Heterotic Unification and the GUT scale

Ioannis Florakis

Department of Physics, University of loannina

10th Regional Crete Meeting in String Theory, Kolymbari 2019
based on work with C. Angelantonj
Phys. Lett. B 789 (2019), hep-th/1812.06915

Outline

- Introduction
- Gauge thresholds and Universality in $\mathcal{N}=2$
- GUT scale Mismatch and the Decompactification Problem
- $\mathcal{N}=1$ and Chirality
- An explicit example
- Conclusions

Introduction

String Theory: UV complete framework for addressing questions pertinent to quantum gravity \rightarrow many formal developments.

A traditional goal: Unification of all interactions, including gravity.
(String pheno) String vacua as phenomenological extensions of SM, e.g. $\mathcal{N}=1$, SUSY breaking, \ldots

+ Necessary to incorporate quantum corrections

Introduction

Best studied: F^{2} in heterotic effective action at 1-loop (in g_{s})

- running of gauge couplings
- String Unification: $M_{U}=$?, $g_{U}=$? (compare $M_{G U T}, g_{G U T}$)

Compute 2-point function of gauge bosons on Σ_{2} and split into

- massless contributions \rightarrow logarithmic (field theory)
- heavy string states \rightarrow threshold correction Δ_{a}

Introduction

Running coupling $g_{a}(\mu)$ for gauge group factor G_{a} in $\overline{D R}$

$$
\frac{16 \pi^{2}}{g_{a}^{2}(\mu)}=k_{a} \frac{16 \pi^{2}}{g_{s}^{2}}+b_{a} \log \left(\frac{\xi}{4 \pi^{2}} \frac{M_{s}^{2}}{\mu^{2}}\right)+\Delta_{a}
$$

and $\xi \equiv 8 \pi e^{1-\gamma} / 3 \sqrt{3}$
String scale data: M_{s}, g_{s} not independent
M_{P} does not renormalise at any loop! (Kiritsis and Kounnas 1995)

$$
M_{s}=g_{s} \frac{M_{P}}{\sqrt{32 \pi}}
$$

Moduli dependence in Δ_{a} via KK/winding masses

Gauge thresholds and Universality in $\mathcal{N}=2$

Calculating Δ_{a} even at one loop is non-trivial.
Properties best visible in $\mathcal{N}=2$ vacua: e.g. $\mathrm{K} 3 \times T^{2}$

- One-loop exact in g_{s}
- Realised as $T^{4} / \mathbb{Z}_{N} \times T^{2}$ orbifold, $N=2,3,4,6$
- For simplicity $W=0$: factorised T^{2} and Kac-Moody lattices
- Only T^{2} moduli appear: T, U

With these assumptions, $\mathcal{N}=2$ universality

Gauge thresholds and Universality in $\mathcal{N}=2$

Δ_{a} decomposes into

$$
\Delta_{a}^{\mathcal{N}=2}=-k_{a} \hat{Y}+b_{a} \hat{\Delta}
$$

\hat{Y} known as the "Universal part"

- due to presence of gravitational sector
- independent of charges under G_{a}
$\hat{\Delta}$ known as the "Running part"
- multiplied by $\mathcal{N}=2$ beta function
- charged heavy states running in the loop

Gauge thresholds and Universality in $\mathcal{N}=2$

Modularity, holomorphy and 6d gravitational anomalies uniquely fix

$$
\begin{aligned}
& \hat{Y}=\frac{1}{12} \int_{\mathcal{F}} \frac{d^{2} \tau}{\tau_{2}^{2}} \Gamma_{2,2}(T, U)\left(\frac{\hat{E}_{2} \bar{E}_{4} \bar{E}_{6}-\bar{E}_{4}^{3}}{\bar{\eta}^{24}}+1008\right) \\
& \hat{\Delta}=\int_{\mathcal{F}} \frac{d^{2} \tau}{\tau_{2}^{2}}\left(\Gamma_{2,2}(T, U)-\tau_{2}\right)
\end{aligned}
$$

With some work, these modular integrals can be computed

$$
\begin{aligned}
& \hat{Y}=\frac{1}{2} \log |j(T)-j(U)|^{4}+\frac{4 \pi}{3 T_{2}} E(2 ; U)+O\left(e^{-2 \pi T_{2}}\right) \\
& \hat{\Delta}=-\log \left[\xi T_{2} U_{2}|\eta(T) \eta(U)|^{4}\right]
\end{aligned}
$$

Gauge thresholds and Universality in $\mathcal{N}=2$

Decomposition $\Delta_{a}^{\mathcal{N}=2}=-k_{a} \hat{Y}+b_{a} \hat{\Delta}$ has physical consequences

Natural unification of all gauge couplings

$$
M_{U}=\frac{\xi M_{P}}{2 \pi} g_{s} \exp (\hat{\Delta} / 2) \quad, \quad g_{s}=g_{U}\left(1+\frac{g_{U}^{2}}{16 \pi^{2}} \hat{Y}\right)^{-1 / 2}
$$

- All couplings automatically unify at $\mu=M_{U}$
- Common coupling $g_{a}\left(M_{U}\right)=g_{U} / \sqrt{k_{a}}$
- Moduli dependent values for M_{U} and $g_{U}($ via $\hat{Y}, \hat{\Delta})$

Gauge thresholds and Universality in $\mathcal{N}=2$

Question

Assuming Desert, how do we choose T, U such that String
Unification M_{U}, g_{U} match corresponding GUT values?

$$
M_{U}=M_{G U T} \sim 2 \times 10^{16} \mathrm{GeV} \quad, \quad g_{U}^{2}=g_{G U T}^{2}=4 \pi / 25
$$

Explicit expressions for $\hat{Y}, \hat{\Delta}$ reveals no value in (T, U) compatible with this requirement

- What is the origin of this discrepancy?

Gauge thresholds and Universality in $\mathcal{N}=2$

Inspect ratio of String Unification to GUT scale

$$
\frac{M_{U}}{M_{G U T}}=\frac{\xi}{4(2 \pi)^{3 / 2}} \frac{M_{P}}{M_{G U T}} \frac{g_{G U T}}{\sqrt{1+\frac{g_{G U T}^{2}}{16 \pi^{2}} \hat{Y}}} \exp (\hat{\Delta} / 2)
$$

$M_{P} / M_{G U T} \sim 6.1 \times 10^{2}$, so we need suitable values for $\hat{Y}, \hat{\Delta}$ to lower string unification scale down to GUT scale

This turns out to be impossible due to unbroken $O(2,2)$

$$
O(2,2 ; \mathbb{Z})=S L(2 ; \mathbb{Z})_{T} \times S L(2 ; \mathbb{Z})_{U} \ltimes \mathbb{Z}_{2}
$$

- T-duality symmetry in both \hat{Y} and $\hat{\Delta}$
- Thresholds have extrema at fixed points
- Minimum at $T=U=e^{2 \pi i / 3}$ gives $\hat{Y} \sim 27.6, \hat{\Delta} \sim 0.068$

Gauge thresholds and Universality in $\mathcal{N}=2$

$\ln \mathcal{N}=2$ universality with $O(2,2 ; \mathbb{Z})$

String Unification overshoots GUT scale by factor ~ 20

This is a well known story but the role of unbroken $O(2,2 ; \mathbb{Z})$ was not fully appreciated in the past

GUT scale Mismatch and the Decompactification problem

Let's forget SU-GUT scale mismatch for a moment
A related problem arises at large volume

$$
T_{2}=\operatorname{Im} T=\operatorname{vol}\left(T^{2}\right) \gg M_{s}^{-2}
$$

KK scale $M_{K K} \sim 1 / \sqrt{T_{2}}$: much lower than M_{s} or even $M_{G U T}$ M_{U} is pushed above M_{P} exponentially fast
Effectively 6d physics: gauge coupling has dimensions of length

$$
\hat{\Delta} \sim \frac{\pi}{3} T_{2} \quad, \quad \hat{Y} \sim 4 \pi T_{2}
$$

Thresholds grow linearly with T^{2} volume
Depending on $\operatorname{sgn}\left(b_{a}\right)$, either decoupling or non-perturbative

GUT scale Mismatch and the Decompactification problem

Non-perturbative regime: theory loses predictability
"Decompactification problem"
Technically, linear growth arises from Dedekind and Klein functions

$$
\eta(T)=q^{1 / 24} \prod_{n>0}\left(1-q^{n}\right) \quad, \quad j(T)=\frac{1}{q}+196884 q+\ldots
$$

where $q=\exp (2 \pi i T)$

- $T_{2}|\eta(T)|^{4}$ and $j(T)$ are automorphic functions of $S L(2 ; \mathbb{Z})_{T}$
- They enter \hat{Y} and $\hat{\Delta}$ and reflect T-duality symmetry

GUT scale Mismatch and the Decompactification problem

One (obvious) solution:
Keep moduli close to string scale: $M_{s}^{2} T_{2} \sim 1$

- SU-GUT scale mismatch persists
- In $\mathcal{N}=1$, large volume is necessary
(cf. Ibanez-Luest, Nilles-Stieberger,....)
- SUSY breaking: potential may lead to large volume

So this won't do...

GUT scale Mismatch and the Decompactification problem

Look at these two different problems:
SU/GUT mismatch vs. Decompactification

At first sight, they look uncorrelated

- one is related to extrema of $\hat{Y}, \hat{\Delta}$, i.e. small volume
- the other arises at large volume

GUT scale Mismatch and the Decompactification problem

Closer look: both problems share a common origin It all goes back to unbroken $S L(2 ; \mathbb{Z})_{T} \subset O(2,2 ; \mathbb{Z})$

Technically, symmetry implies $\hat{\Delta}, \hat{Y} \sim \int_{\mathcal{F}} \Gamma_{2,2}(T, U) \times$ stuff
The Narain lattice reflects $\mathrm{O}(2,2)$ and asymptotically

$$
\Gamma_{2,2}(T, U)=\sum_{m, n \in \mathbb{Z}^{2}} q^{P_{L}^{2} / 4} \bar{q}_{R}^{2 / 4} \rightarrow T_{2}+\ldots
$$

GUT scale Mismatch and the Decompactification problem

Both problems can be solved simultaneously (Angelantonj, I.F., 2019)
provided T-duality group is broken such that

$$
S L(2 ; \mathbb{Z})_{T} \rightarrow \Gamma^{1}(N)_{T}
$$

via the congruence subgroup
$\Gamma^{1}(N)=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2 ; \mathbb{Z}) \right\rvert\, a, d=1(\bmod N), b=0(\bmod N)\right\}$

K 3 and T^{2} no longer factorise, rather elliptic fibration
Exactly solvable CFT realisation: freely acting \mathbb{Z}_{N} orbifolds
Twists in K 3 and shifts along non-trivial cycles of T^{2}

GUT scale Mismatch and the Decompactification problem

How does it look like?
Morally:

$$
\int_{\mathcal{F}} \Gamma_{2,2} \times\left(\frac{1}{N} \sum_{h, g \in \mathbb{Z}_{N}} \mathcal{A}\left[\begin{array}{l}
h \\
g
\end{array}\right]\right) \rightarrow \int_{\mathcal{F}}\left(\frac{1}{N} \sum_{h, g \in \mathbb{Z}_{N}} \Gamma_{2,2}\left[\begin{array}{l}
h \\
g
\end{array}\right] \mathcal{A}\left[\begin{array}{l}
h \\
g
\end{array}\right]\right)
$$

- h : orbifold sectors
- g : projection
- momentum shift $\Gamma_{2,2}\left[\begin{array}{c}h \\ \mathrm{~g}\end{array}\right] \leftrightarrow$ geometric $X($ not $\tilde{X})$
- T-duality $S L(2 ; \mathbb{Z})_{T} \rightarrow \Gamma^{1}(N)_{T}$

GUT scale Mismatch and the Decompactification problem

Partial unfolding (cf. Angelantonj, I.F., Pioline)

$$
\Delta_{a}=\int_{\mathcal{F}} \frac{1}{N} \Gamma_{2,2} \times \mathcal{A}\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\int_{\mathcal{F}_{N}} \frac{1}{N} \Gamma_{2,2}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \times \mathcal{A}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

here $\mathcal{F}_{N}=\mathbb{H}^{+} / \Gamma_{0}(N)$ fundamental domain of Hecke congruence subgroup $\Gamma_{0}(N)_{\tau} \subset S L(2 ; \mathbb{Z})_{\tau}$

$$
\Gamma_{0}(N)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2 ; \mathbb{Z}) \right\rvert\, c=0(\bmod N)\right\}
$$

Also: helicity supertrace in $\mathcal{A}\left[\begin{array}{l}0 \\ 0\end{array}\right]$ vanishes $(\mathcal{N}=4)$

$$
\hat{\Delta}=\int_{\mathcal{F}_{N}} \frac{d^{2} \tau}{\tau_{2}^{2}} \Gamma_{2,2}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad, \quad \hat{Y}=\int_{\mathcal{F}_{N}} \frac{d^{2} \tau}{\tau_{2}^{2}} \Gamma_{2,2}\left[\begin{array}{l}
0 \\
1
\end{array}\right](T, U) \Phi_{N}(\tau)
$$

Momentum shift $X \rightarrow X+\left(\lambda_{1}+\lambda_{2} U\right) / N$ with $\lambda_{i} \in \mathbb{Z}_{N}$ selects residual $\Gamma^{1}(N)_{T}$ factor

GUT scale Mismatch and the Decompactification problem

Large volume behavior at most logarithmic

$$
\hat{\Delta} \sim-\log \left(\xi f_{N}(U) T_{2}\right)+O\left(e^{-2 \pi T_{2}}\right) \quad, \quad \hat{Y} \sim O\left(T_{2}^{-1}\right)
$$

f_{N} : automorphic function of U w.r.t. residual T-duality group
$O(2,2 ; \mathbb{Z}) \rightarrow \Gamma^{1}(N)_{T} \times G(N)_{U}$
$M_{K K} \sim M_{S U S Y} \sim 1 / \sqrt{T}:$ effectively $\mathcal{N}=4$ above $K K$ scale and eliminates linear growth in gauge thresholds

This solves the Decompactification problem
(Kiritsis, Kounnas, Petropoulos, Rizos 1996)

GUT scale Mismatch and the Decompactification problem

However, the breaking to $\Gamma^{1}(N)_{T}$ also makes $\hat{\Delta}$ unbounded from below.

Independently of new extrema of $\hat{\Delta}$, one can always choose T_{2} such that $M_{U}=M_{G U T}$

$$
T_{2} \simeq \frac{g_{G U T}^{2}}{128 \pi^{3} f_{N}(U)}\left(\frac{M_{P}}{M_{G U T}}\right)^{2}
$$

Assuming $f_{N}(U)=O(1)$ as in typical orbifolds, we find $T_{2} \sim 50$
This also solves the SU/GUT scale mismatch problem! (Angelantonj, I.F., 2019)

$\mathcal{N}=1$ and Chirality

So far, we assumed unbroken $\mathcal{N}=2$ SUSY \rightarrow universality
We now want to apply this to chiral $\mathcal{N}=1$ vacua

$$
\Delta_{a}=d_{a}+\sum_{i}\left(-k_{a} \hat{Y}^{(i)}+\beta_{a, i} \hat{\Delta}^{(i)}\right)
$$

- d_{a} moduli independent $\mathcal{N}=1$ constants
- i labels $\mathcal{N}=2$ subsectors
- $\beta_{a, i}$ beta function coeffs for i subsector (relations to 6 d anomaly) Derendinger, Ferrara, Kounnas, Zwirner 1992

Unification is no longer automatic

$\mathcal{N}=1$ and Chirality

Additional constraints on charged spectrum required
Define

$$
k_{a} \Phi_{a} \equiv b_{a} \log \left(\frac{\xi}{4 \pi^{2}} \frac{M_{s}^{2}}{M_{U}^{2}}\right)+d_{a}+\sum_{i} \beta_{a, i} \hat{\Delta}^{(i)}
$$

and impose

$$
\Phi_{a}=\Phi_{b}=\ldots
$$

for all unifying gauge group factors G_{a}, G_{b}, \ldots

- Case $d_{a}=0, \Phi_{a}=0$ reduces to Ibanez-Luest 1992
- General case applies to both 'mirage' and 'true' unification
- For 'true', conditions trivialise \rightarrow choose T_{i} to match GUT
- For 'mirage' with $3 G_{a} s$, can always satisfy Φ-conditions and match GUT by tuning T_{i} s

$\mathcal{N}=1$ and Chirality

Now consider: heterotic $\mathcal{N}=1$ as T^{6} / Γ limits of $C Y$, with Γ preserving 4 Killing spinors

Thresholds are moduli independent unless Γ contains elements preserving 8 supercharges: " $\mathcal{N}=2$ subsectors"

Again, they decompose

$$
\Delta_{a}=d_{a}+\sum_{i}\left(-k_{a} \hat{Y}^{(i)}+\beta_{a, i} \hat{\Delta}^{(i)}\right)
$$

In general, this runs into Decompactification problem
Need to break $S L(2 ; \mathbb{Z})_{T} \rightarrow \Gamma^{1}(N)_{T}$ for all $\mathcal{N}=2$ subsectors
Challenge: do this without spoiling chirality (non-trivial)

$\mathcal{N}=1$ and Chirality

This is impossible in $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ orbifolds - or even $\left(\mathbb{Z}_{2}\right)^{n}$
Kiritsis, Kounnas, Petropoulos, Rizos 1996 and Faraggi, Kounnas, Partouche 2015
To get $\Gamma^{1}(N)_{T}$ in all $\mathcal{N}=2$ subsectors, we need free action

- twisted sectors are massive
- untwisted sectors are non-chiral (real action of \mathbb{Z}_{2})
so chirality is lost
Exception to this no-go
Balance \hat{Y} against $\hat{\Delta}$ (I.F. and Rizos, 2017)

An explicit example

Incompatibility between $\Gamma^{1}(N)_{T}$ and chirality
Can be lifted by choosing T^{6} / Γ with complex action Γ on untwisted fermions
An example $T^{6} / \mathbb{Z}_{3} \times \mathbb{Z}_{3}^{\prime}$ at fixed $U_{i}=e^{2 \pi i / 6}$

- $\mathbb{Z}_{3}: \quad v=\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}\right)$ - "Z-orbifold" Dixon, Harvey, Vafa, Witten 1985
- standard embedding, $W=0$
- $\mathbb{Z}_{3}^{\prime}: w=\left(\frac{1}{3}+\delta,-\frac{1}{3}+\delta, \delta\right)$
- opposite rotations in first two $T^{2} \mathrm{~s}$
- order 3 shifts $z_{i} \rightarrow z_{i}+\left(1+U_{i}\right) / 3$ on all three 2-tori

Chirality is generated already by T^{6} / \mathbb{Z}_{3}, without $\mathcal{N}=2$ sectors When \mathbb{Z}_{3}^{\prime} acts, its untwisted sector remains chiral

An explicit example

In the full $T^{6} / \mathbb{Z}_{3} \times \mathbb{Z}_{3}^{\prime}$ there are three $\mathcal{N}=2$ subsectors

- residual T-duality $\prod_{i=1}^{3} \Gamma^{1}(3) T_{i}$
- theory has unbroken $\mathcal{N}=1$
- non-abelian $E_{6} \times E_{8}$
- charged chiral matter $12 \times(\mathbf{2 7}, \mathbf{1})$

An explicit example

Gauge thresholds decompose via partial unfolding

$$
\begin{aligned}
& \Delta_{E_{8}}=d_{8}+\sum_{i=1,2,3}\left(\hat{Y}^{(i)}-20 \hat{\Delta}^{(i)}\right) \\
& \Delta_{E_{6}}=d_{6}+\sum_{i=1,2,3}\left(\hat{Y}^{(i)}-8 \hat{\Delta}^{(i)}\right)
\end{aligned}
$$

d_{8}, d_{6} constant contributions from Z-orbifold

$$
\begin{gathered}
Y^{(i)}=\frac{1}{144} \int_{\mathcal{F}_{3}} \frac{d^{2} \tau}{\tau_{2}^{2}} \Gamma_{2,2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left(T_{i}, U_{i}\right)\left[\frac{\hat{E}_{2} E_{4}\left(3 E_{4} X_{3}-2 E_{6}\right)}{2 \eta^{24}}\right. \\
\left.+\frac{E_{4}\left(2 E_{4}^{2}-3 X_{3} E_{6}\right)}{2 \eta^{24}}+1152\right] \\
\hat{\Delta}^{(i)}=\int_{\mathcal{F}_{3}} \frac{d^{2} \tau}{\tau_{2}^{2}} \Gamma_{2,2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left(T_{i}, U_{i}\right)
\end{gathered}
$$

An explicit example

Can be evaluated with some work

$$
\begin{aligned}
\hat{\Delta}^{(i)} & =-\log \left[\frac{\xi}{27} T_{i, 2} U_{i, 2}\left|\frac{\eta^{3}\left(T_{i} / 3\right)}{\eta\left(T_{i}\right)} \frac{\eta^{3}\left(\frac{1+U_{i}}{3}\right)}{\eta\left(U_{i}\right)}\right|^{2}\right] \\
& \sim-\log \left(\frac{\xi}{27} T_{i, 2} f_{3}\left(U_{i}\right)\right)+O\left(e^{-2 \pi T_{i, 2} / 3}\right)
\end{aligned}
$$

As expected, only logarithmic growth in in $\hat{\Delta}$ and

$$
\hat{Y}_{\text {singular }}^{(i)} \sim \log \left[\frac{\left|j\left(T_{i}\right)-744\right|^{1 / 3}}{\left|j_{\infty}\left(T_{i} / 3\right)+3\right|}\left|\frac{j_{\infty}\left(T_{i} / 3\right)+231}{j_{\infty}\left(T_{i} / 3\right)-12}\right|^{9}\right]
$$

linear growth cancels out non-trivially, and no logarithmic growth (\hat{Y} is IR finite)

An explicit example

Behavior at large volume

$$
\hat{\Delta}^{(i)} \sim-\log \left(\frac{\xi}{27} T_{2, i} f_{3}\left(U_{i}\right)\right) \quad, \quad \hat{Y}^{(i)} \sim \frac{c_{3}\left(U_{i}\right)}{T_{i, 2}}
$$

$f_{3}(U), c_{3}(U)$ of order one
This large volume behavior is a generic property of the breaking to $\prod_{i} \Gamma^{1}(N)_{T_{i}}$

Again, appropriate choice of T_{i} can match GUT scale Gravitational R^{2} thresholds: similar analysis \rightarrow logarithmic growth

Conclusions

Unification of gauge couplings at $M_{G U T}$ is an appealing possibility and already much studied in string literature

- However, past treatments required either $W \neq 0$ or faced decompactification problem
- The latter drives theory non-perturbative very close to GUT scale

Conclusions

Key idea: break T-duality group to

$$
\prod_{i} \Gamma^{1}(N)_{T_{i}}
$$

It is possible to precisely match SU and GUT scales

- $\mathcal{N}=1$ and $\mathcal{N}=2$ vacua
- even with $W=0$
- without too many restrictions on charged spectrum
- can preserve chirality
- Decompactification problem is solved simultaneously

