Anomalous transport from gluons

Umut Gürsoy

Utrecht University

10th Regional Meeting in String Theory, Kolymbari, 17/9/19

Based on: D. Gallegos, UG arXiv:1806.07138, ongoing.

Anomalous transport

$$
\nabla_{\mu} J_{A}^{\mu}=\frac{\epsilon^{\mu \nu \rho \sigma}}{4}\left[a_{1} F_{\mu \nu}^{V} F_{\rho \sigma}^{V}+a_{2} F_{\mu \nu}^{A} F_{\rho \sigma}^{A}+a_{3} \operatorname{Tr}\left(G_{\mu \nu} G_{\rho \sigma}\right)+a_{4} R_{\beta \mu \nu}^{\alpha} R_{\alpha \rho \sigma}^{\beta}\right]
$$

Also neutron stars, magnetars, early universe cosmology, Weyl/Dirac semimetals etc.

Anomalous conductivities at strong coupling

* Non-renormalization in the absence of dynamical gluons (QFT, hydro, holography):

Fukushima, Kharzeev, Warringa 08; Son, Surowka '09; Haack, Erdmenger, Kaminski, Yarom '09;
Amado, Landsteiner, Vegias; Pena-Benitez 11; Jensen, Logayanagam, Yarom '13;
Tarrio, UG '15; Grozdanov, Poovuttikul '16

$$
\begin{array}{ll}
\sigma_{V V}=a_{1} \mu_{5}, & \sigma_{V A}=\sigma_{A V}=a_{1} \mu \\
\sigma_{V \Omega}=a_{1} \mu \mu_{5}, & \sigma_{A \Omega}=\frac{a_{1}}{2}\left(\mu^{2}+\mu_{5}^{2}\right)+C T^{2}
\end{array}
$$

* Coefficient C fixed most probably by global GR anomaly : clorioso, Liu 18
* No universal form known in the presence of dynamical gluons.
* Both QFT and lattice indicate large corrections Hou, Liu, Ren '13; Golkar, Son '13 Jensen, Kovtun, Ritz '13 Yamamoto '11; Braguta et al '13

Does holography predict a universal form?

Dynamical gluons in holography

$$
\begin{aligned}
Z\left[A_{5}, \theta\right]= & \int \mathcal{D} q \mathcal{D} A_{g} e^{-\int L\left[A_{g}, q\right]+A_{5} \cdot J_{5}+\theta \operatorname{Tr} G \wedge G} \\
& A_{5} \rightarrow A_{5}+d \lambda_{5}, \quad \theta \rightarrow \theta-a_{3} \lambda_{5} \\
& \nabla \cdot J_{5}=a_{3} \operatorname{Tr} G \wedge G
\end{aligned}
$$

Chiral current is anomalous \Longrightarrow anomalous dimension $\Delta \neq 3$

Holographic theory should include : $C_{0}(r, x) \Longleftrightarrow \operatorname{Tr} G \wedge G, C_{0} \rightarrow \theta$ as $r \rightarrow 0$
$A(r, x)$ with Stückelberg mass

Bulk action should involve $\left(\mathrm{m} A-d \mathrm{C}_{0}\right)^{2}$

Generic non-conformal holographic theory

$$
\begin{aligned}
16 \pi G_{N} S & =S_{g}+S_{f}+S_{a}+S_{C S}+S_{G H}+S_{c t} \\
S_{g} & =\int_{\mathcal{M}}\left[R \star 1-\frac{1}{2} d \phi \wedge \star d \phi-V(\phi) \star 1\right] \\
S_{f} & =-\frac{x}{2} \int_{\mathcal{M}}\left[Z_{V}(\phi) F^{V} \wedge \star F^{V}+Z_{A}(\phi) F^{A} \wedge \star F^{A}\right] \\
S_{a} & =-\frac{x^{2} m^{2}}{2} \int_{\mathcal{M}} Z_{0}(\phi) \tilde{A} \wedge \star \tilde{A} \\
S_{C S} & =\int_{\mathcal{M}} A \wedge\left[\kappa F^{V} \wedge F^{V}+\gamma F^{A} \wedge F^{A}+\lambda \operatorname{Tr}(R \wedge R)\right]
\end{aligned}
$$

with Stückelberg combination $\quad \tilde{A} \equiv A-\frac{d C_{0}}{Q_{f}} \equiv A-d \mathfrak{a}$.
External anomalies fix $\quad \kappa=-16 \pi G_{N} a_{1}, \quad \gamma=-16 \pi G_{N} a_{2}, \quad \lambda=-16 \pi G_{N} a_{4}$.
Anomalous dimension $\quad \Delta=\sqrt{1+\frac{Q_{f}^{2}}{x}}-1=\sqrt{1+m^{2} x}-1 . \quad \mathbf{Q}_{\mathrm{f}}=\mathrm{mX}, \quad \mathrm{X}=\mathrm{N}_{\mathrm{f}} / \mathbf{N}_{\mathrm{c}}$ $\operatorname{dim}\left[J_{V}\right]=3$ and $\operatorname{dim}\left[J_{A}\right]=3+\Delta$.

For relevance in the IR: $\Delta<1$

Holographic calculation of vector current

Read off the one-point function of the consistent current

$$
\left\langle J_{V}^{\nu}\right\rangle=\frac{1}{16 \pi G_{N}} \lim _{r \rightarrow \infty}\left[-x \sqrt{-G} Z_{V} F^{V, r \nu}+2 \kappa \tilde{\epsilon}^{\nu \mu \rho \sigma} A_{\mu} F_{\rho \sigma}^{V}\right]
$$

Anomalous conductivities, from dependence of (Jv) on elect./axial B and vorticity:

$$
B^{V, \mu}=\epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} \tilde{v}_{\sigma} \quad B^{A, \mu}=\epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} \tilde{a}_{\sigma} \quad \omega^{\mu}=\epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\rho} u_{\sigma}
$$

Chiral magnetic effect Ovv

Chiral separation effect $\sigma_{V A}=\sigma_{A V}$

Chiral vortical effect
Ovя

Ansatz for background and fluctuations:

$$
\begin{aligned}
d s^{2}= & \frac{d r^{2}}{g r^{2}}+r^{2}\left[-f u_{\mu} u_{\nu}+\Delta_{\mu \nu}+\mathfrak{A} u_{\mu} \tilde{a}_{\nu}+\mathscr{A} \tilde{a}_{\mu} \tilde{a}_{\nu}\right] d x^{\mu} d x^{\nu} \\
& +r^{2}\left[\gamma_{I} u_{\mu} B_{\nu}^{I}+\kappa_{I} \tilde{a}_{\mu} B_{\nu}^{I}\right] d x^{\mu} d x^{\nu}+\mathcal{O}\left(\partial^{2}\right) \\
V= & -V_{t} u+\mathcal{V} \tilde{a}+\tilde{v}+\beta_{I} B^{I}+\mathcal{O}\left(\partial^{2}\right) \\
A= & -\tilde{A}_{t} u+\mathcal{A} \tilde{a}+\alpha_{I} B^{I}+\mathcal{O}\left(\partial^{2}\right) \\
\phi= & \phi(r, x), \quad \mathfrak{a}=\mathfrak{a}(x, r)
\end{aligned}
$$

Results

We solve perturbatively in x-derivatives and Q_{f}

$$
\begin{aligned}
\sigma_{\mathrm{CME}}= & \sigma_{\mathrm{CVE}}=0 \\
\sigma_{\mathrm{CSE}}= & 2 a_{1}\left[\mu \mathcal{A}\left(r_{h}\right)+\frac{Q_{f}^{2}}{x} \int_{r_{h}}^{\infty} d r V_{t}^{\prime}\left(L(r)-x A_{t} H(r)\right.\right. \\
& \left.\left.+x \int_{r_{h}}^{r} d r^{\prime} A_{t}^{\prime}\left(r^{\prime}\right) H\left(r^{\prime}\right)\right)\right]+\mathcal{O}\left(Q_{f}^{4}\right),
\end{aligned}
$$

$$
\begin{array}{ll}
H(r)=\int_{\infty}^{r} \frac{d r^{\prime} A_{t}\left(r^{\prime}\right) D\left(r^{\prime}\right)}{r^{\prime 5} f\left(r^{\prime}\right) \sqrt{f\left(r^{\prime}\right) g\left(r^{\prime}\right)}}, \quad Q=\frac{\sqrt{-G} Z_{V} g V_{t}^{\prime}}{f}, & Q_{5}=\frac{\sqrt{-G} Z_{A} g A_{t}^{\prime}}{f}, \\
L(r)=\int_{r_{h}}^{r} \frac{d r^{\prime} D\left(r^{\prime}\right)}{r^{\prime 3} \sqrt{f\left(r^{\prime}\right) g\left(r^{\prime}\right) Z_{A}\left(\phi\left(r^{\prime}\right)\right)},} & \mathcal{A}\left(r_{h}\right)=1+\frac{Q_{f}^{2}}{2 x} \lim _{r \rightarrow \infty}\left[\ln \left(\frac{r}{r_{h}}\right)-2 L(r)-2 x \int_{r_{h}}^{r} d r^{\prime} A_{t}^{\prime}\left(r^{\prime}\right) H\left(r^{\prime}\right)\right]+\mathcal{O}\left(Q_{f}^{4}\right) .
\end{array}
$$

$$
D(r)=\int_{r_{h}}^{r} d r^{\prime} Z_{0}\left(\phi\left(r^{\prime}\right)\right) r^{\prime} \sqrt{\frac{f\left(r^{\prime}\right)}{g\left(r^{\prime}\right)}}
$$

Example I: AdS-Reissner-Nördstorm

Conformal plasma with finite electric and axial charge

$$
\begin{aligned}
\sigma_{\mathrm{CSE}} & =2 a_{1} \mu\left\{1+\frac{Q_{f}^{2}}{2 x}\left(\frac{1}{4 q}\right)\left[3 \ln \left(\frac{3+q}{3-q}\right)+q \ln \left(\frac{9-q^{2}}{4}\right) \quad q=\sqrt{1+\frac{16 x\left(\tilde{\mu}^{2}+\tilde{\mu}_{5}^{2}\right)}{3 \pi^{2}\left(1+\sqrt{1+\frac{2\left(\tilde{\mu}^{2}+\tilde{\mu}_{5}^{2}\right)}{3}}\right)^{2}}} .\right.\right. \\
& \left.\left.+\frac{1}{q^{2}}\left(\frac{x \mu_{5}^{2}}{r_{h}^{2}}\right)\left[6 q+\left(9-q^{2}\right) \ln \left(\frac{3+q}{3-q}\right)\right]\right]+\mathcal{O}\left(Q_{f}^{3}\right)\right\} .
\end{aligned}
$$

Corrections to universal value

$$
\sigma_{\mathrm{CSE}}=\sigma_{\mathrm{CSE}}^{U}\left[1+\Delta \hat{\sigma}\left(\tilde{\mu}, \tilde{\mu}_{5}\right)+\mathcal{O}\left(Q_{f}^{3}\right)\right]
$$

Exhibits bounds

$$
\hat{\sigma}(\pm \infty, 0)=\frac{\ln (3)}{2} \leq \hat{\sigma}\left(\tilde{\mu}, \tilde{\mu}_{5}\right) \leq 14.3765=\tilde{\sigma}(0, \pm 26.271) .
$$

Example II: arbitrary Δ, probe limit

Ignore the back reaction of sources on metric in AdS-RN

Deviates from the linear solution $\sigma_{\mathrm{CSE}}=2 a_{1} \mu[1+\Delta \ln (2)]$ at around $\Delta \sim 0.35$.
Agrees perfectly with numerical result of Landsteiner et al.

Example III: Chiral separation effect at vanishing μ, μ_{5}

- Generation of chiral current due to vortices
- Typically much harder as requires axial perturbation fully
- Analytic solution possible at vanishing chemical potentials

$$
\sigma_{\mathrm{CVSE}}=8 \pi^{2} a_{4} T^{2}\left[1+\frac{\Delta(\Delta+2)}{2}\left(\ln 2-\frac{1}{4}\right)+\mathcal{O}\left(Q_{f}^{3}\right)\right]
$$

An analytic universal correction to T^{2} term!

A general formula

Beyond the small Q_{f} limit:

$$
\tilde{J}^{i}=2 \kappa \tilde{\epsilon}^{\nu \mu \rho \sigma} \int_{r_{h}}^{r} d r\left[A_{t} \mathcal{V}^{\prime}-\mathcal{A} V_{t}^{\prime}\right] \epsilon^{i j k} \partial_{j} \tilde{a}_{k}
$$

$$
\begin{aligned}
& V=-V_{t} u+\mathcal{V} \tilde{a}+\tilde{v}+\beta_{I} B^{I}+\mathcal{O}\left(\partial^{2}\right) \\
& A=-\tilde{A}_{t} u+\mathcal{A} \tilde{a}+\alpha_{I} B^{I}+\mathcal{O}\left(\partial^{2}\right)
\end{aligned}
$$

Conclusion and outlook

* Obtained contribution of dynamical gluons to anomalous conductivities
* Analytic results valid for large coupling, large N, small Δ
* Universal bounds and corrections
*Is the T^{2} term really determined by global gravitational anomaly?
* How to implement dynamical gluons contributions in hydro? Hints from crozonov, Homan, Iqखal|is
* Chiral vortical separation and chiral magnetic wave?
* Can we identify distinct observables for the QGP and Dirac/Weyl semimetals?
*How do our predictions compare with lattice?

