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Back-reacting  
massless de Sitter QFTS 
via Holography



Understanding the interplay of a QFT and a dynamical  
background space-time highly relevant for a fundamental
description of the evolution of our universe.

How do quantum fluctuations back-react on dS space? 

Motivation

More tractable when considering backgrounds with maximal  
symmetry, with de Sitter (dS) space of particular 
phenomenological importance.



Long-standing set of hints that dS space may be unstable  
against fluctuations:

Possible instability due to graviton fluctuations
and fluctuations of massless scalars.

[ see also works by Antoniadis, Ford, Iliopoulos, Mazur,  Tomaras, … ]
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Long-standing set of hints that dS space may be unstable  
against fluctuations:

Possible instability due to graviton fluctuations
and fluctuations of massless scalars.

[ see also works by Antoniadis, Ford, Iliopoulos, Mazur,  Tomaras, … ]

Motivation

Here:  use techniques of gauge-gravity duality to study back-
reaction of holographic QFTs on dS. 

[ Tsamis, Woodard ’96, ’97 ]

[ Mottola ’85;  Tsamis, Woodard ’96, ’97;  Polyakov ’12 ]

[ Mukhanov, Abramo, Brandenberger ’97;  Abramo, Woodard ’99 ]
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artefacts of perturbation theory?  
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Motivation

So far, this analysis has been performed for special cases:

massive free scalar on de Sitter [see e.g. Mazur, Mottola 1986]

   -theory on de Sitter via non-perturbative RG techniques.�4

[Moreau, Serreau 2018]
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Motivation

So far, this analysis has been performed for special cases:

massive free scalar on de Sitter [see e.g. Mazur, Mottola 1986]

   -theory on de Sitter via non-perturbative RG techniques.�4

[Moreau, Serreau 2018]

Here, we will employ holography to integrate out a QFT on an 
Einstein manifold and calculate                .lnZQFT[g]

Se↵[g] = S0[g]� i lnZQFT[g]



Outline
1.) Setup:  What types of QFTs are back-reacted?

Integrating out via holography
UV divergences & renormalisation

2.) Results for constant-curvature solutions:
Case 1:  The physical system is UV-complete 
Case II:  QFT with a UV cutoff.

3.) Conclusions and open questions  
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2.) RG flow QFTs:
RG flows driven by a relevant operator     of dimension    
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1.) CFTs:

NcWe will consider large-     theories at infinite coupling. 
In particular :



Postulate that the 4d QFT possesses a holographic dual 
given by a 5d gravitational theory.

Zqft,4d[g] = Zgrav,5d[g]Duality:

with

Zgrav,5d[g] =

Z

G|@M=g
d[G] eiSgrav[G]and

Zqft,4d[g] =

Z
d[�] eiSqft[g,�] = eiWqft[g]

Setup: Integrating out via holography
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Setup: Integrating out via holography

We take the QFTs to be at large      and at infinite coupling.Nc

The limit                implies                        but              can be
chosen finite.

Nc ! 1 ã, ãuv, ãir ! 1 ãuv/ãir

lnZQFT[g] = Son-shell
grav [g]�i

The gravity dual is dominated by classical gravity, i.e.
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du d4x
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Ansatz:
ds2 = du2 + eA(u)gµ⌫dx

µdx⌫ , '(u, xµ) = '(u)

Setup: the holographic dual

Dilaton potential:

V (')

UV CFT

IR CFT

[Ghosh, Kiritsis, Nitti, LW 2017]



We will consider large-     theories at infinite coupling of the 
following type and integrate out via holography:

Setup: Summary

1.) CFTs

2.) RG flow QFTs:
RG flows driven by a relevant operator     of dimension    
from a UV fixed point to a IR fixed point.

O �uv

Nc

The QFTs are defined on Einstein manifolds.

Se↵[g] = S0[g] + Son-shell
grav [g]
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E
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0

Integrating out a QFT typically leads to UV divergences.

Regulate UV divergences via a UV cutoff.

The term          renormalizes the cosmological constant⇠ ⇤4

The term             renormalizes the Planck scale.⇠ ⇤2R
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Setup: Case 1
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The system of bare grav. theory and QFT is “UV-complete”.
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Results: UV complete case (1)
E

The system of bare grav. theory and QFT is “UV-complete”.

0

⇤ ! 1 Absorb divergent terms in renormalized quantities.

Equation for constant-curvature solutions:
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ãuvR

M2
ren



1.) CFT:

Results: UV complete case (1)

R =
24

ã
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3

�ren

M2
ren

!

-4 -2 2 4 6 8 10

-20

20

40

60

80

100
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Results: cutoff QFT (2)
Eq. for const.-curv. sol.: M2
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r
1 +

R

12⇤2
= 0

Solution:

ãR
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Results: cutoff QFT (2)
Eq. for const.-curv. sol.: M2
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R(⇤ = 0) = 4�0

Increasing      always decreases     .⇤ R

For sufficiently large      the curvature      becomes negative.⇤ R

The (thermal) entropy of dS space scales as                 .
Increasing     thus increases       of dS which may be naively
expected. Can this entropic argument be made precise? 

Sth ⇠ R�1

⇤ Sth



Summary
0.) Advantages from holography:  

Integrating out a QFT via its gravity-dual is highly tractable.
Get explicit results for large-N theories at infinite coupling.

1.) UV complete setting (case 1)
CFTs:  only have solution if                      .�ren  3

ã
M2

ren

RG flow QFTs:  back-reaction effect interpolates 
between that of the UV CFT and the IR CFT.

2.) Cutoff QFT (case 2)

Increasing the UV cutoff always reduces the curvature     .R



Open Questions
Is it possible to develop a precise and quantitative entropic 
understanding of the back-reaction effect?

Are the solutions found stable under small perturbations. 
To what extent can this question be addressed in the 
simplified setup considered here with                  ?               r⇢Rµ⌫ = 0
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Many thanks for your attention!


