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Chiral Magnetic Current

• Under B spin degeneracy of quarks lifted due H ∼ −qs⃗ · B⃗:

(Non)renormalization of anomalous conductivities – p.5

Anomaly induced axial and vector currents are given in the following Ohm form:

JV = �VVB+ �VAB5 + �V ⌦!,

JA = �AVB+ �AAB5 + �A⌦!,

(2)

where B, B5 and ! are the external vector and axial magnetic fields and vorticity respec-

tively2. Non-vanishing values of the conductivities {�VV, �AV, � V⌦, � A⌦} lead to the Chiral

Magnetic E↵ect (CME), the Chiral Separation E↵ect (CSE), the Chiral Vortical E↵ect

(CVE) and the Chiral Vortical Separation E↵ect (CVSE) respectively. In equilibrium these

conductivities can be calculated from first principles via a Kubo type formula[22]
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where the latin indices indicate spatial components, the indices {M,N}={A,V} indicate the

type. The two point functions are evaluated at exactly zero frequency. This condition allow

us to equate �AV and �V A, thus the vector one point function carries all the information

regarding the CME, CSE and CVE conductivities. Alternatively one can obtain the con-

ductivities from the linear response of the one-point functions to the magnetic like sources

[23, 24], which is the route we take in this work. In particular we read o↵ the vector like

conductivities from the linear response of the one-point function hJV i,

h�J
⌫

V
i = �VVB

⌫ + �VAB
⌫

5 + �V⌦!
⌫
. (4)

In the absence of dynamical contribution to the anomaly equation (1), i.e. when a3 = 0,

the anomalous transport coe�cients in (4) are universally determined by the values of a1,

a2 and a4 in a given QFT. For example in QCD coupled to external vector and axial gauge

fields one finds for the chiral magnetic, chiral separation and chiral vortical conductivities

for the covariant current3 :

�V V =
µ5

2⇡2
, �AV = �V A =

µ

2⇡2
, �V ⌦ =

µµ5

2⇡2
, (5)

where µ5 and µ are the axial and electric chemical potentials and we set the electric charge

e = 1. By “universality” we mean a) the same form (with only the coe�cients vary depending

2 Even though there are no fundamental axial magnetic fields in Nature, including them as sources is

instrumental in calculation of the �AV conductivity. Furthermore, they appear in the e↵ective description

of Weyl semimetals.
3 The story of the chiral vortical separation conductivity is more involved. It involves a term quadratic in

temperature, whose coe�cient is only very recently understood to be protected by the global gravitational

anomaly [25–28].
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I. INTRODUCTION AND SUMMARY

In spite of a long history, dating back to [1], study of unusual transport phenomena

induced by chiral anomalies flourished only recently with the hope of discovering such phe-

nomena in real systems such as the quark gluon plasma produced in the heavy ion collisions

at RHIC and LHC [2–4]1. The canonical examples of anomalous transport are the chiral

magnetic and vortical e↵ects (CME and CVE), that refer to generation of a macroscopic

electric current as a result of an axial anomaly in the presence of magnetic field B or vor-

ticity ! respectively. Whether evidence for the CME and CVE can indeed be found in the

heavy ion collisions is still an open issue [6–9] but there exists strong evidence that anoma-

lous transport finds experimental realization in Dirac and Weyl semimetals [10–15]. More

theoretically, such anomalous transport phenomena can also be confirmed by lattice QCD

studies [16, 17].

One should distinguish between the two di↵erent types of anomalies that contribute to

anomalous transport in a chiral gauge theory: i) anomalies caused by external fields, and ii)

anomalies caused by dynamical gauge fields. Both appear in the conservation equation for

an abelian axial current JA as follows,

rµJ
µ

A
=

✏
µ⌫⇢�

4

⇥
a1F

V

µ⌫
F

V

⇢�
+ a2F

A

µ⌫
F

A

⇢�
+ a3Tr (Gµ⌫G⇢�) + a4R

↵

�µ⌫
R

�

↵⇢�

⇤
, (1)

where F
V = dV and F

A = dA are the field strengths of external vector and axial gauge

fields, G is the field strength of the dynamical gauge fields in the theory, e.g. gluons, and

R
↵

�µ⌫
is the Riemann tensor of the background geometry. The anomaly coe�cients a1, a2

and a4 are examples of the first type whereas a3 is of the second type. All are known to be

one loop exact [18].

The purpose of our paper is to explore the contribution of the second, dynamical, type

of anomalies to anomalous transport in strongly coupled chiral gauge theories. We study

the problem using the AdS/CFT correspondence [19–21]. In particular we calculate, using

AdS/CFT, the transport coe�cients that characterize the anomalous transport properties

of the system, including the contribution from the dynamical type anomalies.

1 See the review [5] for a recent account.
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Anomalous conductivities at strong coupling

�V V = a1 µ5, �V A = �AV = a1 µ

�V ⌦ = a1 µµ5, �A⌦ =
a1
2

�
µ2 + µ2

5

�
+ CT 2

<latexit sha1_base64="tR3snqD0KHyYEIgbTt4W6I5muR8="></latexit>

✴ Non-renormalization in the absence of dynamical gluons (QFT, hydro, holography):
Fukushima, Kharzeev, Warringa ’08; Son, Surowka ’09; Haack, Erdmenger, Kaminski, Yarom ’09; 
Amado, Landsteiner, Megias, Pena-Benitez 11; Jensen, Logayanagam, Yarom ’13;  
Tarrio, UG ’15; Grozdanov, Poovuttikul ‘16

✴ Coefficient C fixed most probably by global GR anomaly  : Glorioso, Liu ‘18

✴No universal form known in the presence of dynamical gluons. 

✴Both QFT and lattice indicate large corrections Hou, Liu, Ren ’13; Golkar, Son ’13 

Jensen, Kovtun, Ritz ‘13 
Yamamoto ’11; Braguta et al ‘13

Does holography predict a universal form? 



Dynamical gluons in holography

Chiral current is anomalous ⟹ anomalous dimension Δ ≠ 3 

Holographic theory should include :

Z[A5, ✓] =

Z
DqDAg e

�
R
L[Ag,q]+A5·J5+✓TrG^G

A5 ! A5 + d�5, ✓ ! ✓ � a3�5

r · J5 = a3TrG ^G
<latexit sha1_base64="c95Lip8pTXOge+qjYPksRNum3ro="></latexit>

C0(r,x)⟺ Tr G⋀G,   C0→θ as r→0 
A(r,x) with Stückelberg mass    

Klebanov, Witten, Ouyang ’02; A. Jansen, UG ’14;  Jimenez-Alba, Landsteiner, Melgar ‘14

Bulk action should involve   (m A - d C0)2



Generic non-conformal holographic theory 

16⇡GNS = Sg + Sf + Sa + SCS + SGH + Sct , (9)
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where 16⇡GN = M
3
p
N

2
c
with Mp the five dimension Planck scale and Sg, Sf , Sa, SCS denote

the glue, flavor, axion and the Chern-Simons parts respectively9, while SGH is the Gibbons-

Hawking term and Sct denotes the counterterm action10. Labels {V,A} stand for vector and

axial bulk fields with their corresponding field strenghts F V/A. We denote the metric of the

5D geometry by GMN which is implicit in the action11. The axion enters the action Sa in

the gauge invariant combination

Ã ⌘ A�
dC0

Qf

⌘ A� da . (14)

Thus Sa provides both a kinetic term for the axion and a Stückelberg mass term for the

axial gauge field.

We allow for arbitrary potentials V (�), ZV (�) and ZA(�) for the dilaton � and its coupling

to the vector and axial gauge fields. The potentials are normalized such that

lim
r!1

ZA(�) = lim
r!1

ZV (�) = lim
r!1

Z0(�) = 1, (15)

where r denotes the holographic radial coordinate and the AdS like boundary is located at

r ! 1.

The coe�cient x = Nf

Nc
is the Veneziano parameter defined in (7). The scaling with x of

each term in the action can be deduced from the original string action as discussed in [62].

The coupling parameter Qf is related to the Veneziano parameter via

Qf = mx , (16)

9 We present SCS in terms of A instead of Ã to make the fixing of the coe�cients transparent but it has to

be noted that once SCT is taken into account the whole action will be written in terms of Ã [51]
10 See [51] for the explicit form of the counterterms.
11 We use uppercase latin letters for the 5D bulk, greek letters for the 4D boundary and latin indices for the

3D spatial boundary geometries.
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axial bulk fields with their corresponding field strenghts F V/A. We denote the metric of the

5D geometry by GMN which is implicit in the action11. The axion enters the action Sa in

the gauge invariant combination
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Thus Sa provides both a kinetic term for the axion and a Stückelberg mass term for the
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We allow for arbitrary potentials V (�), ZV (�) and ZA(�) for the dilaton � and its coupling

to the vector and axial gauge fields. The potentials are normalized such that
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ZA(�) = lim
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Z0(�) = 1, (15)

where r denotes the holographic radial coordinate and the AdS like boundary is located at

r ! 1.

The coe�cient x = Nf

Nc
is the Veneziano parameter defined in (7). The scaling with x of

each term in the action can be deduced from the original string action as discussed in [62].

The coupling parameter Qf is related to the Veneziano parameter via

Qf = mx , (16)

9 We present SCS in terms of A instead of Ã to make the fixing of the coe�cients transparent but it has to

be noted that once SCT is taken into account the whole action will be written in terms of Ã [51]
10 See [51] for the explicit form of the counterterms.
11 We use uppercase latin letters for the 5D bulk, greek letters for the 4D boundary and latin indices for the

3D spatial boundary geometries.
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with Stückelberg combination  

where m is a constant with mass dimension that in principle can be derived from the original

string theory model. In this work we consider Qf as a tunable parameter. We develop a

series expansion in Qf , hence assume Qf small. In field theory this corresponds to weak CP

odd coupling of the gluons to the fermion. It is important to note that small Qf does not

necessarily imply small x and we consider x to be a free parameter.

Finally, in order to fix the Chern-Simons coe�cients , � and � in (13) we consider the

variation of the axial gauge field �A = d↵ under which

�S =
1

16⇡G

Z
↵
⇥
F

V
^ F

V + �F
B
^ F

B + �Tr (R ^R)
⇤
. (17)

Comparing (17) with (1) we find

 = �16⇡GNa1, � = �16⇡GNa2, � = �16⇡GNa4. (18)

The equations of motion obtained from the variation of the action (9) read as follows.

For the dilaton and the axion fields we obtain
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Z0 ? Ã . (22)

Finally the Einstein’s equations are

RMN =
1

2
@M�@N�+

Q
2
f
Z0

2
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where ! is the spin connetion and ⌃L

MN
is defined as

⌃L

MN
= �GMP1✏

P1P2P3P4P5F
A

P2P3
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L
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. (24)
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External anomalies fix 

lim
r!1

V (r) ⇠ c1 +
c2

r2
,

lim
r!1

A(r) ⇠ r
�
c3 +

c4

r2��
,

(34)

where ci are constant one-forms. The power � corresponds to the anomalous dimension of

the axial current on the boundary, given in terms of the parameters in the action as

� =

s

1 +
Q

2
f

x
� 1 =

p
1 +m2 x� 1 . (35)

From the powers in the normalizable modes in (34) one reada the scaling dimension of the

dual vector and axial currents as dim[JV ]=3 and dim[JA]=3 + �. To avoid axial current

becomes irrelevant in the IR we need to require � < 1.

The chemical potentials of the boundary field are given in terms of the gauge invariant

expressions below

Z 1

rh

drV
0
t
(r) = µ, lim

R!1

✓
R

rh

◆�� Z
R

rh

drA
0
t
(r) = µ5 , (36)

where prime denotes a radial derivative. Using the regularity of the gauge fields at the

horizon15

Vt(rh) = At(rh) = 0 , (37)

equations (36) imply

lim
r!1

Vt(r) = µ , lim
r!1


r

rh

���

At(r) = µ5 . (38)

B. Fluctuations

To study fluctuations around the equilibrium configuration (27)-(29) we promote the

background fields to slowly variating functions of the coordinates {x
µ
} that remain static

with respect to a timelike Killing vector ⇠µ, namely L⇠� = 0 for any field �. Under these

15 See [5, 51] for a careful discussion on the regularity of the gauge fields at the horizon and di↵erent ways

to introduce the chemical potentials in the bulk dual.
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For  relevance in the IR:   Δ<1
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equations (36) imply

lim
r!1

Vt(r) = µ , lim
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B. Fluctuations

To study fluctuations around the equilibrium configuration (27)-(29) we promote the

background fields to slowly variating functions of the coordinates {x
µ
} that remain static

with respect to a timelike Killing vector ⇠µ, namely L⇠� = 0 for any field �. Under these

15 See [5, 51] for a careful discussion on the regularity of the gauge fields at the horizon and di↵erent ways

to introduce the chemical potentials in the bulk dual.
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Holographic calculation of vector current

Here ✏
MNPQR denotes the 5D Levi-Civita tensor.

As explained in the Introduction our purpose is to calculate the one point function of the

vector current and read o↵ the anomalous conductivities. The holographic prescription for

this one point function is

hJ
⌫

V
i =

1

16⇡GN

lim
r!1

h
�x

p
�GZV F

V,r⌫ + 2✏̃⌫µ⇢�AµF
V

⇢�

i
, (25)

where ✏̃
µ⌫⇢� is the Levi-Civita symbol. This form of the one point function includes holo-

graphic renormalization [51].

III. BACKGROUND ANSATZ

A. Background at equilibrium

We consider a general ansatz for the background obtained by the hydrodynamic setting

we want to describe through the fluid-gravity correspondence [59]. First consider an equi-

librium configuration characterized by a (boundary) background metric hµ⌫ , a four velocity

u
µ normalized as12 u⌫uµh

µ⌫ = �1, a chemical potential µ, an axial chemical potential13 µ5,

an equilibrium temperature T , an external vector and axial sources ṽ and ã. At this point

all fields are taken to be constant.

To represent magnetic interactions the vector and axial sources are taken transverse to

the direction of propagation, i.e. u
µ
ṽµ = 0 and u

µ
ãµ = 0. It is possible to use the four

velocity to decompose any tensor structure into a projection along the propagation and

transverse to it. The transverse projector is

�µ⌫ = hµ⌫ + uµu⌫ , (26)

which satisfies �µ⌫u
µ = 0 and �µ⇢�⇢⌫ = �µ

⌫
. We can then write down the following ansatz

for the metric, the gauge fields and the scalars14

12 Boundary greek indices {µ, ⌫, ...} are raised and lowered by the metric hµ⌫ .
13 As the axial current is non-conserved µ5 should be thought of as a coupling in the Hamiltonian rather

than a true chemical potential[51].
14 We do not use Eddington-Finkelstein coordinates unlike what is usually done in the fluid gravity corre-

spondence. Our calculations will be at exactly zero frequency and regularity at the horizon is enough to

determine the boundary conditions.
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Read off the one-point function of the consistent current

Ansatz for background and fluctuations: 

conditions the Ansatz (27)-(29) will no longer be a solution to the equations of motion but

it can be corrected order by order in a derivative expansion[59],

�(x) =
X

✏
n�(n)(x),

where n denotes the number of derivatives and ✏ is a book keeping parameter to track the

order in the derivative expansion. The ansatz (27)-(29), with fields promoted to functions

of the boundary coordinates xµ correspond to the zeroth order solution �(0). At this order

we require the four velocity u
µ be proportional to the constant Killing vector ⇠

µ. Only

the corrections up to first order in ✏ will be relevant in our calculations below, and O (@2)

contributions will be disregarded.

The full hydrodynamic Ansatz is then given by16

ds
2 =

dr
2

gr2
+ r

2 [�fuµu⌫ +�µ⌫ + Auµã⌫ + A ãµã⌫ ] dx
µ
dx

⌫

+r
2
⇥
�IuµB

I

⌫
+ I ãµB

I

⌫

⇤
dx

µ
dx

⌫ +O
�
@
2
�
, (39)

V = �Vtu+ V ã+ ṽ + �IB
I +O

�
@
2
�
, (40)

A = �Ãtu+Aã+ ↵IB
I +O

�
@
2
�
, (41)

� = �(r, x), a = a(x, r) , (42)

where the index I runs over all the magnetic sources and we fix the thermodynamic sources

to constant values. The metric and gauge field solutions are ordered such that the boundary

coordinates only appear through the sources while all the dependence on the radial coordi-

nate17 is in the functions f, g, Ãt, µt, Vt ,V ,A,A,A ,↵, �,  and �. To ensure regularity of

the Ricci scalar at the horizon the functions �I and A should satisfy [23]

16 A more general Ansatz reads [34, 63]

ds2 =
dr2

gr2
+ r2 [�fuµu⌫ +�µ⌫ + Auµã⌫ + A aµã⌫ ] +⇧µ⌫dx

µdx⌫ + Lµu⌫dx
µdx⌫ ,

A = �Atuµdx
µ +A?

µ dx
µ, V = �Vtuµdx

µ + V ?
µ dxµ,

where ⇧µ, Lµ, V ?
µ and A?

µ are all transverse to the fluid velocity. When these terms are evaluated on an

equilibrium configuration only the terms shown in (39) remain.
17 Due to the mass term the blackening functions are corrected by ã2. This plays no role in the linear

response regime considered in this paper but might become relevant in another holographic context.13

Anomalous conductivities, from dependence of ❬JV❭ on elect./axial B and vorticity: 

�I(rh) = A(rh) = 0 . (43)

Finally, the magnetic field forms BV/A = B
V/A

µ dx
µ and the vorticity form B

! = ! = !µdx
µ

are defined by

B
V,µ = ✏

µ⌫⇢�
u⌫@⇢ṽ� B

A,µ = ✏
µ⌫⇢�

u⌫@⇢ã� !
µ = ✏

µ⌫⇢�
u⌫@⇢u� . (44)

In above we set the axial gauge Vr = 0 and Ar = 018.

IV. SOLUTION TO FLUCTUATIONS AT SMALL �

In this section we solve the background equations of motion that we derived in section

II on the Ansatz of section III B perturbatively in the parameter Qf . In particular we will

be interested in the solution up to O(Q2
f
). Assumption of small Qf corresponds to small

anomalous dimension �, c.f. equation (35), hence, a weak contribution of the mixed gauge-

global axial anomaly in internal Feynman diagrams. Recalling the derivative expansion in

the hydrodynamic picture, that we denoted by ✏ in section III B, any field � formally admits

a double expansion of the form

�(x, r) =
X

m

X

n

Q
(m)
f

�(n,m)
✏
n
. (45)

We only consider contributions up to n = 1 in the hydrodynamic expansion, as this is

su�cient for our purpose to compute the conductivities. Similarly, we keep only terms up

to m = 2 in the Qf expansion. We note that, thi series actually start at m = 2 as the mass

term in (12) first appears at this order. Furthermore, the two expansions are of di↵erent

nature therefore they do not mix.

The external hydrodynamic and thermodynamic sources {u, ã, ṽ, µ, µ5, T} are takenO(1).

The axion a is assumed to be at least of O (1) while the functions {V ,A,A,A ,} are

18 We also moved the functional dependence of Ar is to a.

14

Chiral magnetic effect Chiral separation effect Chiral vortical effect
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Results

We solve perturbatively in x-derivatives and Qf 

A (rh) = 1 +
Q

2
f

2x
lim
r!1


ln

✓
r

rh

◆
� 2L(r)� 2x

Z
r

rh

dr
0
A

0
t
(r0)H(r0)

�
+O

�
Q

4
f

�
. (78)

Note that the limit is finite as the apparent log divergence is exactly cancelled by the

divergent part of L(r).

V. RESULTS

A. General results

To find the linear response of the one point function it will be convenient to rewrite (67)

in the reference frame of the solution at equilibrium:

u = �dt+ htidx
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We are interested in calculating the vector current
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Using (80), (66), (74), and (75) we find the linear response in the one point function of the

vector current as
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We now read o↵ the anomalous conductivities from (81) as using

�CME = �CVE = 0 , (82)
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which is the main result of this analysis. This equation, together with (70) yields a solution

to A and V up to O
�
Q

2
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. We emphasize that both (73) and (70) become exact in the linear

response regime.

F. The A� V subsystem
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where we used the boundary conditions (31) and introduced the following functions
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To evaluate A(rh) we use the boundary condition
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and obtain

21 In general it is possible to write the right hand side of (70) in terms of functions lower order in a Qf than

the ones appearing on the left hand side.
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D. The axial field

The Maxwell equation for the axial gauge field at O (@0) reads
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This equation decouples into the equations for the background
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and a coupled equation for A and A that can, alternatively, be written in terms of V as
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Equations (69) and (70) are the main results that is used below.

E. Einstein equations

At zeroth order in the derivative expansion Einstein equations can be projected into the

radial direction, in a direction along the velocity, and a direction orthogonal to the velocity.

By combining three of the four independent equations, as shown in appendix B, the following

relation is found
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where ⇢̂ is some function. Equation (71) implies that up to O (Qf ), or alternatively in the

linear response regime, there exists a conserved gravitational charge. We note that for the set

of equations (B3)-(B5) to be consistent, both f and g should receive an O
�
ã
2
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2
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�
correction.

This will have no consequence in the analysis of this paper as we are only interested in linear

response. A similar analysis for the projection along u
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It is possible to integrate equation (72) twice by making use of equations (71) and (70)

together with their universal near horizon behavior, all in all, resulting in the following

simpler formula

19

A (rh) = 1 +
Q

2
f

2x
lim
r!1


ln

✓
r

rh

◆
� 2L(r)� 2x

Z
r

rh

dr
0
A

0
t
(r0)H(r0)

�
+O

�
Q

4
f

�
. (78)

Note that the limit is finite as the apparent log divergence is exactly cancelled by the

divergent part of L(r).

V. RESULTS

A. General results

To find the linear response of the one point function it will be convenient to rewrite (67)

in the reference frame of the solution at equilibrium:

u = �dt+ htidx
i +O (@) , ã = ãidx
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We now read o↵ the anomalous conductivities from (81) as using

�CME = �CVE = 0 , (82)

�CSE = 2a1


µA(rh) +

Q
2
f

x

Z 1

rh

drV
0
t

✓
L(r)� xAtH(r)

+x

Z
r

rh

dr
0
A

0
t
(r0)H(r0)

◆�
+O

�
Q

4
f

�
, (83)

21

hence divergenceless, the second one imposes a non-trivial restriction on the external sources

we consider in this paper19. This means,

a = a0 +O
�
@
2
�
. (55)

That is, consistency with positive local entropy production requires axion to be constant up

to second order in derivatives.

C. The vector field

The vector field equation of motion (21) at the zeroth order in the derivative expansion

reads
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which results in translating in an expression for the conserved charge Q, and a relationship

between the background functions A and V
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To study the vector equation at O (@) we need the CS form F
V
^ F

A and the membrane

current J̄⌫ =
p
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V,r⌫ up to this order in the derivative expansion. We find
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The membrane current can schematically be expressed as
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where we defined the functions J̄1I , J̄2I and J̄3I

19 Note that a canonical example of a constant (axial) magnetic field e.g. ãµ = (0,�yB5/2, xB5/2, 0) satisfies

it.
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Example I: AdS-Reissner-Nördstorm

The temperature of this solution is
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For this background the functions D(r), L(r) and H(r) defined in section IVF read
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The functions A and V can be written down in terms of functions (90)-(92) and for the sake

of clarity their relevant contribution to the CSE conductivity can be calculated separately

Z 1

rh

AV
0
t
= µ+

Q
2
f
µ

x

⇢
1

8q


3 ln

✓
3 + q

3� q

◆
+ q ln

✓
9� q

2

4

◆�

+
1

8q3

✓
xµ

2
5

r
2
h

◆
3q +

9� q
2

2
ln

✓
3� q

3 + q

◆��
,

(93)

Z 1

rh

V
0
At = �

Q
2
f
µ

x

✓
µ
2
5x

r
2
h

◆
1

8q3


3q +

9� q
2

2
ln

✓
3� q

3 + q

◆�
. (94)

We obtain the chiral separation conductivity as
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We express (95) in terms of physical parameters
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We observe that the CSE conductivity can be schematically rewritten as

�CSE = �
U

CSE

⇥
1 +� �̂ (µ̃, µ̃5) +O
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Q

3
f

�⇤
, (99)

where �
U

CSE is the universal value of the chiral separation conductivity in the absence of

dynamical gauge fields (6) and we replaced the gluon-axial current coupling Qf by the

anomalous dimension �.

We plot the correction �̂ in figure 1 as a function of µ̃ for fixed µ̃5 and as a function of

µ̃5 for fixed µ̃.

FIG. 1: Left: Correction to the CSE conductivity due to dynamical gauge fields in the

doubly charged N = 4 sYM plasma as a function of µ̃ for: µ̃5 = 0 (blue), µ̃5 = 1
2 (red),

µ̃5 = 2. Right: Same as a function of µ̃5 for: µ̃ = 0 (blue), µ̃ = 10 (red), µ̃ = 20 (green).

We observe in figure 1 that �̂ is symmetric, positive definite, and bounded from both above

and below. It is also a decreasingly monotonic function of µ̃2, i.e. for fixed µ̃5 it converges

to a global minimum at µ̃ ! ±1 and a global maximum at µ̃ = 0. As a function of µ̃5 for
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FIG. 1: Left: Correction to the CSE conductivity due to dynamical gauge fields in the

doubly charged N = 4 sYM plasma as a function of µ̃ for: µ̃5 = 0 (blue), µ̃5 = 1
2 (red),

µ̃5 = 2. Right: Same as a function of µ̃5 for: µ̃ = 0 (blue), µ̃ = 10 (red), µ̃ = 20 (green).
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and below. It is also a decreasingly monotonic function of µ̃2, i.e. for fixed µ̃5 it converges

to a global minimum at µ̃ ! ±1 and a global maximum at µ̃ = 0. As a function of µ̃5 for
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doubly charged N = 4 sYM plasma as a function of µ̃ for: µ̃5 = 0 (blue), µ̃5 = 1
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and below. It is also a decreasingly monotonic function of µ̃2, i.e. for fixed µ̃5 it converges

to a global minimum at µ̃ ! ±1 and a global maximum at µ̃ = 0. As a function of µ̃5 for
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Corrections to universal value

fixed µ̃ it attains a global maximum at some value ±̃µ5c, a global minimum at µ5 = 0 and

a local minimum at µ5 ! 1. All in all we find that �̂ is bounded as

�̂(±1, 0) =
ln(3)

2
 �̂ (µ̃, µ̃5)  14.3765 = �̃(0,±26.271). (100)

As the upper bound is substantial, in order to obey our assumption of a perturbative ex-

pansion in � we see that � may have to be very small. Otherwise the calculation is invalid

for certain values of µ and µ5 that yield large �̂. For larger O(1) values of �, a non-

perturbative solution of the A�V system of equations in section IVF will be needed, which

can be obtained numerically for a given background.

B. Full analytic solution in the probe limit

A non perturbative solution of the A�V system can be obtained in the probe limit, that

is, ignoring the metric fluctuations. This amounts to considering (70) as the only relevant

equation in the system, i.e. setting V = 0 and disregarding Einstein’s equations, namely

ignoring equation (73). We consider the AdS-RN blackhole as the fixed background:
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In this limit the CSE conductivity becomes
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where the position of the horizon can be set to rh = 1. A satisfies
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Regularity at the horizon together with the asymptotic behavior limr!1 A =
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the solution as
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where functions F1 and F2 are defined as
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Example II: arbitrary Δ, probe limit 

Ignore the back reaction of sources on metric in AdS-RN  
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and the functions D(�) and D1(�) read
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The CSE conductivity is then given by

�CSE = 2a1µD1 (�)
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The integrals in (108) can be done analytically and the final result for the conductivity can

be expressed in terms of hypergeometric and Meijer-G functions. Nevertheless it is more

informative to plot it as a function of �. This is shown in figure 2.
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FIG. 2: Plot of the correction to the CSE conductivity as a function of the anomalous

dimension � in a fixed AdS blackhole background.

The result is consistent with the numerical calculation of the CSE conductivity done in

[51]. It should be noted that the solution starts to deviate from the linear approximation

�CSE = 2a1µ [1 +� ln(2)] at around � ⇠ 0.35.
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The CSE conductivity is then given by

�CSE = 2a1µD1 (�)
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The integrals in (108) can be done analytically and the final result for the conductivity can

be expressed in terms of hypergeometric and Meijer-G functions. Nevertheless it is more

informative to plot it as a function of �. This is shown in figure 2.

FIG. 2: Plot of the correction to the CSE conductivity as a function of the anomalous

dimension � in a fixed AdS blackhole background.

The result is consistent with the numerical calculation of the CSE conductivity done in

[51]. It should be noted that the solution starts to deviate from the linear approximation

�CSE = 2a1µ [1 +� ln(2)] at around � ⇠ 0.35.
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Deviates from the linear solution 

Agrees perfectly with numerical result of Landsteiner et al. 



Example III: Chiral separation effect at vanishing μ, μ5 

• Generation of chiral current due to vortices

• Τypically much harder as requires axial perturbation fully

• Analytic solution possible at vanishing chemical potentials 

C. Chiral vortical separation e↵ect in neutral conformal plasma

Calculation of the CVSE conductivity, that is the chiral separation e↵ect due to vortices,

is generically harder as it requires solving the axial perturbation equations fully. There

is a specific example where this can be done analytically at first order in Qf , that is for

µ = µ5 = 0 in the background studied in (101). Considering ṽ = ã = 0, the O
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correction to the CVSE conductivity can be calculated. In this limit the relevant O (@)

equation becomes
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We define a covariant bulk axial current J̃⌫

A
as

J̃
⌫

A
=

p
�GxZAF

A,r⌫ =
p
�GxZAg↵

0
!
!
⌫ (110)

from which we obtain the renormalized axial one point function [51]

16⇡GNhJ
⌫

A
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r!1

h
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(111)

The solution to (109) in a Qf expansion is given by

↵! = ↵1(r) + ↵2(r)Q
2
f
+O

�
Q

3
f

�
, (112)

with
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Using the solution (112) together with (111) we finally obtain the CVSE conductivity as

�CVSE = 8⇡2
a4T

2
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�(�+ 2)
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�
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f
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(114)

We observe that the T 2 contribution to the CVSE conductivity also receives correction from

dynamical gluons in strongly coupled N = 4 sYM. Just like the CSE, this correction is

positive.
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An analytic universal correction to T2 term! 



A general formula

Beyond the small Qf limit: 

A (rh) = 1 +
Q

2
f

2x
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Note that the limit is finite as the apparent log divergence is exactly cancelled by the

divergent part of L(r).

V. RESULTS

A. General results

To find the linear response of the one point function it will be convenient to rewrite (67)

in the reference frame of the solution at equilibrium:

u = �dt+ htidx
i +O (@) , ã = ãidx

i
,+O (@) ṽ = ṽidx

i +O (@) . (79)

We are interested in calculating the vector current

J̃
i = 2✏̃⌫µ⇢�

Z
r

rh

dr [AtV
0
�AV

0
t
] ✏ijk@j ãk. (80)

Using (80), (66), (74), and (75) we find the linear response in the one point function of the

vector current as
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(81)

We now read o↵ the anomalous conductivities from (81) as using

�CME = �CVE = 0 , (82)

�CSE = 2a1
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Holographic calculation of vector current

Here ✏
MNPQR denotes the 5D Levi-Civita tensor.

As explained in the Introduction our purpose is to calculate the one point function of the

vector current and read o↵ the anomalous conductivities. The holographic prescription for

this one point function is

hJ
⌫

V
i =

1

16⇡GN

lim
r!1

h
�x

p
�GZV F

V,r⌫ + 2✏̃⌫µ⇢�AµF
V

⇢�

i
, (25)

where ✏̃
µ⌫⇢� is the Levi-Civita symbol. This form of the one point function includes holo-

graphic renormalization [51].

III. BACKGROUND ANSATZ

A. Background at equilibrium

We consider a general ansatz for the background obtained by the hydrodynamic setting

we want to describe through the fluid-gravity correspondence [59]. First consider an equi-

librium configuration characterized by a (boundary) background metric hµ⌫ , a four velocity

u
µ normalized as12 u⌫uµh

µ⌫ = �1, a chemical potential µ, an axial chemical potential13 µ5,

an equilibrium temperature T , an external vector and axial sources ṽ and ã. At this point

all fields are taken to be constant.

To represent magnetic interactions the vector and axial sources are taken transverse to

the direction of propagation, i.e. u
µ
ṽµ = 0 and u

µ
ãµ = 0. It is possible to use the four

velocity to decompose any tensor structure into a projection along the propagation and

transverse to it. The transverse projector is

�µ⌫ = hµ⌫ + uµu⌫ , (26)

which satisfies �µ⌫u
µ = 0 and �µ⇢�⇢⌫ = �µ

⌫
. We can then write down the following ansatz

for the metric, the gauge fields and the scalars14

12 Boundary greek indices {µ, ⌫, ...} are raised and lowered by the metric hµ⌫ .
13 As the axial current is non-conserved µ5 should be thought of as a coupling in the Hamiltonian rather

than a true chemical potential[51].
14 We do not use Eddington-Finkelstein coordinates unlike what is usually done in the fluid gravity corre-

spondence. Our calculations will be at exactly zero frequency and regularity at the horizon is enough to

determine the boundary conditions.
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Read off the one-point function of the consistent current

Ansatz for background and fluctuations: 

conditions the Ansatz (27)-(29) will no longer be a solution to the equations of motion but

it can be corrected order by order in a derivative expansion[59],

�(x) =
X

✏
n�(n)(x),

where n denotes the number of derivatives and ✏ is a book keeping parameter to track the

order in the derivative expansion. The ansatz (27)-(29), with fields promoted to functions

of the boundary coordinates xµ correspond to the zeroth order solution �(0). At this order

we require the four velocity u
µ be proportional to the constant Killing vector ⇠

µ. Only

the corrections up to first order in ✏ will be relevant in our calculations below, and O (@2)

contributions will be disregarded.

The full hydrodynamic Ansatz is then given by16

ds
2 =

dr
2

gr2
+ r

2 [�fuµu⌫ +�µ⌫ + Auµã⌫ + A ãµã⌫ ] dx
µ
dx
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+r
2
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�IuµB

I

⌫
+ I ãµB

I

⌫

⇤
dx

µ
dx

⌫ +O
�
@
2
�
, (39)

V = �Vtu+ V ã+ ṽ + �IB
I +O

�
@
2
�
, (40)

A = �Ãtu+Aã+ ↵IB
I +O

�
@
2
�
, (41)

� = �(r, x), a = a(x, r) , (42)

where the index I runs over all the magnetic sources and we fix the thermodynamic sources

to constant values. The metric and gauge field solutions are ordered such that the boundary

coordinates only appear through the sources while all the dependence on the radial coordi-

nate17 is in the functions f, g, Ãt, µt, Vt ,V ,A,A,A ,↵, �,  and �. To ensure regularity of

the Ricci scalar at the horizon the functions �I and A should satisfy [23]

16 A more general Ansatz reads [34, 63]

ds2 =
dr2

gr2
+ r2 [�fuµu⌫ +�µ⌫ + Auµã⌫ + A aµã⌫ ] +⇧µ⌫dx

µdx⌫ + Lµu⌫dx
µdx⌫ ,

A = �Atuµdx
µ +A?

µ dx
µ, V = �Vtuµdx

µ + V ?
µ dxµ,

where ⇧µ, Lµ, V ?
µ and A?

µ are all transverse to the fluid velocity. When these terms are evaluated on an

equilibrium configuration only the terms shown in (39) remain.
17 Due to the mass term the blackening functions are corrected by ã2. This plays no role in the linear

response regime considered in this paper but might become relevant in another holographic context.13

Anomalous conductivities, from dependence of ❬JV❭ on elect./axial B and vorticity: 

�I(rh) = A(rh) = 0 . (43)

Finally, the magnetic field forms BV/A = B
V/A

µ dx
µ and the vorticity form B

! = ! = !µdx
µ

are defined by

B
V,µ = ✏

µ⌫⇢�
u⌫@⇢ṽ� B

A,µ = ✏
µ⌫⇢�

u⌫@⇢ã� !
µ = ✏

µ⌫⇢�
u⌫@⇢u� . (44)

In above we set the axial gauge Vr = 0 and Ar = 018.

IV. SOLUTION TO FLUCTUATIONS AT SMALL �

In this section we solve the background equations of motion that we derived in section

II on the Ansatz of section III B perturbatively in the parameter Qf . In particular we will

be interested in the solution up to O(Q2
f
). Assumption of small Qf corresponds to small

anomalous dimension �, c.f. equation (35), hence, a weak contribution of the mixed gauge-

global axial anomaly in internal Feynman diagrams. Recalling the derivative expansion in

the hydrodynamic picture, that we denoted by ✏ in section III B, any field � formally admits

a double expansion of the form

�(x, r) =
X

m

X

n

Q
(m)
f

�(n,m)
✏
n
. (45)

We only consider contributions up to n = 1 in the hydrodynamic expansion, as this is

su�cient for our purpose to compute the conductivities. Similarly, we keep only terms up

to m = 2 in the Qf expansion. We note that, thi series actually start at m = 2 as the mass

term in (12) first appears at this order. Furthermore, the two expansions are of di↵erent

nature therefore they do not mix.

The external hydrodynamic and thermodynamic sources {u, ã, ṽ, µ, µ5, T} are takenO(1).

The axion a is assumed to be at least of O (1) while the functions {V ,A,A,A ,} are

18 We also moved the functional dependence of Ar is to a.
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Chiral magnetic effect Chiral separation effect Chiral vortical effect
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Conclusion and outlook

✴Analytic results valid for large coupling, large N, small Δ

✴Universal bounds and corrections

✴Obtained contribution of dynamical gluons to anomalous conductivities 

✴ Is the T2 term really determined by global gravitational anomaly? 

✴How to implement dynamical gluons contributions in hydro? 


Hints from 
Grozdanov, Hofman, Iqbal’18

✴Chiral vortical separation and chiral magnetic wave?

✴Can we identify distinct observables for the QGP and Dirac/Weyl semimetals?

✴How do our predictions compare with lattice?    


