The L_{∞}-algebra of the S-matrix

Alex S. Arvanitakis
Imperial College London

September 18, 2019
Based on

- The L_{∞}-algebra of the S-matrix, ASA, [arXiv:1903.05643]
- Effective field theory, L_{∞}-algebras, and homotopy transfer, ASA, Olaf Hohm, Chris Hull, Victor Lekeu [arXiv:19??.xxxxx]
L_{∞}-algebras arose in closed bosonic string field theory
[Zwiebach 1993]: vertices $\leftrightarrow L_{\infty}$-algebra brackets

$$
\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \otimes \cdots \otimes\left|\psi_{n}\right\rangle \rightarrow|\Phi\rangle \equiv\left[\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle \ldots,\left|\psi_{n}\right\rangle\right]_{\mathbf{n}} .
$$

L_{∞} structure mostly thought to be a string theory curiosity before [Hohm Zwiebach 2017] argued its relevance to any classical field theory: determines action, gauge transfs, EOMs.

What we did:

1. associate an " L_{∞}-algebra of 1PI correlators" to any nice, anomaly-free quantum field theory;
2. show the LSZ formula is a homotopy transfer from the L_{∞}-algebra of correlators onto space of scattering states;
3. exhibit the vacuum moduli space as the " L_{∞}-algebra Maurer-Cartan moduli space" associated to either.
L_{∞}-algebras: generalisations of Lie with more arguments

- Lie: binary bracket $\left[T_{a_{1}}, T_{a_{2}}\right]=C_{a_{1} a_{2}}^{b} T_{b}$, Jacobi identity;
- L_{∞} : 1-ary, binary,...n-ary brackets, Jacobi identities:

$$
\begin{aligned}
& {\left[T_{a_{1}}, T_{a_{2}}, \ldots T_{a_{n}}\right]_{\mathbf{n}} \equiv C_{a_{1} a_{2} \ldots a_{n}}^{b} T_{b} ; \quad 0=Q^{2} T_{a}} \\
& 0=\left[Q T_{a}, T_{b}, T_{c}\right]_{3}+\left[\left[T_{a}, T_{b}\right]_{\mathbf{2}}, T_{c}\right]_{2}+Q\left[T_{a}, T_{b}, T_{c}\right]_{3}+\text { perms }, \ldots
\end{aligned}
$$

Underlying vector space $\mathcal{V} \ni T_{a}$ has integer degree deg, so e.g. $\left[T_{a}, T_{b}\right]_{2}=(-1)^{\left(\operatorname{deg} T_{a}\right)\left(\operatorname{deg} T_{b}\right)}\left[T_{b}, T_{a}\right]_{2}$, and all brackets increase degree by +1 (we find a Lie algebra if all deg $=-1$).

Classification by the cohomology $H(Q)$ of the 1-ary bracket Q :

- an L_{∞}-algebra is minimal if $H(Q)=\mathcal{V} \Longleftrightarrow Q=0$;
- an L_{∞}-algebra is contractible if $H(Q)=0$;

Theorem (Minimal model theorem)

Every L_{∞}-algebra \mathcal{V} is isomorphic to a direct sum: $\mathcal{V} \cong H(Q) \oplus \mathcal{V}_{\text {contr }}$. The L_{∞} structure on $H(Q)$ is unique (up to iso).
$H(Q)$ is in particular a super Lie algebra.

Tree-Level: [Нонm Zwiebach 2017] REDUX À LA BV

For a nice gauge theory like YM we gauge-fix as

$$
S[\phi] \rightarrow S[\phi]+Q_{\mathrm{BRST}} \Psi=S[\phi]+\left(Q_{\mathrm{BRST}} \phi\right) \delta \Psi / \delta \phi
$$

Introduce sources $\stackrel{\stackrel{\rightharpoonup}{\phi}}{ }$ for BRST transfs and antibracket $\{\phi, \stackrel{\star}{\phi}\}=1$
$S_{\mathrm{BV}} \equiv S[\phi]+\left(Q_{\mathrm{BRST}} \phi\right) \stackrel{\star}{\phi} \Longrightarrow\left\{S_{\mathrm{BV}}, S_{\mathrm{BV}}\right\}=Q_{\mathrm{BRST}} S_{0}+\left(Q_{\mathrm{BRST}}^{2} \phi\right) \stackrel{\star}{\phi}$
If $\phi=\stackrel{\star}{\phi}=0$ solves EOMs, Taylor expansion of $S_{\text {BV }}$ yields L_{∞}-algebra structure consts. E.g. 1-ary bracket Q :

$$
Q v \equiv\left(\delta^{2} S_{\mathrm{BV}} / \delta \phi^{2}\right) v+\left(\delta^{2} S_{\mathrm{BV}} / \delta \phi \delta{ }^{*}\right) v, \quad v \in \mathcal{V}
$$

Q encodes kinetic term plus linearised BRST. Binary, ternary,... brackets \leftrightarrow cubic, quartic, ... vertices.
L_{∞} Jacobis $\Longleftrightarrow\left\{S_{\mathrm{BV}}, S_{\mathrm{BV}}\right\}=0 \Longleftrightarrow$ BRST invariance!

Tree S-matrix functional from S: recursively solve nonlinear ϕ EOMs by $\phi(\varphi)=\varphi+G \delta S_{\text {int }} / \delta \phi$, from any linearised solution φ

$$
\mathcal{A}_{\text {tree }}[\varphi] \equiv S[\phi(\varphi)]
$$

For $S=S_{\mathrm{BV}}[\phi, \stackrel{\star}{\phi}], A_{\text {tree }}[\varphi, \stackrel{\star}{\varphi}]$ is the homotopy-transferred L_{∞}-algebra structure on $H(Q)$. [Nützi Reiterer 2018, Macrelli Sämann Wolf, ASA 2019]

Quantum effects? Zinn-Justin 1PI functional including source $\stackrel{\star}{\Phi}$ for BRST: $\Gamma[\Phi, \stackrel{\star}{\Phi}] \equiv S_{\mathrm{BV}}[\Phi, \stackrel{\star}{\Phi}]+\sum_{\ell=1} \hbar^{\ell} \Gamma_{\ell}$;

$$
\{\Gamma, \Gamma\}=0 \Longleftrightarrow \text { BRST Ward identities } \quad \text { [Zinn-Justin 1974] }
$$

Γ defines " L_{∞}-algebra of 1PI correlators".
(Assumptions: lack of tadpoles, BRST decoupling, ...)

Claim [ASA 2019]:

LSZ formula realises homotopy transfer of L_{∞}-structure into $H(Q) \cong$ asymptotic 1-particle states (with renorm. masses)!

Concretely, \mathbf{n}-ary structure constant is $(\mathbf{n}+1)$-pt amplitude.

S-matrix L_{∞}-algebra is a minimal model for the 1PI L_{∞}-algebra. So what?

Theorem (originally by Kontsevich?)

Iff : $\mathcal{V}_{1} \rightarrow \mathcal{V}_{2}$ is a morphism of L_{∞}-algebras "preserving the cohomologies $H\left(Q_{1,2}\right)$ ", then $\mathcal{V}_{1,2}$ have isomorphic minimal models. They also have isomorphic "Maurer-Cartan moduli spaces".

1. If $\mathcal{V}_{\Lambda+\lambda}, \mathcal{V}_{\Lambda}$ are 1PI algebras at scales $\Lambda, \Lambda+\lambda$, integrating out $\Lambda<E<\Lambda+\lambda$ is a morphism $\mathcal{V}_{\Lambda} \hookrightarrow \mathcal{V}_{\Lambda+\lambda}$. For large Λ, obtain S-matrix equivalence. [ASA Hohm Hull Lekeu 2019?]
2. 1PI algebra MC moduli space is the vacuum moduli space by [Coleman Weinberg 1973]: vacuum moduli from S-matrix.
3. Berends-Giele recursion [1988]: BG current $J_{\mathbf{n}}$ has \mathbf{n} on-shell legs and 1 off-shell one; same structure as an L_{∞}-morphism $H(Q) \rightarrow \mathcal{V}_{\text {tree lvl Ym. }}$. In fact, [Macrelli Sämann Wolf 2019] minimal model recursion $=B G$ recursion.
4. Lie algebra structure of $H(Q)$ similar to "algebras of BPS states" [Harvey Moore 1996]; precise connection yet unclear

Thank you!

