \diamond 4D $\mathcal{N} = 1$ toroidal quiver and 6D (1,1) LST on T^2

[Arkani-Hamed, Cohen, Kaplan, Karch, Motl '01]

- \Rightarrow Can recover the 6D (2,0) PF on $S^4 \times T^2$
- \Rightarrow Can recover part of 6D (1,1) LST PF on $S^4 \times T^2$

Summary and Outlook

- Deconstruction has been useful tool for some time
- Can now be applied to exact partition functions
- ◇ Apply to other setups where the deconstructed theory is non Lagrangian? (e.g. 4D N = 3 SCFTs)
- Reformulate exact deconstruction for setups where both the starting point and the end-point is non Lagrangian?
- Beyond partition functions: correlators? (e.g. (2,0) in 6D)