Operator Complexity Growth at Short and Long Times

Ruth Shir

The Hebrew University
Based on work with Eliezer Rabinovici, José Barbón \& Ritam Sinha
arXiv:1907.05393
$\kappa \rho \eta \tau \eta$ 19.9.19

Questions

Questions

- How to define operator complexity that knows about the time evolution of the operator?

Questions

- How to define operator complexity that knows about the time evolution of the operator?
- Given such a definition, how does this complexity evolve in time?

Operator Time Evolution

Given a Hamiltonian H, and an operator \mathcal{O}, the operator evolves in time

Operator Time Evolution

Given a Hamiltonian H, and an operator \mathcal{O}, the operator evolves in time

$$
\mathcal{O}(t)=e^{i H t} \mathcal{O} e^{-i H t}=\mathcal{O}+i t[H, \mathcal{O}]+\frac{(i t)^{2}}{2!}[H,[H, \mathcal{O}]]+\ldots
$$

Operator Time Evolution

Given a Hamiltonian H, and an operator \mathcal{O}, the operator evolves in time

$$
\mathcal{O}(t)=e^{i H t} \mathcal{O} e^{-i H t}=\mathcal{O}+i t[H, \mathcal{O}]+\frac{(i t)^{2}}{2!}[H,[H, \mathcal{O}]]+\ldots
$$

Idea:
Use the number of commutations with Hamiltonian to asses complexity of $\mathcal{O}(t)$.

Example in SYK

Given the SYK Hamiltonian

Example in SYK

Given the SYK Hamiltonian

$$
H=\sum_{i j k l} J_{i j k l} \psi_{i} \psi_{j} \psi_{k} \psi_{l}
$$

Example in SYK

Given the SYK Hamiltonian

$$
H=\sum_{i j k l} J_{i j k l} \psi_{i} \psi_{j} \psi_{k} \psi_{l}
$$

with $\left\{\psi_{i}, \psi_{j}\right\}=2 \delta_{i j}$.

Example in SYK

Given the SYK Hamiltonian

$$
H=\sum_{i j k l} J_{i j k l} \psi_{i} \psi_{j} \psi_{k} \psi_{l}
$$

with $\left\{\psi_{i}, \psi_{j}\right\}=2 \delta_{i j}$.
And the simple operator $\mathcal{O}=\psi_{1}$.

Example in SYK

Given the SYK Hamiltonian

$$
H=\sum_{i j k l} J_{i j k l} \psi_{i} \psi_{j} \psi_{k} \psi_{l}
$$

with $\left\{\psi_{i}, \psi_{j}\right\}=2 \delta_{i j}$.
And the simple operator $\mathcal{O}=\psi_{1}$. The operator "grows" upon commuting with the Hamiltonian

$$
\left[H, \psi_{1}\right]=\sum_{i j k} J_{1 i j k} \psi_{i} \psi_{j} \psi_{k}
$$

Example in SYK

Given the SYK Hamiltonian

$$
H=\sum_{i j k l} J_{i j k l} \psi_{i} \psi_{j} \psi_{k} \psi_{l}
$$

with $\left\{\psi_{i}, \psi_{j}\right\}=2 \delta_{i j}$.
And the simple operator $\mathcal{O}=\psi_{1}$. The operator "grows" upon commuting with the Hamiltonian

$$
\left[H, \psi_{1}\right]=\sum_{i j k} J_{1 i j k} \psi_{i} \psi_{j} \psi_{k}
$$

and grows...

$$
\left[H,\left[H, \psi_{1}\right]\right]=\sum J J \psi+\sum J J \psi \psi \psi+\sum J J \psi \psi \psi \psi \psi
$$

Example in SYK

Given the SYK Hamiltonian

$$
H=\sum_{i j k l} J_{i j k l} \psi_{i} \psi_{j} \psi_{k} \psi_{l}
$$

with $\left\{\psi_{i}, \psi_{j}\right\}=2 \delta_{i j}$.
And the simple operator $\mathcal{O}=\psi_{1}$. The operator "grows" upon commuting with the Hamiltonian

$$
\left[H, \psi_{1}\right]=\sum_{i j k} J_{1 i j k} \psi_{i} \psi_{j} \psi_{k}
$$

and grows...

$$
\left[H,\left[H, \psi_{1}\right]\right]=\sum J J \psi+\sum J J \psi \psi \psi+\sum J J \psi \psi \psi \psi \psi
$$

- How fast is the operator growing? [see Roberts, Stanford \& Streicher]

Example in SYK

Given the SYK Hamiltonian

$$
H=\sum_{i j k l} J_{i j k l} \psi_{i} \psi_{j} \psi_{k} \psi_{l}
$$

with $\left\{\psi_{i}, \psi_{j}\right\}=2 \delta_{i j}$.
And the simple operator $\mathcal{O}=\psi_{1}$. The operator "grows" upon commuting with the Hamiltonian

$$
\left[H, \psi_{1}\right]=\sum_{i j k} J_{1 i j k} \psi_{i} \psi_{j} \psi_{k}
$$

and grows...

$$
\left[H,\left[H, \psi_{1}\right]\right]=\sum J J \psi+\sum J J \psi \psi \psi+\sum J J \psi \psi \psi \psi \psi
$$

- How fast is the operator growing? [see Roberts, Stanford \& Streicher]
- What happens when the operator reaches the system size?

Quantitative Definition of Operator Complexity

Based on Parker, Cao, Avdoshkin, Scaffidi \& Altman arXiv:1812.08657

Idea:
Use the set of operators
$\{\mathcal{O},[H, \mathcal{O}],[H,[H, \mathcal{O}]],[H,[H,[H, \mathcal{O}]]], \ldots\}$ to form an
orthonormal basis in the space of operators. In some sense, each operator is more complex than the other.

Quantitative Definition of Operator Complexity

Based on Parker, Cao, Avdoshkin, Scaffidi \& Altman arXiv:1812.08657

Idea:
Use the set of operators $\{\mathcal{O},[H, \mathcal{O}],[H,[H, \mathcal{O}]],[H,[H,[H, \mathcal{O}]]], \ldots\}$ to form an orthonormal basis in the space of operators. In some sense, each operator is more complex than the other. Track the "motion" of the operator as it evolves in time on this basis.

Krylov Basis

Krylov Basis

Define the inner product on the space of operators

$$
\left(\mathcal{O}_{1}, \mathcal{O}_{2}\right) \equiv \frac{\operatorname{Tr}\left(\mathcal{O}_{1}^{\dagger} \mathcal{O}_{2}\right)}{\operatorname{Tr}(\mathbb{1})}, \quad \operatorname{Tr}(\mathbb{1})=\mathcal{N}
$$

Krylov Basis

Define the inner product on the space of operators

$$
\left(\mathcal{O}_{1}, \mathcal{O}_{2}\right) \equiv \frac{\operatorname{Tr}\left(\mathcal{O}_{1}^{\dagger} \mathcal{O}_{2}\right)}{\operatorname{Tr}(\mathbb{1})}, \quad \operatorname{Tr}(\mathbb{1})=\mathcal{N}
$$

1. Begin with $\mathcal{O}_{0}=\mathcal{O}$ such that $\left(\mathcal{O}_{0}, \mathcal{O}_{0}\right)=1$ and $\mathcal{O}_{0}^{\dagger}=\mathcal{O}_{0}$.

Krylov Basis

Define the inner product on the space of operators

$$
\left(\mathcal{O}_{1}, \mathcal{O}_{2}\right) \equiv \frac{\operatorname{Tr}\left(\mathcal{O}_{1}^{\dagger} \mathcal{O}_{2}\right)}{\operatorname{Tr}(\mathbb{1})}, \quad \operatorname{Tr}(\mathbb{1})=\mathcal{N}
$$

1. Begin with $\mathcal{O}_{0}=\mathcal{O}$ such that $\left(\mathcal{O}_{0}, \mathcal{O}_{0}\right)=1$ and $\mathcal{O}_{0}^{\dagger}=\mathcal{O}_{0}$.
2. Find an orthogonal operator

$$
\begin{aligned}
A_{1} & =\left[H, \mathcal{O}_{0}\right]-\frac{\left(\mathcal{O}_{0},\left[H, \mathcal{O}_{0}\right]\right)}{\left(\mathcal{O}_{0}, \mathcal{O}_{0}\right)} \mathcal{O}_{0}=\left[H, \mathcal{O}_{0}\right] \\
\left(\mathcal{O}_{0},\left[H, \mathcal{O}_{0}\right]\right) & \sim \operatorname{Tr}\left(\mathcal{O}_{0}\left[H, \mathcal{O}_{0}\right]\right)=0
\end{aligned}
$$

Krylov Basis

Define the inner product on the space of operators

$$
\left(\mathcal{O}_{1}, \mathcal{O}_{2}\right) \equiv \frac{\operatorname{Tr}\left(\mathcal{O}_{1}^{\dagger} \mathcal{O}_{2}\right)}{\operatorname{Tr}(\mathbb{1})}, \quad \operatorname{Tr}(\mathbb{1})=\mathcal{N}
$$

1. Begin with $\mathcal{O}_{0}=\mathcal{O}$ such that $\left(\mathcal{O}_{0}, \mathcal{O}_{0}\right)=1$ and $\mathcal{O}_{0}^{\dagger}=\mathcal{O}_{0}$.
2. Find an orthogonal operator

$$
A_{1}=\left[H, \mathcal{O}_{0}\right]-\frac{\left(\mathcal{O}_{0},\left[H, \mathcal{O}_{0}\right]\right)}{\left(\mathcal{O}_{0}, \mathcal{O}_{0}\right)} \mathcal{O}_{0}=\left[H, \mathcal{O}_{0}\right]
$$

$\left(\mathcal{O}_{0},\left[H, \mathcal{O}_{0}\right]\right) \sim \operatorname{Tr}\left(\mathcal{O}_{0}\left[H, \mathcal{O}_{0}\right]\right)=0$.
3. Normalize it

$$
\mathcal{O}_{1}=\frac{1}{b_{1}} A_{1}, \quad b_{1}=\sqrt{\left(A_{1}, A_{1}\right)}
$$

4. Find the operator orthogonal to $\mathcal{O}_{0}, \mathcal{O}_{1}$

$$
A_{2}=\left[H, \mathcal{O}_{1}\right]-\frac{\left(\mathcal{O}_{1},\left[H, \mathcal{O}_{1}\right]\right)}{\left(\mathcal{O}_{1}, \mathcal{O}_{1}\right)} \mathcal{O}_{1}-\frac{\left(\mathcal{O}_{0},\left[H, \mathcal{O}_{1}\right]\right)}{\left(\mathcal{O}_{0}, \mathcal{O}_{0}\right)} \mathcal{O}_{0}
$$

4. Find the operator orthogonal to $\mathcal{O}_{0}, \mathcal{O}_{1}$

$$
\begin{aligned}
A_{2} & =\left[H, \mathcal{O}_{1}\right]-\frac{\left(\mathcal{O}_{1},\left[H, \mathcal{O}_{1}\right]\right)}{\left(\mathcal{O}_{1}, \mathcal{O}_{1}\right)} \mathcal{O}_{1}-\frac{\left(\mathcal{O}_{0},\left[H, \mathcal{O}_{1}\right]\right)}{\left(\mathcal{O}_{0}, \mathcal{O}_{0}\right)} \mathcal{O}_{0} \\
& =\left[H, \mathcal{O}_{1}\right]-b_{1} \mathcal{O}_{0}
\end{aligned}
$$

4. Find the operator orthogonal to $\mathcal{O}_{0}, \mathcal{O}_{1}$

$$
\begin{aligned}
A_{2} & =\left[H, \mathcal{O}_{1}\right]-\frac{\left(\mathcal{O}_{1},\left[H, \mathcal{O}_{1}\right]\right)}{\left(\mathcal{O}_{1}, \mathcal{O}_{1}\right)} \mathcal{O}_{1}-\frac{\left(\mathcal{O}_{0},\left[H, \mathcal{O}_{1}\right]\right)}{\left(\mathcal{O}_{0}, \mathcal{O}_{0}\right)} \mathcal{O}_{0} \\
& =\left[H, \mathcal{O}_{1}\right]-b_{1} \mathcal{O}_{0}
\end{aligned}
$$

$$
\left(\mathcal{O}_{0},\left[H, \mathcal{O}_{1}\right]\right)=\left(\left[H, \mathcal{O}_{0}\right], \mathcal{O}_{1}\right)=b_{1}\left(\mathcal{O}_{1}, \mathcal{O}_{1}\right)=b_{1} .
$$

4. Find the operator orthogonal to $\mathcal{O}_{0}, \mathcal{O}_{1}$

$$
\begin{aligned}
A_{2} & =\left[H, \mathcal{O}_{1}\right]-\frac{\left(\mathcal{O}_{1},\left[H, \mathcal{O}_{1}\right]\right)}{\left(\mathcal{O}_{1}, \mathcal{O}_{1}\right)} \mathcal{O}_{1}-\frac{\left(\mathcal{O}_{0},\left[H, \mathcal{O}_{1}\right]\right)}{\left(\mathcal{O}_{0}, \mathcal{O}_{0}\right)} \mathcal{O}_{0} \\
& =\left[H, \mathcal{O}_{1}\right]-b_{1} \mathcal{O}_{0}
\end{aligned}
$$

$$
\left(\mathcal{O}_{0},\left[H, \mathcal{O}_{1}\right]\right)=\left(\left[H, \mathcal{O}_{0}\right], \mathcal{O}_{1}\right)=b_{1}\left(\mathcal{O}_{1}, \mathcal{O}_{1}\right)=b_{1}
$$

5. Normalize it $\mathcal{O}_{2}=\frac{1}{b_{2}} A_{2}$ with $b_{2}=\sqrt{\left(A_{2}, A_{2}\right)}$.
6. Find the operator orthogonal to $\mathcal{O}_{0}, \mathcal{O}_{1}$

$$
\begin{aligned}
A_{2} & =\left[H, \mathcal{O}_{1}\right]-\frac{\left(\mathcal{O}_{1},\left[H, \mathcal{O}_{1}\right]\right)}{\left(\mathcal{O}_{1}, \mathcal{O}_{1}\right)} \mathcal{O}_{1}-\frac{\left(\mathcal{O}_{0},\left[H, \mathcal{O}_{1}\right]\right)}{\left(\mathcal{O}_{0}, \mathcal{O}_{0}\right)} \mathcal{O}_{0} \\
& =\left[H, \mathcal{O}_{1}\right]-b_{1} \mathcal{O}_{0}
\end{aligned}
$$

$$
\left(\mathcal{O}_{0},\left[H, \mathcal{O}_{1}\right]\right)=\left(\left[H, \mathcal{O}_{0}\right], \mathcal{O}_{1}\right)=b_{1}\left(\mathcal{O}_{1}, \mathcal{O}_{1}\right)=b_{1}
$$

5. Normalize it $\mathcal{O}_{2}=\frac{1}{b_{2}} A_{2}$ with $b_{2}=\sqrt{\left(A_{2}, A_{2}\right)}$.
6. Recursively, we define

$$
A_{n}=\left[H, \mathcal{O}_{n-1}\right]-b_{n-1} \mathcal{O}_{n-2}
$$

4. Find the operator orthogonal to $\mathcal{O}_{0}, \mathcal{O}_{1}$

$$
\begin{aligned}
A_{2} & =\left[H, \mathcal{O}_{1}\right]-\frac{\left(\mathcal{O}_{1},\left[H, \mathcal{O}_{1}\right]\right)}{\left(\mathcal{O}_{1}, \mathcal{O}_{1}\right)} \mathcal{O}_{1}-\frac{\left(\mathcal{O}_{0},\left[H, \mathcal{O}_{1}\right]\right)}{\left(\mathcal{O}_{0}, \mathcal{O}_{0}\right)} \mathcal{O}_{0} \\
& =\left[H, \mathcal{O}_{1}\right]-b_{1} \mathcal{O}_{0}
\end{aligned}
$$

$$
\left(\mathcal{O}_{0},\left[H, \mathcal{O}_{1}\right]\right)=\left(\left[H, \mathcal{O}_{0}\right], \mathcal{O}_{1}\right)=b_{1}\left(\mathcal{O}_{1}, \mathcal{O}_{1}\right)=b_{1}
$$

5. Normalize it $\mathcal{O}_{2}=\frac{1}{b_{2}} A_{2}$ with $b_{2}=\sqrt{\left(A_{2}, A_{2}\right)}$.
6. Recursively, we define

$$
A_{n}=\left[H, \mathcal{O}_{n-1}\right]-b_{n-1} \mathcal{O}_{n-2}
$$

with $\mathcal{O}_{n}=\frac{1}{b_{n}} A_{n}$ and $b_{n}=\sqrt{\left(A_{n}, A_{n}\right)}$.

Output

Output

- A set of Lanczos coefficients $\left\{b_{n}\right\}$.

Output

- A set of Lanczos coefficients $\left\{b_{n}\right\}$.
- Orthonormal Krylov basis of operators $\left\{\mathcal{O}_{n}\right\}$.

Output

- A set of Lanczos coefficients $\left\{b_{n}\right\}$.
- Orthonormal Krylov basis of operators $\left\{\mathcal{O}_{n}\right\}$.

$$
\left(\mathcal{O}_{n}, \mathcal{O}_{m}\right)=\delta_{n m}
$$

Output

- A set of Lanczos coefficients $\left\{b_{n}\right\}$.
- Orthonormal Krylov basis of operators $\left\{\mathcal{O}_{n}\right\}$.

$$
\left(\mathcal{O}_{n}, \mathcal{O}_{m}\right)=\delta_{n m}
$$

$$
\left[H, \mathcal{O}_{n}\right]=b_{n+1} \mathcal{O}_{n+1}+b_{n} \mathcal{O}_{n-1}
$$

Output

- A set of Lanczos coefficients $\left\{b_{n}\right\}$.
- Orthonormal Krylov basis of operators $\left\{\mathcal{O}_{n}\right\}$.

$$
\left(\mathcal{O}_{n}, \mathcal{O}_{m}\right)=\delta_{n m}
$$

$$
\left[H, \mathcal{O}_{n}\right]=b_{n+1} \mathcal{O}_{n+1}+b_{n} \mathcal{O}_{n-1}
$$

In a system with S degrees of freedom, the size of the Hilbert space is $\mathcal{N} \sim O\left(e^{S}\right)$ and the size of the Hilbert space of operators is $\mathcal{N}^{2} \sim O\left(e^{2 S}\right)$.

In a system with S degrees of freedom, the size of the Hilbert space is $\mathcal{N} \sim O\left(e^{S}\right)$ and the size of the Hilbert space of operators is $\mathcal{N}^{2} \sim O\left(e^{2 S}\right)$.
For a generic Hamiltonian we expect this basis to span the Hilbert space of operators and therefore $b_{n}=0$ only when $n=\mathcal{N}^{2}$.

Time Evolution and Complexity

The operator can be expanded in the Krylov basis

Time Evolution and Complexity

The operator can be expanded in the Krylov basis

$$
\mathcal{O}(t)=\sum_{n=0}^{\mathcal{N}^{2}} i^{n} \varphi_{n}(t) \mathcal{O}_{n}
$$

where $\varphi_{n}(t)$ for each t can be thought of as the "wavefunction" on the operator basis.

Time Evolution and Complexity

The operator can be expanded in the Krylov basis

$$
\mathcal{O}(t)=\sum_{n=0}^{\mathcal{N}^{2}} i^{n} \varphi_{n}(t) \mathcal{O}_{n}
$$

where $\varphi_{n}(t)$ for each t can be thought of as the "wavefunction" on the operator basis.

From the Heisenberg equation

$$
\frac{d}{d t} \mathcal{O}(t)=i[H, \mathcal{O}(t)]
$$

From the Heisenberg equation

$$
\begin{gathered}
\frac{d}{d t} \mathcal{O}(t)=i[H, \mathcal{O}(t)] \\
\sum_{n=0}^{\mathcal{N}^{2}} i^{n} \dot{\varphi}_{n}(t) \mathcal{O}_{n}=i \sum_{n=0}^{\mathcal{N}^{2}} i^{n} \varphi_{n}(t)\left[H, \mathcal{O}_{n}\right]
\end{gathered}
$$

From the Heisenberg equation

$$
\begin{gathered}
\frac{d}{d t} \mathcal{O}(t)=i[H, \mathcal{O}(t)] \\
\sum_{n=0}^{\mathcal{N}^{2}} i^{n} \dot{\varphi}_{n}(t) \mathcal{O}_{n}=i \sum_{n=0}^{\mathcal{N}^{2}} i^{n} \varphi_{n}(t)\left[H, \mathcal{O}_{n}\right]
\end{gathered}
$$

Using $\left[H, \mathcal{O}_{n}\right]=b_{n+1} \mathcal{O}_{n+1}+b_{n} \mathcal{O}_{n-1}$ and taking an inner product on both sides, we get a recurrence equation for $\varphi_{n}(t)$

From the Heisenberg equation

$$
\begin{gathered}
\frac{d}{d t} \mathcal{O}(t)=i[H, \mathcal{O}(t)] \\
\sum_{n=0}^{\mathcal{N}^{2}} i^{n} \dot{\varphi}_{n}(t) \mathcal{O}_{n}=i \sum_{n=0}^{\mathcal{N}^{2}} i^{n} \varphi_{n}(t)\left[H, \mathcal{O}_{n}\right]
\end{gathered}
$$

Using $\left[H, \mathcal{O}_{n}\right]=b_{n+1} \mathcal{O}_{n+1}+b_{n} \mathcal{O}_{n-1}$ and taking an inner product on both sides, we get a recurrence equation for $\varphi_{n}(t)$

$$
\dot{\varphi}_{n}(t)=b_{n} \varphi_{n-1}(t)-b_{n+1} \varphi_{n+1}(t)
$$

with initial and boundary conditions

$$
\varphi_{0}(0)=1, \varphi_{n>0}(0)=0, \varphi_{-1}(t)=0
$$

The K-Complexity is defined by

The K-Complexity is defined by

$$
C_{K}(t) \equiv\langle n(t)\rangle=\sum_{n=0}^{\mathcal{N}^{2}} n\left|\varphi_{n}(t)\right|^{2}
$$

The K-Complexity is defined by

$$
C_{K}(t) \equiv\langle n(t)\rangle=\sum_{n=0}^{\mathcal{N}^{2}} n\left|\varphi_{n}(t)\right|^{2}
$$

How does C_{K} evolve in time?

The K-Complexity is defined by

$$
C_{K}(t) \equiv\langle n(t)\rangle=\sum_{n=0}^{\mathcal{N}^{2}} n\left|\varphi_{n}(t)\right|^{2}
$$

How does C_{K} evolve in time?

The answer depends on $\varphi_{n}(t)$ whose dynamics depend solely on the Lanczos coefficients $\left\{b_{n}\right\}$.

In arXiv:1812.08657, it was argued through numerous examples that in non-integrable, chaotic quantum systems

$$
b_{n} \sim \alpha n
$$

which is the fastest possible growth of the Lanczos coefficients.

In arXiv:1812.08657, it was argued through numerous examples that in non-integrable, chaotic quantum systems

$$
b_{n} \sim \alpha n
$$

which is the fastest possible growth of the Lanczos coefficients. In this case, the solution to the recurrence equation is

$$
\varphi_{n}(t)=\operatorname{sech}(\alpha t) \tanh (\alpha t)^{n}
$$

In arXiv:1812.08657, it was argued through numerous examples that in non-integrable, chaotic quantum systems

$$
b_{n} \sim \alpha n
$$

which is the fastest possible growth of the Lanczos coefficients. In this case, the solution to the recurrence equation is

$$
\varphi_{n}(t)=\operatorname{sech}(\alpha t) \tanh (\alpha t)^{n}
$$

$$
C_{K}(t)=\sinh (\alpha t)^{2} \sim e^{2 \alpha t}
$$

In arXiv:1812.08657, it was argued through numerous examples that in non-integrable, chaotic quantum systems

$$
b_{n} \sim \alpha n
$$

which is the fastest possible growth of the Lanczos coefficients. In this case, the solution to the recurrence equation is

$$
\varphi_{n}(t)=\operatorname{sech}(\alpha t) \tanh (\alpha t)^{n}
$$

$$
C_{K}(t)=\sinh (\alpha t)^{2} \sim e^{2 \alpha t}
$$

Scrambling time

Given this growth rate, the operator will reach maximal size $n \sim S$ at

$$
t_{*} \sim \log (S)
$$

Scrambling time

Given this growth rate, the operator will reach maximal size $n \sim S$ at

$$
t_{*} \sim \log (S)
$$

Can $C_{K}(t)$ keep on growing exponentially forever?

Scrambling time

Given this growth rate, the operator will reach maximal size $n \sim S$ at

$$
t_{*} \sim \log (S)
$$

Can $C_{K}(t)$ keep on growing exponentially forever? We think that in a finite system, it cannot.

To show this, let's look at the moments $\mu_{2 n}$, of the autocorrelation function

To show this, let's look at the moments $\mu_{2 n}$, of the autocorrelation function

$$
\left(\mathcal{O}_{0}, \mathcal{O}(t)\right)=\varphi_{0}(t)=\sum_{n=0}^{\mathcal{N}^{2}} \frac{(-1)^{n}}{(2 n)!} \mu_{2 n} t^{2 n}
$$

where

$$
\mu_{2 n} \equiv\left(\mathcal{O}_{0},\left[H,\left[H, \ldots,\left[H, \mathcal{O}_{0}\right] \ldots\right]\right]\right)
$$

To show this, let's look at the moments $\mu_{2 n}$, of the autocorrelation function

$$
\left(\mathcal{O}_{0}, \mathcal{O}(t)\right)=\varphi_{0}(t)=\sum_{n=0}^{\mathcal{N}^{2}} \frac{(-1)^{n}}{(2 n)!} \mu_{2 n} t^{2 n}
$$

where

$$
\mu_{2 n} \equiv\left(\mathcal{O}_{0},\left[H,\left[H, \ldots,\left[H, \mathcal{O}_{0}\right] \ldots\right]\right]\right)
$$

If we expand the operator in the energy basis,

$$
\mathcal{O}_{0}=\sum_{a, b=0}^{\mathcal{N}} O_{a b}\left|E_{a}\right\rangle\left\langle E_{b}\right|
$$

the moments have the simple form

$$
\mu_{2 n}=\frac{1}{\mathcal{N}} \sum_{a, b=0}^{\mathcal{N}}\left(E_{a}-E_{b}\right)^{2 n}\left|O_{a b}\right|^{2}
$$

For a system with S degrees of freedom, the largest energy differences are

$$
\left(E_{a}-E_{b}\right)_{\max } \sim \Lambda S
$$

where Λ is a UV cutoff.

For a system with S degrees of freedom, the largest energy differences are

$$
\left(E_{a}-E_{b}\right)_{\max } \sim \Lambda S
$$

where Λ is a UV cutoff.
For $n \gg S$, the main contribution to the sum comes from the maximal energy differences

$$
\mu_{2 n} \sim(\wedge S)^{2 n}, \quad n \gg S
$$

For a system with S degrees of freedom, the largest energy differences are

$$
\left(E_{a}-E_{b}\right)_{\max } \sim \Lambda S
$$

where Λ is a UV cutoff.
For $n \gg S$, the main contribution to the sum comes from the maximal energy differences

$$
\mu_{2 n} \sim(\Lambda S)^{2 n}, \quad n \gg S
$$

How can we use this to constrain the b_{n}-sequence?
$\mu_{2 n}$ are given by the weighted Catalan numbers which are sums over Dyck paths of length $2 n$

$$
\mu_{0}=1
$$

$\mu_{2 n}$ are given by the weighted Catalan numbers which are sums over Dyck paths of length $2 n$

$$
\begin{aligned}
& \mu_{0}=1 \\
& \mu_{2}=b_{1}^{2}
\end{aligned}
$$

$\mu_{2 n}$ are given by the weighted Catalan numbers which are sums over Dyck paths of length $2 n$

$$
\begin{aligned}
& \mu_{0}=1 \\
& \mu_{2}=b_{1}^{2}=\widehat{ی}
\end{aligned}
$$

$\mu_{2 n}$ are given by the weighted Catalan numbers which are sums over Dyck paths of length $2 n$

$$
\begin{aligned}
& \mu_{0}=1 \\
& \mu_{2}=b_{1}^{2}=\bigwedge \\
& \mu_{4}=b_{1}^{4}+b_{1}^{2} b_{2}^{2}
\end{aligned}
$$

$\mu_{2 n}$ are given by the weighted Catalan numbers which are sums over Dyck paths of length $2 n$

$$
\begin{aligned}
& \mu_{0}=1 \\
& \mu_{2}=b_{1}^{2}=\widehat{ } \\
& \mu_{4}=b_{1}^{4}+b_{1}^{2} b_{2}^{2}=
\end{aligned}
$$

μ 's and b 's

$\mu_{2 n}$ are given by the weighted Catalan numbers which are sums over Dyck paths of length $2 n$

$$
\begin{aligned}
& \mu_{0}=1 \\
& \mu_{2}=b_{1}^{2}=\widehat{\text { a }} \\
& \mu_{4}=b_{1}^{4}+b_{1}^{2} b_{2}^{2}= \\
& \mu_{6}=b_{1}^{6}+2 b_{1}^{4} b_{2}^{2}+b_{1}^{2} b_{2}^{4}+b_{1}^{2} b_{2}^{2} b_{3}^{2}
\end{aligned}
$$

μ 's and b 's

$\mu_{2 n}$ are given by the weighted Catalan numbers which are sums over Dyck paths of length $2 n$

$$
\begin{aligned}
& \mu_{0}=1 \\
& \mu_{2}=b_{1}^{2}=\widehat{1} \\
& \mu_{4}=b_{1}^{4}+b_{1}^{2} b_{2}^{2}= \\
& \mu_{6}=b_{1}^{6}+2 b_{1}^{4} b_{2}^{2}+b_{1}^{2} b_{2}^{4}+b_{1}^{2} b_{2}^{2} b_{3}^{2}
\end{aligned}
$$

$$
\cdots \times N+N+N+N
$$

μ 's and b 's

$\mu_{2 n}$ are given by the weighted Catalan numbers which are sums over Dyck paths of length $2 n$

$$
\begin{aligned}
& \mu_{0}=1 \\
& \mu_{2}=b_{1}^{2}=\widehat{1} \\
& \mu_{4}=b_{1}^{4}+b_{1}^{2} b_{2}^{2}= \\
& \mu_{6}=b_{1}^{6}+2 b_{1}^{4} b_{2}^{2}+b_{1}^{2} b_{2}^{4}+b_{1}^{2} b_{2}^{2} b_{3}^{2}
\end{aligned}
$$

we see that

$$
b_{1}^{2} b_{2}^{2} \ldots b_{n}^{2} \leq \mu_{2 n}
$$

μ 's and b's

$\mu_{2 n}$ are given by the weighted Catalan numbers which are sums over Dyck paths of length $2 n$

$$
\begin{aligned}
& \mu_{0}=1 \\
& \mu_{2}=b_{1}^{2}=\widehat{1} \\
& \mu_{4}=b_{1}^{4}+b_{1}^{2} b_{2}^{2}= \\
& \mu_{6}=b_{1}^{6}+2 b_{1}^{4} b_{2}^{2}+b_{1}^{2} b_{2}^{4}+b_{1}^{2} b_{2}^{2} b_{3}^{2}
\end{aligned}
$$

we see that

$$
b_{1}^{2} b_{2}^{2} \ldots b_{n}^{2} \leq \mu_{2 n}
$$

The number of terms is

$$
\#(\text { Dyck paths of length } 2 n)=C_{n}
$$

μ 's and b 's

$\mu_{2 n}$ are given by the weighted Catalan numbers which are sums over Deck paths of length $2 n$

$$
\begin{aligned}
& \mu_{0}=1 \\
& \mu_{2}=b_{1}^{2}=\widehat{\text { a }} \\
& \mu_{4}=b_{1}^{4}+b_{1}^{2} b_{2}^{2}= \\
& \mu_{6}=b_{1}^{6}+2 b_{1}^{4} b_{2}^{2}+b_{1}^{2} b_{2}^{4}+b_{1}^{2} b_{2}^{2} b_{3}^{2}
\end{aligned}
$$

$$
=\mathrm{N}_{+}
$$

we see that

$$
b_{1}^{2} b_{2}^{2} \ldots b_{n}^{2} \leq \mu_{2 n}
$$

The number of terms is

$$
\#(\text { Deck paths of length } 2 n)=C_{n}
$$

therefore for non-decreasing b_{n}-sequences

$$
\mu_{2 n} \leq C_{n} b_{1}^{2} b_{2}^{2} \ldots b_{n}^{2}
$$

Asymptotically the Catalan numbers grow exponentially

$$
C_{n} \sim n^{-3 / 2} 4^{n}
$$

Asymptotically the Catalan numbers grow exponentially

$$
C_{n} \sim n^{-3 / 2} 4^{n}
$$

For a b_{n}-sequence which is non-decreasing and asymptotic to some value b_{∞},

$$
\left(b_{\infty}\right)^{2 n} \leq \mu_{2 n} \leq C_{n}\left(b_{\infty}\right)^{2 n}
$$

Asymptotically the Catalan numbers grow exponentially

$$
C_{n} \sim n^{-3 / 2} 4^{n}
$$

For a b_{n}-sequence which is non-decreasing and asymptotic to some value b_{∞},

$$
\left(b_{\infty}\right)^{2 n} \leq \mu_{2 n} \leq C_{n}\left(b_{\infty}\right)^{2 n}
$$

the moments are bound between two exponentials and therefore

$$
\mu_{2 n} \sim\left(c b_{\infty}\right)^{2 n}
$$

Asymptotically the Catalan numbers grow exponentially

$$
C_{n} \sim n^{-3 / 2} 4^{n}
$$

For a b_{n}-sequence which is non-decreasing and asymptotic to some value b_{∞},

$$
\left(b_{\infty}\right)^{2 n} \leq \mu_{2 n} \leq C_{n}\left(b_{\infty}\right)^{2 n}
$$

the moments are bound between two exponentials and therefore

$$
\mu_{2 n} \sim\left(c b_{\infty}\right)^{2 n}
$$

Comparing with $\mu_{2 n} \sim(\Lambda S)^{2 n}$, we find that

$$
b_{\infty} \sim \Lambda S
$$

Post-scrambling

We have argued that at some point b_{n} becomes constant of order S. What is the solution to the recurrence equation once the b_{n} 's become constant?

Post-scrambling

We have argued that at some point b_{n} becomes constant of order S. What is the solution to the recurrence equation once the b_{n} 's become constant?

$$
b_{n}=b=\mathrm{const}
$$

Post-scrambling

We have argued that at some point b_{n} becomes constant of order S. What is the solution to the recurrence equation once the b_{n} 's become constant?

$$
b_{n}=b=\mathrm{const}
$$

Taking the Laplace transform of $\varphi_{n}(t)$

$$
\phi_{n}(z)=\int_{0}^{\infty} d t e^{-z t} \varphi_{n}(t)
$$

Post-scrambling

We have argued that at some point b_{n} becomes constant of order S. What is the solution to the recurrence equation once the b_{n} 's become constant?

$$
b_{n}=b=\text { const }
$$

Taking the Laplace transform of $\varphi_{n}(t)$

$$
\phi_{n}(z)=\int_{0}^{\infty} d t e^{-z t} \varphi_{n}(t)
$$

the recurrence equation becomes

$$
z \phi_{n}(z)-\delta_{n 0}=b\left(\phi_{n-1}(z)-\phi_{n+1}(z)\right)
$$

$$
\phi_{0}(z)=\frac{1}{z+\frac{b^{2}}{z+\frac{b^{2}}{z+\ldots}}}=\frac{1}{z+b^{2} \phi_{0}(z)}
$$

$$
\phi_{0}(z)=\frac{1}{z+\frac{b^{2}}{b^{2}}}=\frac{1}{z+b^{2} \phi_{0}(z)}
$$

Solving for $\phi_{0}(z)$

$$
\phi_{0}(z)=\frac{-z \pm \sqrt{z^{2}+4 b^{2}}}{2 b^{2}}
$$

$$
\phi_{0}(z)=\frac{1}{z+\frac{b^{2}}{b^{2}}}=\frac{1}{z+b^{2} \phi_{0}(z)}
$$

Solving for $\phi_{0}(z)$

$$
\phi_{0}(z)=\frac{-z \pm \sqrt{z^{2}+4 b^{2}}}{2 b^{2}}
$$

and taking the inverse Laplace transform, we find

$$
\varphi_{0}(t)=\frac{J_{1}(2 b t)}{b t}
$$

where J_{1} is the (first) Bessel function of the first kind.

Using the recurrence relation, we find in general

Using the recurrence relation, we find in general

$$
\varphi_{n}(t)=\frac{(n+1) J_{n+1}(2 b t)}{b t}
$$

Using the recurrence relation, we find in general

$$
\begin{aligned}
\varphi_{n}(t) & =\frac{(n+1) J_{n+1}(2 b t)}{b t} \\
C_{K}(t) & =\sum n\left|\varphi_{n}(t)\right|^{2} \sim b t
\end{aligned}
$$

Using the recurrence relation, we find in general

$$
\begin{aligned}
\varphi_{n}(t) & =\frac{(n+1) J_{n+1}(2 b t)}{b t} \\
C_{K}(t) & =\sum n\left|\varphi_{n}(t)\right|^{2} \sim b t
\end{aligned}
$$

Conclusions: The Big Picture

Conclusions: The Big Picture

Conclusions: The Big Picture

Open Questions

Open Questions

- What happens after the complexity becomes of order $O\left(e^{2 S}\right)$?

Open Questions

- What happens after the complexity becomes of order $O\left(e^{2 S}\right)$?
- Analytical/Numerical calculation of the b_{n}-sequence in a particular system?

Open Questions

- What happens after the complexity becomes of order $O\left(e^{2 S}\right)$?
- Analytical/Numerical calculation of the b_{n}-sequence in a particular system?
- Holographic bulk description?

