Exact Dimensional Deconstruction

Costis Papageorgakis 10th Regional Meeting on String Theory
Kolymbari, $18^{\text {th }}$ September 2019

w/ J. Hayling, V. Niarchos, R. Panerai, E. Pomoni and D. Rodríguez-Gómez [1809.10485, 1803.06177, 1704.02986]

Motivation

Dimensional deconstruction:
[Arkani-Hamed, Cohen, Georgi '01]
\diamond Limit of circular quiver-gauge theories reproduces the KK spectrum of extra dimensions
\diamond The circle in theory space becomes geometric!

Long-term Goals

Interesting because we can learn about
$\diamond D>4$
\diamond Non-Lagrangian QFTs
\diamond Complicated quantum dynamics in any D
from (simpler) lower-dimensional theories

Elements of dimensional deconstruction

Start with N-noded D-dim $U(k)^{N}$ circular-quiver gauge theory in flat space with

$$
G^{(\alpha)}=G
$$

\Rightarrow Higgs such that $U(k)^{N} \rightarrow U(k)$ by considering

$$
\left\langle Q^{(\alpha)}\right\rangle=v
$$

and identifying

$$
\frac{G}{v} \equiv g_{\mathrm{dec}}^{2} \quad \frac{N}{G v} \equiv 2 \pi \widehat{R} \quad \frac{1}{G v} \equiv a
$$

Recovers KK modes of D+1-dim theory on discretised $S_{\hat{R}}^{1}$

$$
M_{n}^{2}=4 v^{2} G^{2} \sin ^{2}\left(\frac{\pi n}{N}\right) \simeq\left(\frac{2 \pi n}{\widehat{R}}\right)^{2}
$$

\Rightarrow For $E \gg 1 / a$ the D+1-dim theory completed by D-dim quiver

Q: Can we have $a \rightarrow 0$?
\Rightarrow Yes if we take the limit

$$
v \rightarrow \infty \quad N \rightarrow \infty \quad G \rightarrow \infty
$$

\Rightarrow Produces continuum $U(k)$ theory, with $g_{\text {dec }}^{2}$ and \widehat{R} fixed

Challenges

A number of conceptual and technical issues:

Challenges

A number of conceptual and technical issues:
\diamond All considerations are Lagrangian
\Rightarrow Continuum limit requires strong coupling

Challenges

A number of conceptual and technical issues:
\diamond All considerations are Lagrangian
\Rightarrow Continuum limit requires strong coupling
\diamond Deconstruction of QFT $_{\mathrm{D}+1}$ correlation functions?
\Rightarrow What is the precise $\mathrm{QFT}_{\mathrm{D}} \rightarrow \mathrm{QFT}_{\mathrm{D}+1}$ dictionary?

Challenges

A number of conceptual and technical issues:
\diamond All considerations are Lagrangian
\Rightarrow Continuum limit requires strong coupling
\diamond Deconstruction of QFT $_{\mathrm{D}+1}$ correlation functions?
\Rightarrow What is the precise $\mathrm{QFT}_{\mathrm{D}} \rightarrow \mathrm{QFT}_{\mathrm{D}+1}$ dictionary?
\diamond Rules for deconstructing S^{1} (and partially S^{2}) understood
\Rightarrow How does one deconstruct general compact geometries?

Today

Focus on SUSY examples and deconstruct S^{1}
\Rightarrow Continuum limit is more controlled
\diamond Moduli space is not lifted
\diamond Can use the power of supersymmetric localisation
\diamond Deconstruction leads to SUSY doubling
\Rightarrow Deconstruct exact partition function of $\mathrm{QFT}_{\mathrm{D}+1}$

Deconstruction of exact PFs

Start with PF for the quiver-gauge theory (e.g. on S^{D})
\Rightarrow A "modular" quantity. Schematically:

$$
\mathcal{Z}=\prod_{\alpha=-\frac{N}{2}}^{\frac{N}{2}} \mathcal{Z}^{(\alpha)}\left(a, b^{(\alpha)}\right)
$$

where

$$
\mathcal{Z}^{(\alpha)}=\mathcal{Z}_{\text {vec }}^{(\alpha)} \mathcal{Z}_{\text {mat }}^{(\alpha)}
$$

$\Rightarrow \mathcal{Z}_{\text {vec }}^{(\alpha)}, \mathcal{Z}_{\text {mat }}^{(\alpha)}$ known from SUSY localisation

The exact-deconstruction prescription

The rules:

The exact-deconstruction prescription

The rules:
\diamond Identify all parameters between nodes (couplings, Coulomb-branch parameters, mass deformations etc.)

The exact-deconstruction prescription

The rules:
\diamond Identify all parameters between nodes (couplings,
Coulomb-branch parameters, mass deformations etc.)
\diamond Include a mass parameter $m^{(\alpha)} \propto \frac{\alpha}{\widehat{R}}$ for the α-th node

The exact-deconstruction prescription

The rules:
\diamond Identify all parameters between nodes (couplings,
Coulomb-branch parameters, mass deformations etc.)
\diamond Include a mass parameter $m^{(\alpha)} \propto \frac{\alpha}{\hat{R}}$ for the α-th node
\diamond Take $N \rightarrow \infty$

The exact-deconstruction prescription

The rules:
\diamond Identify all parameters between nodes (couplings,
Coulomb-branch parameters, mass deformations etc.)
\diamond Include a mass parameter $m^{(\alpha)} \propto \frac{\alpha}{\hat{R}}$ for the α-th node
\diamond Take $N \rightarrow \infty$

$$
\prod_{\alpha=-\frac{N}{2}}^{\frac{N}{2}} \mathcal{Z}^{(\alpha)}\left(a, b^{(\alpha)}\right) \rightarrow \prod_{\alpha=-\infty}^{\infty} \mathcal{Z}^{(\alpha)}\left(a, b, m^{(\alpha)}\right)
$$

Claim: This is the exact partition function of QFT $_{\mathrm{D}+1}$ on extra S^{1}

Example: Deconstructing 4D $\mathcal{N}=2$ SQCD

Start with the following 3D $\mathcal{N}=2$ quiver

Its full squashed- $S^{3} \mathrm{PF}$ is given by

$$
\begin{aligned}
\mathcal{Z}_{3 \mathrm{D}}^{\text {quiver }} & =\prod_{\alpha} \frac{1}{k!} \int \prod_{b=1}^{k} \mathrm{~d} \sigma_{b}^{(\alpha)} \Delta^{\mathrm{Haar}}\left(\sigma^{(\alpha)}\right) \prod_{b, c=1}^{k} \frac{\Gamma_{h}\left(\omega_{+}+\sigma_{b}^{(\alpha)}-\sigma_{c}^{(\alpha+1)} \mid \omega_{1}, \omega_{2}\right)}{\widehat{\Gamma}_{h}\left(\sigma_{b}^{(\alpha)}-\sigma_{c}^{(\alpha)} \mid \omega_{1}, \omega_{2}\right)} \\
& \times \prod_{b=1}^{k} \prod_{j=1}^{N_{f}} \Gamma_{h}\left(\left.\frac{1}{2} \omega_{+}-\mu_{j}^{(\alpha)}+\sigma_{b}^{(\alpha)} \right\rvert\, \omega_{1}, \omega_{2}\right) \Gamma_{h}\left(\left.\frac{1}{2} \omega_{+}-\sigma_{b}^{(\alpha+1)}+\mu_{j}^{(\alpha)} \right\rvert\, \omega_{1}, \omega_{2}\right)
\end{aligned}
$$

These are defined as

$$
\Gamma_{h}\left(x \mid \omega_{1}, \omega_{2}\right)=\prod_{\ell \in \mathbb{N}^{2}} \frac{-x+\left(\ell_{1}+1\right) \omega_{1}+\left(\ell_{2}+1\right) \omega_{2}}{x+\ell_{1} \omega_{1}+\ell_{2} \omega_{2}}
$$

Exact-deconstruction prescription gives:

$$
\begin{aligned}
\mathcal{Z}_{3 \mathrm{D}}^{\text {Dec }} & =\frac{1}{k!} \int \prod_{b=1}^{k} \mathrm{~d} \sigma_{b} \prod_{\alpha=-\infty}^{\infty} \frac{\Gamma_{h}\left(\left.\omega_{+}+\frac{\alpha}{R} \right\rvert\, \omega_{1}, \omega_{2}\right)^{k}}{\widehat{\Gamma}_{h}\left(\left.\frac{\alpha}{R} \right\rvert\, \omega_{1}, \omega_{2}\right)^{k}} \prod_{b \neq c} \frac{\Gamma_{h}\left(\left.\omega_{+}+\sigma_{b}-\sigma_{c}+\frac{\alpha}{R} \right\rvert\, \omega_{1}, \omega_{2}\right)}{\Gamma_{h}\left(\left.\sigma_{b}-\sigma_{c}+\frac{\alpha}{R} \right\rvert\, \omega_{1}, \omega_{2}\right)} \\
& \times \prod_{b=1}^{k} \prod_{j=1}^{N_{f}} \Gamma_{h}\left(\left.\frac{1}{2} \omega_{+} \mp \sigma_{b} \pm \mu_{j}+\frac{\alpha}{R} \right\rvert\, \omega_{1}, \omega_{2}\right) .
\end{aligned}
$$

\Rightarrow The $S^{3} \times S^{1}$ PF of 4D $\mathcal{N}=2$ SQCD with N_{f} flavours?

Not obvious. Use the identity

$$
\prod_{\alpha=-\infty}^{\infty} \Gamma_{h}\left(\left.x+\frac{\alpha}{R} \right\rvert\, \omega_{1}, \omega_{2}\right)=\mathfrak{x}^{2}(\mathfrak{p q})^{-\frac{1}{2}} \Gamma_{e}(\mathfrak{x} \mid \mathfrak{p}, \mathfrak{q})
$$

for $\mathfrak{x}=e^{2 \pi i R x}, \mathfrak{p}=e^{2 \pi i R \omega_{1}}, \mathfrak{q}=e^{2 \pi i R \omega_{2}}$ and

$$
\Gamma_{e}(z \mid \mathfrak{p}, \mathfrak{q})=\prod_{\ell \in \mathbb{N}^{2}} \frac{1-z^{-1} \mathfrak{p}^{\ell_{1}+1} \mathfrak{q}^{\ell_{2}+1}}{1-z \mathfrak{p}^{\ell_{1}} \mathfrak{q}^{\ell_{2}}}
$$

to arrive at

$$
\begin{aligned}
& \mathcal{Z}_{3 \mathrm{D}}^{\mathrm{Dec}}=\frac{1}{k!}(\mathfrak{p} ; \mathfrak{p})^{k}(\mathfrak{q} ; \mathfrak{q})^{k} \oint \prod_{b=1}^{k} \frac{\mathrm{~d} v_{b}}{2 \pi i v_{b}} \prod_{b \neq c} \Gamma_{e}\left(v_{b} v_{c}^{-1} \mid \mathfrak{p}, \mathfrak{q}\right)^{-1} \\
& \times \prod_{b=1}^{k} \prod_{j=1}^{N_{f}} \Gamma_{e}\left(\left.(\mathfrak{p q})^{\frac{1}{4}}\left(v_{b} s_{j}^{-1}\right)^{ \pm} \right\rvert\, \mathfrak{p}, \mathfrak{q}\right)
\end{aligned}
$$

\Rightarrow This is precisely the expected result for $\mathcal{Z}_{S^{3} \times S^{1}}^{\mathcal{N}=2 \text { SQCD }}$

Deconstructing 4D PFs with $\frac{1}{2}$-BPS defects

\Rightarrow Bypass Lagrangian deconstruction and directly reproduce the $S^{3} \times S^{1}$ PFs in the presence of defects from 3D

Exact deconstruction gives:

1) $S^{3} \times S^{1}$ PFs with $(2,2)$ surface operators
[Gadde, Gukov '14]
2) $S^{3} \times S^{1}$ PFs with $(4,0)$ surface operators - new
3) $S^{3} \times S^{1} \mathrm{PFs}$ with codimension-one defects - new

More Exotic Applications

The following theories are also related by deconstruction:
$\diamond 4 \mathrm{D} \mathcal{N}=2$ circular quiver and $6 \mathrm{D}(2,0)$ theory on T^{2}
$\diamond 4 \mathrm{D} \mathcal{N}=1$ toroidal quiver and $6 \mathrm{D}(1,1)$ LST on T^{2}
[Arkani-Hamed, Cohen, Kaplan, Karch, Motl '01]
\Rightarrow Can recover the 6D (2,0) PF on $S^{4} \times T^{2}$
\Rightarrow Can recover part of 6D (1,1) LST PF on $S^{4} \times T^{2}$

Summary and Outlook

\diamond Deconstruction has been useful tool for some time
\diamond Can now be applied to exact partition functions
\diamond Apply to other setups where the deconstructed theory is non Lagrangian? (e.g. 4D $\mathcal{N}=3$ SCFTs)
\diamond Reformulate exact deconstruction for setups where both the starting point and the end-point is non Lagrangian?
\diamond Beyond partition functions: correlators? (e.g. $(2,0)$ in 6D)

