The L_{∞} -algebra of the S-matrix

Alex S. Arvanitakis

Imperial College London

September 18, 2019

Based on

- ► The L_∞-algebra of the S-matrix, ASA, [arXiv:1903.05643]
- ► Effective field theory, L_∞-algebras, and homotopy transfer, ASA, Olaf Hohm, Chris Hull, Victor Lekeu [arXiv:19??.xxxx]

 L_{∞} -algebras arose in closed bosonic string field theory [Zwiebach 1993]: vertices $\leftrightarrow L_{\infty}$ -algebra brackets

 $|\psi_1\rangle \otimes |\psi_2\rangle \otimes \cdots \otimes |\psi_n\rangle \rightarrow |\Phi\rangle \equiv [|\psi_1\rangle, |\psi_2\rangle \dots, |\psi_n\rangle]_{\mathbf{n}}.$

 L_{∞} structure mostly thought to be a string theory curiosity before [Hohm Zwiebach 2017] argued its relevance to **any classical field theory**: determines action, gauge transfs, EOMs.

What we did:

- 1. associate an " L_{∞} -algebra of 1PI correlators" to any nice, anomaly-free **quantum** field theory;
- 2. show the LSZ formula is a *homotopy transfer* from the L_{∞} -algebra of correlators onto space of scattering states;
- 3. exhibit the vacuum moduli space as the " L_{∞} -algebra Maurer-Cartan moduli space" associated to either.

 L_∞ -algebras: generalisations of Lie with more arguments

- Lie: binary bracket $[T_{a_1}, T_{a_2}] = C^b_{a_1a_2}T_b$, Jacobi identity;
- ► L_∞ : **1-ary**, binary,...**n**-ary brackets, Jacobi identities:

$$[T_{a_1}, T_{a_2}, \dots, T_{a_n}]_{\mathbf{n}} \equiv C^b_{a_1 a_2 \dots a_n} T_b; \quad \mathbf{0} = Q^2 T_a, \\ \mathbf{0} = [QT_a, T_b, T_c]_{\mathbf{3}} + [[T_a, T_b]_{\mathbf{2}}, T_c]_{\mathbf{2}} + Q[T_a, T_b, T_c]_{\mathbf{3}} + \text{ perms}, \dots$$

Underlying vector space $\mathcal{V} \ni T_a$ has integer *degree* deg, so e.g. $[T_a, T_b]_2 = (-1)^{(\deg T_a)(\deg T_b)}[T_b, T_a]_2$, and all brackets increase degree by +1 (we find a Lie algebra if all deg = -1).

Classification by the cohomology H(Q) of the 1-ary bracket Q:

- an L_{∞} -algebra is *minimal* if $H(Q) = \mathcal{V} \iff Q = 0$;
- an L_{∞} -algebra is *contractible* if H(Q) = 0;

Theorem (Minimal model theorem)

Every L_{∞} -algebra \mathcal{V} *is isomorphic to a direct sum:* $\mathcal{V} \cong H(Q) \oplus \mathcal{V}_{contr}$. The L_{∞} structure on H(Q) *is unique (up to iso).*

H(Q) is in particular a super Lie algebra.

TREE-LEVEL: [Hohm Zwiebach 2017] REDUX À LA BV

For a nice gauge theory like YM we gauge-fix as

$$S[\phi] \rightarrow S[\phi] + Q_{\text{BRST}}\Psi = S[\phi] + (Q_{\text{BRST}}\phi)\delta\Psi/\delta\phi$$

Introduce sources $\dot{\phi}$ for BRST transfs and antibracket $\{\phi, \dot{\phi}\} = 1$

$$S_{\rm BV} \equiv S[\phi] + (Q_{\rm BRST}\phi)\dot{\phi} \implies \{S_{\rm BV}, S_{\rm BV}\} = Q_{\rm BRST}S_0 + (Q_{\rm BRST}^2\phi)\dot{\phi}$$

If $\phi = \dot{\phi} = 0$ solves EOMs, Taylor expansion of S_{BV} yields L_{∞} -algebra structure consts. E.g. 1-ary bracket *Q*:

$$Qv \equiv (\delta^2 S_{\rm BV} / \delta \phi^2) v + (\delta^2 S_{\rm BV} / \delta \phi \delta \phi^{\star}) v , \qquad v \in \mathcal{V}$$

Q encodes kinetic term plus *linearised* BRST. Binary, ternary,... brackets \leftrightarrow cubic, quartic,... vertices.

$$L_{\infty}$$
 Jacobis $\iff \{S_{BV}, S_{BV}\} = 0 \iff BRST$ invariance!

Tree S-matrix functional from *S*: recursively solve nonlinear ϕ EOMs by $\phi(\varphi) = \varphi + G\delta S_{int}/\delta\phi$, from any linearised solution φ

 $\mathcal{A}_{\rm tree}[\varphi] \equiv S[\phi(\varphi)]$

For $S = S_{\text{BV}}[\phi, \phi]$, $A_{\text{tree}}[\varphi, \phi]$ is the homotopy-transferred L_{∞} -algebra structure on H(Q). [Nützi Reiterer 2018, Macrelli Sämann Wolf, ASA 2019]

Quantum effects? Zinn–Justin 1PI functional **including source** $\hat{\Phi}$ **for BRST**: $\Gamma[\Phi, \hat{\Phi}] \equiv S_{BV}[\Phi, \hat{\Phi}] + \sum_{\ell=1} \hbar^{\ell} \Gamma_{\ell}$;

 $\{\Gamma, \Gamma\} = 0 \iff \text{BRST Ward identities}$ [Zinn–Justin 1974]

 Γ defines " L_{∞} -algebra of 1PI correlators". (Assumptions: lack of tadpoles, BRST decoupling, ...)

Claim [ASA 2019]:

LSZ formula realises homotopy transfer of L_{∞} -structure into $H(Q) \cong$ asymptotic 1-particle states (with renorm. masses)!

Concretely, **n**-ary structure constant is (n + 1)-pt amplitude.

S-matrix L_{∞} -algebra is a minimal model for the 1PI L_{∞} -algebra. So what?

Theorem (originally by Kontsevich?)

If $f: \mathcal{V}_1 \to \mathcal{V}_2$ is a morphism of L_∞ -algebras "preserving the cohomologies $H(Q_{1,2})$ ", then $\mathcal{V}_{1,2}$ have isomorphic minimal models. They also have isomorphic "Maurer-Cartan moduli spaces".

- 1. If $\mathcal{V}_{\Lambda+\lambda}$, \mathcal{V}_{Λ} are 1PI algebras at scales Λ , $\Lambda + \lambda$, integrating out $\Lambda < E < \Lambda + \lambda$ is a morphism $\mathcal{V}_{\Lambda} \hookrightarrow \mathcal{V}_{\Lambda+\lambda}$. For large Λ , obtain S-matrix equivalence. [ASA Hohm Hull Lekeu 2019?]
- 2. 1PI algebra MC moduli space is the vacuum moduli space by [Coleman Weinberg 1973]: vacuum moduli from S-matrix.
- 3. Berends-Giele recursion [1988]: BG current J_n has n on-shell legs and 1 off-shell one; same structure as an L_{∞} -morphism $H(Q) \rightarrow \mathcal{V}_{\text{tree lvl YM}}$. In fact, [Macrelli Sämann Wolf 2019] minimal model recursion = BG recursion.
- 4. Lie algebra structure of *H*(*Q*) similar to "algebras of BPS states" [Harvey Moore 1996]; precise connection yet unclear

Thank you!

The L_{∞} -algebra of the S-matrix (arXiv:1903.05643)