I Oth Regional String Meeting — Kolymbari

Back-reacting massless de Sitter QFTS via Holography

Lukas Witkowski Labo APC — Paris

Motivation

Understanding the interplay of a QFT and a dynamical background space-time highly relevant for a fundamental description of the evolution of our universe.

More tractable when considering backgrounds with maximal symmetry, with de Sitter (dS) space of particular phenomenological importance.

How do quantum fluctuations back-react on dS space?

Motivation

Long-standing set of hints that dS space may be unstable against fluctuations: [Mottola' '85; Tsamis, Woodard '96; 97 ; Polyakov' 12]

- Possible instability due to graviton fluctuations [Tsamis, Woodard '96, ${ }^{977]}$
- and fluctuations of massless scalars.
[Mukhanov, Abramo, Brandenberger '97; Abramo, Woodard '99]
[see also works by Antoniadis, Ford, Iliopoulos, Mazur, Tomaras, ...]

Motivation

Long-standing set of hints that dS space may be unstable against fluctuations: [Mottola' '85; Tsamis, Woodard '96; 97 ; Plyyakov' 12]

- Possible instability due to graviton fluctuations [Tsamis,Woodard '96, '97]
- and fluctuations of massless scalars.
[Mukhanov, Abramo, Brandenberger '97; Abramo, Woodard '99]
[see also works by Antoniadis, Ford, Iliopoulos, Mazur, Tomaras, ...]

Could these potential instabilities (due to massless fields) be artefacts of perturbation theory?

Motivation

Long-standing set of hints that dS space may be unstable against fluctuations: [Mottola '85; Tsamis, Woodard '96, '97; Polyakor''12]

- Possible instability due to graviton fluctuations [Tsamis,Woodard '96,97]
- and fluctuations of massless scalars.
[Mukhanov, Abramo, Brandenberger '97; Abramo, Woodard '99]
[see also works by Antoniadis, Ford, Iliopoulos, Mazur, Tomaras, ...]

Could these potential instabilities (due to massless fields) be artefacts of perturbation theory?

Here: use techniques of gauge-gravity duality to study backreaction of holographic QFTs on dS.

Motivation

To study back-reaction, consider the effective action for the metric $g_{\mu \nu}$ obtained by integrating out a QFT:

$$
S_{\mathrm{eff}}[g]=S_{0}[g]-i \ln Z_{\mathrm{QFT}}[g]
$$

Motivation

To study back-reaction, consider the effective action for the metric $g_{\mu \nu}$ obtained by integrating out a QFT:

$$
\begin{gathered}
S_{\mathrm{eff}[}[g]=S_{0}[g]-i \ln Z_{\mathrm{QFT}}[g] \\
\uparrow
\end{gathered}
$$

$$
S_{0}[g]=\int d^{4} x \sqrt{|g|}\left[\frac{M_{0}^{2}}{2} R-M_{0}^{2} \lambda_{0}+a_{0} R^{2}\right]
$$

Motivation

To study back-reaction, consider the effective action for the metric $g_{\mu \nu}$ obtained by integrating out a QFT:

$$
\begin{gathered}
S_{\mathrm{eff}}[g]=S_{0}[g]-i \ln Z_{\mathrm{QFT}}[g] \\
S_{0}[g]=\int d^{4} x \sqrt{|g|}\left[\frac{M_{0}^{2}}{2} R-M_{0}^{2} \lambda_{0}+a_{0} R^{2}\right] \\
Z_{\mathrm{QFT}}[g]=\int d[\Phi] e^{i S_{\mathrm{QFT}}[g, \Phi]}
\end{gathered}
$$

Motivation

$$
S_{\mathrm{eff}}[g]=S_{0}[g]-i \ln Z_{\mathrm{QFT}}[g]
$$

- Ilst step:

study back-reaction on constant-curvature backgrounds

Motivation

$$
S_{\mathrm{eff}}[g]=S_{0}[g]-i \ln Z_{\mathrm{QFT}}[g]
$$

- Ist step:
study back-reaction on constant-curvature backgrounds
- Here: focus on backgrounds with

$$
\nabla_{\rho} R_{\mu \nu}=0 \quad \Leftrightarrow \quad R_{\mu \nu}=\kappa g_{\mu \nu}, \quad R=4 \kappa
$$

This includes the phenomenologically interesting cases of max. symmetric space-times (Minkowski, AdS, dS).

Motivation

$$
\begin{aligned}
S_{\mathrm{eff}}[g] & =S_{0}[g]-i \ln Z_{\mathrm{QFT}}[g] \\
& =\int d^{4} x \sqrt{|g|} f(R)
\end{aligned}
$$

- Ilst step:
study back-reaction on constant-curvature backgrounds
- Here: focus on backgrounds with

$$
\nabla_{\rho} R_{\mu \nu}=0 \quad \Leftrightarrow \quad R_{\mu \nu}=\kappa g_{\mu \nu}, \quad R=4 \kappa
$$

This includes the phenomenologically interesting cases of max. symmetric space-times (Minkowski, AdS, dS).

Motivation

$$
\begin{aligned}
S_{\mathrm{eff}}[g] & =S_{0}[g]-i \ln Z_{\mathrm{QFT}}[g] \\
& =\int d^{4} x \sqrt{|g|} f(R)
\end{aligned}
$$

So far, this analysis has been performed for special cases:

- massive free scalar on de Sitter [see eg, Mazr: Mottola 1986]
- ϕ^{4}-theory on de Sitter via non-perturbative RG techniques.
[Moreau, Serreau 2018]

Motivation

$$
\begin{aligned}
S_{\mathrm{eff}}[g] & =S_{0}[g]-i \ln Z_{\mathrm{QFT}}[g] \\
& =\int d^{4} x \sqrt{|g|} f(R)
\end{aligned}
$$

So far, this analysis has been performed for special cases:

- massive free scalar on de Sitter [see eg. Mazr: Motolol 1986]
- ϕ^{4}-theory on de Sitter via non-perturbative RG techniques.
[Moreau, Serreau 2018]
Here, we will employ holography to integrate out a QFT on an Einstein manifold and calculate $\ln Z_{\mathrm{QFT}}[g]$.

Outline

II.) Setup: - What types of QFTs are back-reacted?

- Integrating out via holography
- UV divergences \& renormalisation
2.) Results for constant-curvature solutions:
- Case I: The physical system is UV-complete
- Case II: QFT with a UV cutoff.
3.) Conclusions and open questions

Setup

Setup: QFTS

We will consider large- N_{c} theories at infinite coupling.

Setup: QFTS

We will consider large- N_{c} theories at infinite coupling. In particular:

I.) CFTs

2.) RG flow QFTs:

RG flows driven by a relevant operator \mathcal{O} of dimension Δ^{UV} from a UV fixed point to a IR fixed point.

Setup: QFTS

We will consider large- N_{c} theories at infinite coupling. In particular:
I.) CFTs: anomaly coefficient \tilde{a}.
2.) RG flow QFTs:

RG flows driven by a relevant operator \mathcal{O} of dimension Δ^{UV} from a UV fixed point to a IR fixed point.

Setup: Integrating out via holography

Postulate that the 4d QFT possesses a holographic dual given by a 5d gravitational theory.

Duality: $\quad Z_{\mathrm{QFT}, 4 d}[g]=Z_{\text {grav, } 5 d}[g]$
with $\quad Z_{\mathrm{QFT}, 4 d}[g]=\int d[\Phi] e^{i S_{\mathrm{QerI}}[g, \Phi]}$

$$
\text { and } \quad Z_{\mathrm{grav}, 5 d}[g]=\int_{G \mid \partial \mathcal{M}=g} d[G] e^{i S_{\mathrm{grav}}[G]}
$$

Setup: Integrating out via holography

We take the QFTs to be at large N_{c} and at infinite coupling.
The gravity dual is dominated by classical gravity, i.e.

$$
\begin{gathered}
Z_{\mathrm{grav}, 5 d}[g]=\int_{G \mid \partial \mathcal{M}=g} d[G] e^{i S_{\mathrm{grav}}[G]}=e^{i S_{\mathrm{grav}}^{\mathrm{onshel}}[g]} \\
\quad-i \ln Z_{\mathrm{QFT}}[g]=S_{\mathrm{grav}}^{\mathrm{on-shell}}[g]
\end{gathered}
$$

Setup: Integrating out via holography

We take the QFTs to be at large N_{c} and at infinite coupling.
The gravity dual is dominated by classical gravity, i.e.

$$
\begin{gathered}
Z_{\mathrm{grav}, 5 d}[g]=\int_{G \mid \partial \mathcal{M}=g} d[G] e^{i S_{\mathrm{grav}}[G]}=e^{i S_{\mathrm{grav}}^{\mathrm{on-shel} \mathrm{I}}[g]} \\
-i \ln Z_{\mathrm{QFT}}[g]=S_{\mathrm{grav}}^{\mathrm{on-shell}}[g]
\end{gathered}
$$

The limit $N_{c} \rightarrow \infty$ implies $\tilde{a}, \tilde{a}_{\mathrm{UV}}, \tilde{a}_{\mathrm{IR}} \rightarrow \infty$ but $\tilde{a}_{\mathrm{UV}} / \tilde{a}_{\mathrm{IR}}$ can be chosen finite.

Setup: the holographic dual

$$
S_{\mathrm{grav}, 5 d}=M^{3} \int d u d^{4} x \sqrt{|G|}\left(R^{(G)}-(\partial \varphi)^{2}-V(\varphi)\right)+S_{\mathrm{CHY}} .
$$

Setup: the holographic dual

$$
S_{\text {grav, }, 5 d}=M^{3} \int d u d^{4} x \sqrt{|G|}\left(R^{(G)}-(\partial \varphi)^{2}-V(\varphi)\right)+S_{\text {GHY }} .
$$

Ansatz:

$$
d s^{2}=d u^{2}+e^{A(u)} g_{\mu \nu} d x^{\mu} d x^{\nu}, \quad \varphi\left(u, x^{\mu}\right)=\varphi(u)
$$

Einstein manifold

Setup: the holographic dual

$$
S_{\mathrm{grav}, 5 d}=M^{3} \int d u d^{4} x \sqrt{|G|}\left(R^{(G)}-(\partial \varphi)^{2}-V(\varphi)\right)+S_{\mathrm{GHY}}
$$

Ansatz:

$$
d s^{2}=d u^{2}+e^{A(u)} g_{\mu \nu} d x^{\mu} d x^{\nu}, \quad \varphi\left(u, x^{\mu}\right)=\varphi(u)
$$

Setup: the holographic dual

$$
S_{\mathrm{grav}, 5 d}=M^{3} \int d u d^{4} x \sqrt{|G|}\left(R^{(G)}-(\partial \varphi)^{2}-V(\varphi)\right)+S_{\mathrm{GHY}} .
$$

Ansatz:

$$
d s^{2}=d u^{2}+e^{A(u)} g_{\mu \nu} d x^{\mu} d x^{\nu}, \quad \varphi\left(u, x^{\mu}\right)=\varphi(u)
$$

Dilaton potential:

Setup: Summary

We will consider large- N_{c} theories at infinite coupling of the following type and integrate out via holography:
I.) CFTs
2.) RG flow QFTs:

RG flows driven by a relevant operator \mathcal{O} of dimension Δ^{UV} from a UV fixed point to a \mathbb{R} fixed point.

The QFTs are defined on Einstein manifolds.

$$
S_{\mathrm{eff}}[g]=S_{0}[g]+S_{\text {grav }}^{\text {on-shell }}[g]
$$

Setup: UV divergences

Integrating out a QFT typically leads to UV divergences.
Regulate UV divergences via a UV cutoff.

Setup: UV divergences

Integrating out a QFT typically leads to UV divergences.
Regulate UV divergences via a UV cutoff.

$$
\begin{aligned}
S_{\text {grav }}^{\text {on-shell }}[g] & =\int d^{4} x \sqrt{|g|} f_{\mathrm{QFT}}(R) \\
& \sim \int\left(a_{1} \Lambda^{4}+a_{2} \Lambda^{2} R+a_{3} R^{2} \log R \Lambda^{-2}\right)
\end{aligned}
$$

Setup: UV divergences

Integrating out a QFT typically leads to UV divergences.
Λ Regulate UV divergences via a UV cutoff.

$$
\begin{aligned}
S_{\text {grav }}^{\text {on-shell }}[g] & =\int d^{4} x \sqrt{|g|} f_{\mathrm{QPT}}(R) \\
& \sim \int\left(a_{1} \Lambda^{4}+a_{2} \Lambda^{2} R+a_{3} R^{2} \log R \Lambda^{-2}\right)
\end{aligned}
$$

- The term $\sim \Lambda^{4}$ renormalizes the cosmological constant
- The term $\sim \Lambda^{2} R$ renormalizes the Planck scale.
- The term $\sim R^{2} \log R \Lambda^{-2}$ renormalizes the R^{2}-term.

Setup: Case I

The system of bare grav. theory and QFT is "UV-complete".
$\Lambda \rightarrow \infty \quad$ Take cutoff to infinity

$$
\begin{aligned}
& S_{0}[g]=\int d^{4} x \sqrt{|g|}\left[\frac{M_{0}^{2}}{2} R-M_{0}^{2} \lambda_{0}+a_{0} R^{2}\right] \\
& S_{\text {grav }}^{\text {on-shel }}[g]=\int d^{4} x \sqrt{|g|} f_{\text {QFT }}(R)
\end{aligned}
$$

Absorb the divergent terms in renormalized quantities:

$$
\begin{aligned}
M_{\mathrm{ren}}^{2} \lambda_{\mathrm{ren}} & =M_{0}^{2} \lambda_{0}+\left.f_{\mathrm{QFT}}\right|_{R=0, \Lambda \rightarrow \infty} \\
\frac{M_{\mathrm{ren}}^{2}}{2} & =\frac{M_{0}^{2}}{2}+\left.\frac{d}{d R} f_{\mathrm{QFT}}\right|_{R=0, \Lambda \rightarrow \infty}
\end{aligned}
$$

Setup: Case I

The system of bare grav. theory and QFT is "UV-complete".
$\Lambda \rightarrow \infty \quad$ Take cutoff to infinity

$$
\begin{aligned}
& S_{0}[g]=\int d^{4} x \sqrt{|g|}\left[\frac{M_{0}^{2}}{2} R-M_{0}^{2} \lambda_{0}+a_{0} R^{2}\right] \\
& S_{\text {grav }}^{\text {on-sell }}[g]=\int d^{4} x \sqrt{|g|} f_{\mathrm{QFT}}(R)
\end{aligned}
$$

Absorb the divergent terms in renormalized quantities:

$$
S_{\mathrm{eff}}[g]=\int d^{4} x \sqrt{|g|} f\left(R \mid M_{\mathrm{ren}}, \lambda_{\mathrm{ren}}, m\right)
$$

Setup: Case 2

In Case $\mathbf{2}$ it is assumed that S_{0} is an effective theory at some scale Λ.

$$
S_{0}[g]=\int d^{4} x \sqrt{|g|}\left[\frac{M_{0}^{2}}{2} R-M_{0}^{2} \lambda_{0}+a_{0} R^{2}\right]
$$

Setup: Case 2

In Case $\mathbf{2}$ it is assumed that S_{0} is an effective theory at some scale Λ.

$$
S_{0}[g]=\int d^{4} x \sqrt{|g|}\left[\frac{M_{0}^{2}}{2} R-M_{0}^{2} \lambda_{0}+a_{0} R^{2}\right]
$$

Λ
Then couple a QFT with UV cutoff Λ to the background described by $g_{\mu \nu}$.

$$
S_{\mathrm{grav}}^{\text {on-shell }}[g]=\int d^{4} x \sqrt{|g|} f_{\mathrm{QFT}}(R \mid \Lambda, m)
$$

Setup: Case 2

In Case $\mathbf{2}$ it is assumed that S_{0} is an effective theory at some scale Λ.

$$
S_{0}[g]=\int d^{4} x \sqrt{|g|}\left[\frac{M_{0}^{2}}{2} R-M_{0}^{2} \lambda_{0}+a_{0} R^{2}\right]
$$

Λ
Then couple a QFT with UV cutoff Λ to the background described by $g_{\mu \nu}$.

$$
S_{\text {grav }}^{\text {on-shell }}[g]=\int d^{4} x \sqrt{|g|} f_{\mathrm{QPT}}(R \mid \Lambda, m)
$$

The combined system is described by:

$$
S_{\mathrm{eff}}[g]=\int d^{4} x \sqrt{|g|} f\left(R \mid M_{0}, \lambda_{0}, \Lambda, m\right)
$$

Results

Results: UV complete case (I)

The system of bare grav. theory and QFT is "UV-complete".
$\Lambda \rightarrow \infty \quad$ Absorb divergent terms in renormalized quantities.

Equation for constant-curvature solutions:

$$
\begin{gathered}
M_{\text {ren }}^{2} R-4 M_{\text {ren }}^{2} \lambda_{\text {ren }}+\left\langle T_{\mu}^{\text {ren }, \mu}\right\rangle=0 \\
\left\langle T_{\mu}^{\text {ren }, \mu}\right\rangle=-\frac{2}{\sqrt{|g|}} g^{\mu \nu} \frac{\delta}{\delta g^{\mu \nu}} \ln S_{\text {grav }}^{\text {on-sell,ren }}
\end{gathered}
$$

Results: UV complete case (I)

Equation for constant-curvature solutions:

$$
\begin{aligned}
& M_{\text {ren }}^{2} R-4 M_{\text {ren }}^{2} \lambda_{\text {ren }}+\left\langle T_{\mu}^{\text {ren }, \mu}\right\rangle=0 \\
& \left\langle T_{\mu}^{\text {ren }, \mu}\right\rangle=-\frac{2}{\sqrt{|g|}} g^{\mu \nu} \frac{\delta}{\delta g^{\mu \nu}} \ln S_{\text {grav }}^{\text {onell,ren }}
\end{aligned}
$$

I.) CFT:

$$
\left\langle T_{\mu}^{\mathrm{ren}, \mu}\right\rangle=-\frac{\tilde{a}}{48} R^{2}
$$

2.) RG flow QFT: $\left\langle T_{\mu}^{\mathrm{ren}, \mu}\right\rangle=-\frac{\tilde{a}_{\mathrm{UV}}}{48} R^{2}+\left(4-\Delta^{\mathrm{UV}}\right) m^{4-\Delta^{\mathrm{tV}}}\langle\mathcal{O}\rangle(R)$

Results: UV complete case (I)

I.) CFT:

$$
R=\frac{24}{\tilde{a}} M_{\mathrm{ren}}^{2}\left(1 \pm \sqrt{1-\frac{\tilde{a}}{3} \frac{\lambda_{\mathrm{ren}}}{M_{\mathrm{ren}}^{2}}}\right)
$$

Results: UV complete case (I)

I.) CFT:

$$
R=\frac{24}{\tilde{a}} M_{\mathrm{ren}}^{2}\left(1 \pm \sqrt{1-\frac{\tilde{a}}{3} \frac{\lambda_{\mathrm{ren}}}{M_{\mathrm{ren}}^{2}}}\right)
$$

Results: UV complete case (I)

I.) CFT:

$$
R=\frac{24}{\tilde{a}} M_{\mathrm{ren}}^{2}\left(1 \pm \sqrt{1-\frac{\tilde{a}}{3} \frac{\lambda_{\mathrm{ren}}}{M_{\mathrm{ren}}^{2}}}\right)
$$

Results: UV complete case (I)

I.) CFT:

$$
R=\frac{24}{\tilde{a}} M_{\mathrm{ren}}^{2}\left(1 \pm \sqrt{1-\frac{\tilde{a}}{3} \frac{\lambda_{\mathrm{ren}}}{M_{\mathrm{ren}}^{2}}}\right)
$$

Results: UV complete case (I)

I.) CFT :

$$
R=\frac{24}{\tilde{a}} M_{\mathrm{ren}}^{2}\left(1 \pm \sqrt{1-\frac{\tilde{a}}{3} \frac{\lambda_{\mathrm{ren}}}{M_{\mathrm{ren}}^{2}}}\right)
$$

$\frac{\tilde{a}_{\text {UV }} \lambda_{\text {ren }}}{M_{\text {ren }}^{2}}$

Results: UV complete case (I)

2.) RG flow: $\quad M_{\text {ren }}^{2} R-4 M_{\text {ren }}^{2} \lambda_{\text {ren }}-\frac{\tilde{a}_{\mathrm{UV}}}{48} R^{2}+\left(4-\Delta^{\mathrm{UV}}\right) m^{4-\Delta^{\mathrm{Vv}}}\langle\mathcal{O}\rangle=0$

Results: UV complete case (I)

2.) RG flow: $\quad M_{\text {ren }}^{2} R-4 M_{\text {ren }}^{2} \lambda_{\text {ren }}-\frac{\tilde{a}_{\mathrm{UV}}}{48} R^{2}+\left(4-\Delta^{\mathrm{UV}}\right) m^{4-\Delta^{\mathrm{Vv}}}\langle\mathcal{O}\rangle=0$

Results: cutoff QFT (2)

In Case $\mathbf{2}$ it is assumed that S_{0} is an effective theory at some scale Λ.

$$
S_{0}[g]=\int d^{4} x \sqrt{|g|}\left[\frac{M_{0}^{2}}{2} R-M_{0}^{2} \lambda_{0}+a_{0} R^{2}\right]
$$

Then couple a QFT with UV cutoff Λ to the background described by $g_{\mu \nu}$.

$$
S_{\text {grav }}^{\text {on-shell }}[g]=\int d^{4} x \sqrt{|g|} f_{\text {QFT }}(R \mid \Lambda, m)
$$

Results: cutoff QFT (2)

In Case $\mathbf{2}$ it is assumed that S_{0} is an effective theory at some scale Λ.

$$
S_{0}[g]=\int d^{4} x \sqrt{|g|}\left[\frac{M_{0}^{2}}{2} R-M_{0}^{2} \lambda_{0}+a_{0} R^{2}\right]
$$

Then couple a QFT with UV cutoff Λ to the background described by $g_{\mu \nu}$.

$$
\begin{aligned}
S_{\text {grav }}^{\text {on-shell }}[g]= & \int d^{4} x \sqrt{|g|} f_{\mathrm{QFT}}(R \mid \Lambda, m) \\
\text { For a CFT: } \quad f_{\text {CFT }}=\tilde{a}[& 6 \Lambda^{4} \sqrt{1+\frac{R}{12 \Lambda^{2}}}+\frac{R \Lambda^{2}}{4} \sqrt{1+\frac{R}{12 \Lambda^{2}}} \\
& \left.+\frac{R^{2}}{48} \log \left(\sqrt{1+\frac{12 \Lambda^{2}}{R}}-\sqrt{\frac{12 \Lambda^{2}}{R}}\right)\right]
\end{aligned}
$$

Results: cutoff QFT (2)

Eq. for const.-curv. sol.: $\quad M_{0}^{2} R-4 M_{0}^{2} \lambda_{0}+24 \tilde{a} \Lambda^{4} \sqrt{1+\frac{R}{12 \Lambda^{2}}}=0$
Solution: $\quad R=4 \lambda_{0}-24 \tilde{a}^{2} \frac{\Lambda^{6}}{M_{0}^{4}}\left(\sqrt{1+\frac{M_{0}^{4}}{\tilde{a}^{2} \Lambda^{4}}+\frac{M_{0}^{4} \lambda_{0}}{3 \tilde{a}^{2} \Lambda^{6}}}-1\right)$

Results: cutoff QFT (2)

Eq. for const.-curv. sol.: $\quad M_{0}^{2} R-4 M_{0}^{2} \lambda_{0}+24 \tilde{a} \Lambda^{4} \sqrt{1+\frac{R}{12 \Lambda^{2}}}=0$
Solution: $\quad R=4 \lambda_{0}-24 \tilde{a}^{2} \frac{\Lambda^{6}}{M_{0}^{4}}\left(\sqrt{1+\frac{M_{0}^{4}}{\tilde{a}^{2} \Lambda^{4}}+\frac{M_{0}^{4} \lambda_{0}}{3 \tilde{a}^{2} \Lambda^{6}}}-1\right)$

$$
\frac{\tilde{a} R}{M_{0}^{2}}
$$

Results: cutoff QFT (2)

Eq. for const.-curv. sol.: $M_{0}^{2} R-4 M_{0}^{2} \lambda_{0}+24 \tilde{a} \Lambda^{4} \sqrt{1+\frac{R}{12 \Lambda^{2}}}=0$
Solution: $\quad R=4 \lambda_{0}-24 \tilde{a}^{2} \frac{\Lambda^{6}}{M_{0}^{4}}\left(\sqrt{1+\frac{M_{0}^{4}}{\tilde{a}^{2} \Lambda^{4}}+\frac{M_{0}^{4} \lambda_{0}}{3 \tilde{a}^{2} \Lambda^{6}}}-1\right)$

- For $\Lambda=0$ have $R(\Lambda=0)=4 \lambda_{0}$.
- Increasing Λ always decreases R.
- For sufficiently large Λ the curvature R becomes negative.
- The (thermal) entropy of dS space scales as $S_{\mathrm{th}} \sim R^{-1}$. Increasing Λ thus increases $S_{\text {th }}$ of $\mathrm{d} S$ which may be naively expected. Can this entropic argument be made precise?

Summary

0.) Advantages from holography:

- Integrating out a QFT via its gravity-dual is highly tractable.
- Get explicit results for large- N theories at infinite coupling.
I.) UV complete setting (case I)
- CFTs: only have solution if $\lambda_{\text {ren }} \leq \frac{3}{\tilde{a}} M_{\text {ren }}^{2}$.
- RG flow QFTs: back-reaction effect interpolates between that of the UV CFT and the IR CFT.

2.) Cutoff QFT (case 2)

- Increasing the UV cutoff always reduces the curvature R.

Open Questions

- Is it possible to develop a precise and quantitative entropic understanding of the back-reaction effect?
- Are the solutions found stable under small perturbations. To what extent can this question be addressed in the simplified setup considered here with $\nabla_{\rho} R_{\mu \nu}=0$?

Open Questions

- Is it possible to develop a precise and quantitative entropic understanding of the back-reaction effect?
- Are the solutions found stable under small perturbations. To what extent can this question be addressed in the simplified setup considered here with $\nabla_{\rho} R_{\mu \nu}=0$?

Many thanks for your attention!

