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Background

• 2d CFTs play multiple roles in Physics and Mathematics:

• Critical statistical systems
• String world-sheet theory
• Boundary theory dual to bulk gravity
• Topological quantum computing
• c2-cofinite vertex operator algebras

• Spectrum has following structure:

primaries φi, dimensions (hi, h̄i)

secondaries W−n,−n̄ φi, dimensions (hi + n, h̄i + n̄)

• W−n,−n̄ stands for arbitrary products of creation modes of
the spin-1, spin-2, spin-3 · · · chiral algebra.
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• Defining q = e2πiτ , the partition function:

Z(τ, τ̄) = tr qL0− c
24 q̄L̄0− c

24

counts the total number of states, both primary and
secondary.

• For consistency, the partition function must be modular
invariant:

Z(γτ, γτ̄) = Z(τ, τ̄)

where:

γτ ≡ aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z)
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• Rational Conformal Field Theory (RCFT): partition
function takes the form:

Z(τ, τ̄) =

n−1∑
i=0

|χi(τ)|2

where the n functions χi are holomorphic “characters”.

• In [Mathur-Mukhi-Sen, 1988] a programme was initiated to
classify all RCFT’s with small n using modular invariance.
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• The character χi(τ) for a primary φi is defined as:

χi(q) = tri q
L0− c

24

where tri is over all holomorphic descendants W−nφi.

• General form:

χi(q) = q−
c
24

+hi(ai0 + ai1q + ai2q
2 + · · · )

where ain are non-negative integer degeneracies (physical
requirement).

• For Z(τ, τ̄) to be modular-invariant, the characters must be
vector-valued modular functions:

χi (γτ) =

p−1∑
j=0

Mij(γ)χj(τ), γ ∈ SL(2,Z)

with M †M = 1.
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• From [Belavin-Polyakov-Zamolodchikov (1984)] and
[Knizhnik-Zamolodchikov (1984)], we know many examples of
RCFT’s.

• They possess null vectors and fall into various minimal
series.

• This approach has yielded numerous RCFT and taught us
a lot.

• However as we will see, it explores a very small corner of
the space of RCFT.
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Classification of RCFT Characters

• Our scheme to classify “admissible” RCFT characters χi(τ)
uses three key features:

• Holomorphy
• Modular covariance.
• Integrality of the q-series.

• An RCFT with n characters is characterised by a central
charge c and n− 1 conformal dimensions hi.

• The Riemann-Roch theorem tells us that the Wronskian
Index or W-Index:

` ≡ nc

4
− 6

n−1∑
i=1

hi +
n(n− 1)

2

is a non-negative integer 6= 1.
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• Given any RCFT one can easily compute its W-Index.

• Remarkably, all c < 1 minimal models, and all WZW
models, have vanishing W-Index [Mathur-Mukhi-Sen 1989].

• However there are some known theories with non-zero
W-index.

• For example [Hampapura-Mukhi 2016] the c = 1 compact free
boson at radius

√
2p has ` = 0 for all p, but its Z2 orbifold

has:
` = 3(p− 1)

• What is the “physical” meaning of the W-index?
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• The tensor product of two distinct RCFT’s having n, n′

characters and W-indices `, `′ respectively, is an RCFT
with ñ = nn′ characters and W-index:

˜̀=
1

2
nn′(n− 1)(n′ − 1) + n′`+ n`′

• What are all the irreducible (non-tensor-product) RCFT
with n characters and arbitrary W-index ` ≥ 0?

• No a priori assumption is made about the chiral algebra.
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• For n = 1 (one character) the partition function is:

Z(τ, τ̄) = |χ(τ)|2

Thus χ(τ) has to be modular invariant upto a phase.

• This requires χ to be a function of the Klein j-invariant:

j(q) = q−1 + 744 + 196884q + 21493760q2 + · · ·
• Non-negative integer q-series puts strong restrictions on the

function. Allowed examples:

c = 8: χ = j
1
3 E8 (unique)

c = 16: χ = j
2
3 E8 × E8, Spin32/Z2

c = 24: χ = j +N free boson, Niemeier lattice

c = 32: χ = j
1
3 (j +N ) free boson, even unimodular 32d lattice

• The W-index for these theories is just:

` =
c

4
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• Focus on c = 24, where χ = j +N .

• In principle, any integer N ≥ −744 is allowed by the
bootstrap requirements.

• But the allowed CFT correspond to free bosons on Rc/Γ,
where Γ is an even, unimodular lattice, as well as
generalisations involving orbifolding. etc.

• It was argued in [Schellekens (1992)] that there are altogether
71 such theories. Their characters are all of the form j +N
with just 30 distinct values of N .

• For all other values of N there seem to be no consistent
CFT (“modular swampland”).
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• For n ≥ 2, it was noted in [Mathur-Mukhi-Sen (1988)] that one
can find vector-valued modular functions as the n
independent solutions of a Modular Linear Differential
Equation (MLDE).

• The MLDE is homogeneous of degree n, and holomorphic.

• Integrality of coefficients must be imposed by varying
parameters of the MLDE. This is difficult in general.

• Practical only for small values of both n and `.

• Hence we mainly focused on n = 2, 3.
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Two-character RCFT

• For two characters, one can prove that the W-index is
even: ` = 0, 2, 4, 6, · · · .

• For ` = 0, 2, 4 there are finite many solutions to the
bootstrap.
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• For ` = 0 there are just 9 pairs of admissible characters
[Mathur-Mukhi-Sen (1988)]. Remarkably, all (with some
caveats) correspond to known RCFT.

• Most of these theories are known, but they occur in
different minimal series for their respective Kac-Moody
algebras. Here they occurred all together for the first time.
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• [P. Cvitanović (1977, unpublished)] and [Pierre Deligne (1996)]

observed that the same set of Lie algebras naturally form a
series with remarkable properties.
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• The case of ` = 2 [Naculich (1989), Hampapura-Mukhi (2015)].

a01 c h

410 82
5

6
5

323 17 5
4

234 18 4
3

188 94
5

7
5

140 20 3
2

106 106
5

8
5

88 22 5
3

69 23 7
4

59 118
5

9
5

Again, exactly 9 pairs of admissible
characters, but with 16 < c < 24.

The primaries all have ∆ = 2h > 2.
Thus, almost “perfect metals”
[Plamadeala-Mulligan-Nayak 2014].

But the a0
1 Kac-Moody currents

are relevant operators.

Unlike the ` = 0 list, these are not
readily identifiable as CFT. Their
status remained unclear for decades.
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• In [Gaberdiel-Hampapura-Mukhi (2016)], we were able to answer
this in the affirmative.

• We found the ` = 2 theories are novel cosets of the
meromorphic c = 24 theories of [Schellekens (1992)] by a
corresponding ` = 0 theory.

C =
S

WZW

• This proves that all the ` = 2 admissible characters are
really CFT’s, and enables us to solve them (despite no
knowledge of their null vectors!).

• The above cosets are different from the standard coset
construction:

C =
WZW1

WZW2
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` = 0 ` = 2

No. c h m1 Algebra c̃ h̃ m̃1 m1 + m̃1 Example KM algebra

1 1 1
4

3 A1,1 23 7
4

69 72 (A1,1)23

2 2 1
3

8 A2,1 22 5
3

88 96 (A5,2)2C2,1A2,1

3 14
5

2
5

14 G2,1
106
5

8
5

106 120 E6,3(G2,1)2

4 4 1
2

28 D4,1 20 3
2

140 168 (D4,1)5

5 26
5

3
5

52 F4,1
94
5

7
5

188 240 E7,2B5,1

6 6 2
3

78 E6,1 18 4
3

234 312 A11,1D7,1

7 7 3
4

133 E7,1 17 5
4

323 456 D10,1E7,1

Table: Characters with ` = 0 and ` = 2.

• Notice that c+ c̃ = 24 and h+ h̃ = 2 in every line.

• The ` = 2 theories are simple, yet correspond to
complicated invariants of direct sums of Kac-Moody
algebras. Unlike the ` = 0 theories, they were not
previously known.
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• An aside: one can take 3- and 4-character WZW models
and use the novel coset construction to find new CFT’s.
None of them was previously known, and most of them are
(almost) perfect metals!
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Quasi-characters and ` ≥ 6

• Until last year it was not known if any two-character CFT
exists with Wronskian index ` ≥ 6.

• Using generalised Hecke operators, [Harvey-Wu (2018)]

showed that one can construct admissible pairs of
characters for generically large `.

• This inspired us to re-examine the problem.

• In [Chandra-Mukhi (2018a)] we proposed a new method of
quasi-characters and used them to construct all possible
admissible pairs of characters for any W-index `.

• Quasi-characters were indirectly anticipated in [Kiritsis

(1989)].

19 / 32



Quasi-characters and ` ≥ 6

• Until last year it was not known if any two-character CFT
exists with Wronskian index ` ≥ 6.

• Using generalised Hecke operators, [Harvey-Wu (2018)]

showed that one can construct admissible pairs of
characters for generically large `.

• This inspired us to re-examine the problem.

• In [Chandra-Mukhi (2018a)] we proposed a new method of
quasi-characters and used them to construct all possible
admissible pairs of characters for any W-index `.

• Quasi-characters were indirectly anticipated in [Kiritsis

(1989)].

19 / 32



Quasi-characters and ` ≥ 6

• Until last year it was not known if any two-character CFT
exists with Wronskian index ` ≥ 6.

• Using generalised Hecke operators, [Harvey-Wu (2018)]

showed that one can construct admissible pairs of
characters for generically large `.

• This inspired us to re-examine the problem.

• In [Chandra-Mukhi (2018a)] we proposed a new method of
quasi-characters and used them to construct all possible
admissible pairs of characters for any W-index `.

• Quasi-characters were indirectly anticipated in [Kiritsis

(1989)].

19 / 32



Quasi-characters and ` ≥ 6

• Until last year it was not known if any two-character CFT
exists with Wronskian index ` ≥ 6.

• Using generalised Hecke operators, [Harvey-Wu (2018)]

showed that one can construct admissible pairs of
characters for generically large `.

• This inspired us to re-examine the problem.

• In [Chandra-Mukhi (2018a)] we proposed a new method of
quasi-characters and used them to construct all possible
admissible pairs of characters for any W-index `.

• Quasi-characters were indirectly anticipated in [Kiritsis

(1989)].

19 / 32



Quasi-characters and ` ≥ 6

• Until last year it was not known if any two-character CFT
exists with Wronskian index ` ≥ 6.

• Using generalised Hecke operators, [Harvey-Wu (2018)]

showed that one can construct admissible pairs of
characters for generically large `.

• This inspired us to re-examine the problem.

• In [Chandra-Mukhi (2018a)] we proposed a new method of
quasi-characters and used them to construct all possible
admissible pairs of characters for any W-index `.

• Quasi-characters were indirectly anticipated in [Kiritsis

(1989)].

19 / 32



• Our strategy was based on a series of works by
mathematicians: [Kaneko, Zagier, Koike].

• Recall that:

χi(q) = q−
c
24

+hi(ai0 + ai1q + ai2q
2 + · · · )

and for vanishing W-index ` = 0, we found only 9
admissible pairs of characters.

• Suppose we now relax the positivity condition and require
ain to only be integer, but possibly negative.

• Then, it turns out that there are infinitely many solutions.
We call these quasi-characters.

• Example:

χ0 = q−
25
24 (1−245q+142640q2 +18615395q3 +837384535q4 + · · · )

with all higher coefficients positive.
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• Using the works of [Kaneko et al] we were able to classify all
quasi-characters with ` = 0.

• Quasi-characters cannot directly describe a CFT since they
are not admissible: what sense does a degeneracy of −245
make?

• However we showed that certain linear combinations of
quasi-characters lead to admissible characters having
` = 6p for every positive integer p.

• We also constructed quasi-characters for ` = 2, 4 and
showed that these are building blocks for admissible
characters with ` = 6p+ 2, 6p+ 4 respectively, thus
exhausting all even `.

• Due to time constraints I will only discuss the ` = 6p cases
in this talk.
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• Addition of quasi-characters is allowed within a given
fusion class (same modular transformations). This repeats
whenever c jumps by 24.

• Let us add a pair of quasi-characters. We choose the first
one to be admissible (0 < c < 8) and the second to be a
quasi-character with a single negative coefficient.

• Then the sum looks like:

χ0 = q−
c
24
−1(1− · · · ) +N1 q

− c
24 (1 + · · · )

χ1 = q−
c
24

+h+1(1 + · · · ) +N1 q
− c

24
+h(1 + · · · )

and is admissible for large enough N1.

• From the leading power of q we read off that this has
central charge c+ 24 and conformal dimension h+ 1.

• Applying Riemann-Roch, the sum is an admissible
character with ` = 6.
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• If the start quasi-character has multiple negative values
then we need to add many terms to get an admissible
character.

• Adding p quasi-characters gives admissible characters with
W-index ` = 6p.

• We have proved that this procedure is complete. Of course
it only classifies characters rather than actual CFT’s.

• We never used use the MLDE for ` > 6, which is
prohibitively difficult.

23 / 32



• If the start quasi-character has multiple negative values
then we need to add many terms to get an admissible
character.

• Adding p quasi-characters gives admissible characters with
W-index ` = 6p.

• We have proved that this procedure is complete. Of course
it only classifies characters rather than actual CFT’s.

• We never used use the MLDE for ` > 6, which is
prohibitively difficult.

23 / 32



• If the start quasi-character has multiple negative values
then we need to add many terms to get an admissible
character.

• Adding p quasi-characters gives admissible characters with
W-index ` = 6p.

• We have proved that this procedure is complete. Of course
it only classifies characters rather than actual CFT’s.

• We never used use the MLDE for ` > 6, which is
prohibitively difficult.

23 / 32



• If the start quasi-character has multiple negative values
then we need to add many terms to get an admissible
character.

• Adding p quasi-characters gives admissible characters with
W-index ` = 6p.

• We have proved that this procedure is complete. Of course
it only classifies characters rather than actual CFT’s.

• We never used use the MLDE for ` > 6, which is
prohibitively difficult.

23 / 32



Outline

1 Background

2 Classification of RCFT Characters

3 Two-character RCFT

4 Quasi-characters and ` ≥ 6

5 ` = 6 CFT

6 Conclusions and Outlook



` = 6 CFT

• We now have new infinite families of admissible characters,
but which of them are actually CFT’s?

• In [Chandra-Mukhi (2018b)] we addressed the case of ` = 6.
This is the first value for which an infinite family of
admissible characters arose.

• This is reminiscent of the one-character case at c = 24
(which also has ` = 6, in fact).

• The admissible characters for ` = 6 have central charges:

24 < c < 32
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• To construct CFT’s for (some of) these characters, we
again use the novel coset construction of
[Gaberdiel-Hampapura-Mukhi (2016)].

• We saw that all WZW models have ` = 0. Taking the
quotient of an even, selfdual lattice boson theory of central
charge c by a two-character WZW model, the result is a
two-character CFT with:

` = c
2 − 10

• We want ` = 6 so we take c = 32. Thus we are led to
consider free bosons on a 32-dimensional lattice.
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two-character CFT with:
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• There are > 1010 even selfdual lattices in 32 dimensions.
But 132 of these are special. They have complete root
systems and are called Kervaire lattices.

• So we take the coset of a Kervaire lattice CFT by any of
the WZW theories falling in the MMS series, which all
have ` = 0.

• The result has ` = 6 and its characters are completely
determined by the coset construction.Thus the arbitrary
integer N1 is determined in each case.

• With a complete root system, one can determine the
Kac-Moody algebra of the coset dual and from it the stress
tensor. Thereafter the coset theory can be completely
solved.
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• Simple example: a 32-dimensional lattice having the
complete root system A16

2 .

• Scalar field theory on the torus C32/Γ defines a unique
c = 32 meromorphic CFT with A16

2,1 as its Kac-Moody
algebra.

• The number of spin-1 currents is the dimension of the
algebra, which is 128.
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• We can write the single character of this theory as a
non-diagonal modular invariant combination of the affine
characters of A16

2,1.

• These are of the form:

χm ≡ χ
p
0χ

16−p
1

where χ0, χ1 are the A2,1 characters.

• The subscript on the LHS is the conformal dimension:

m = 16−p
3 = 0, 1

3 ,
2
3 , 1, · · · ,

14
3 , 5,

16
3

• The modular invariant (upto a phase) combination of these
characters is easily found to be:

χ(τ) = χ0 + 224χ2 + 2720χ3 + 3360χ4 + 256χ5

= j(τ)
1
3 (j(τ)− 864)
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• Now we coset the theory by the two-character A2,1 WZW
model, to get a new two-character CFT with A15

2,1 as its
symmetry. It has Wronskian index ` = 6 as desired.

• The A2,1 WZW model has c = 2, h = 1
3 . Hence the coset

theory has c̃ = 30 and h̃ = 5
3 .

• Its characters must be linear combinations of χp0χ
15−p
1

whose dimensions are mi = 15−p
3 . These combinations turn

out to be:

χ̃0(τ) = χ0 + 140χ2 + 1190χ3 + 840χ4 + 16χ5

χ̃1(τ) = 42χ 5
3

+ 765χ 8
3

+ 1260χ 11
3

+ 120χ 14
3

• We can use methods of [Mathur-Mukhi-Sen (1989)] to compute
correlation functions on the plane and torus. So the CFT is
fully defined.
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• One can construct many more (over 100) two-character
CFT’s with ` = 6 in this way.

• But we do not have a complete list of ` = 6 CFT, and we
never will because there is no complete list of c = 32
one-character CFT.

• Still, given any lattice CFT with a complete root system,
we can coset it by a suitable ` = 0 CFT and obtain large
classes of theories with various `.

• For lattices with incomplete root systems, things are more
complicated and not yet worked out.
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Conclusions and Outlook

• A long-standing problem, to find all admissible CFT
characters of rank n, has now been solved for n = 2.

• The cases with ` < 6 turns out to be extremely
non-generic: there are only finite families. From ` = 6
onwards there are infinite families of admissible characters.

• Many of these (probably a large but finite number)
correspond to some CFT. We found > 132 examples with
` ≥ 6 as cosets of even, unimodular lattices. Using
higher-dimensional lattices one should be able to extend
these results.

• For rank 3, the ` = 0 case was studied in [Mathur-Mukhi-Sen

(1989), Franc-Mason (2017)], but virtually nothing is known for
` > 0. The methods discussed here can surely be applied to
that case.
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Thank You
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