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Questions

I How to define operator complexity that knows about the time
evolution of the operator?

I Given such a definition, how does this complexity evolve in
time?



Questions

I How to define operator complexity that knows about the time
evolution of the operator?

I Given such a definition, how does this complexity evolve in
time?



Questions

I How to define operator complexity that knows about the time
evolution of the operator?

I Given such a definition, how does this complexity evolve in
time?



Operator Time Evolution

Given a Hamiltonian H, and an operator O, the operator evolves in
time

O(t) = e iHtOe−iHt = O + it[H,O] +
(it)2

2!
[H, [H,O]] + . . .

Idea:
Use the number of commutations with Hamiltonian to asses
complexity of O(t).
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Example in SYK
Given the SYK Hamiltonian

H =
∑
ijkl

Jijkl ψi ψj ψk ψl

with {ψi , ψj} = 2δij .
And the simple operator O = ψ1. The operator “grows” upon
commuting with the Hamiltonian

[H, ψ1] =
∑
ijk

J1ijkψiψjψk

and grows...

[H, [H, ψ1]] =
∑

JJψ +
∑

JJψψψ +
∑

JJψψψψψ

I How fast is the operator growing? [see Roberts, Stanford &
Streicher]

I What happens when the operator reaches the system size?
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Quantitative Definition of Operator Complexity

Based on Parker, Cao, Avdoshkin, Scaffidi & Altman
arXiv:1812.08657

Idea:
Use the set of operators
{O, [H,O], [H, [H,O]], [H, [H, [H,O]]], . . . } to form an
orthonormal basis in the space of operators. In some sense, each
operator is more complex than the other.

Track the “motion” of
the operator as it evolves in time on this basis.



Quantitative Definition of Operator Complexity

Based on Parker, Cao, Avdoshkin, Scaffidi & Altman
arXiv:1812.08657

Idea:
Use the set of operators
{O, [H,O], [H, [H,O]], [H, [H, [H,O]]], . . . } to form an
orthonormal basis in the space of operators. In some sense, each
operator is more complex than the other. Track the “motion” of
the operator as it evolves in time on this basis.



Krylov Basis

Define the inner product on the space of operators

(O1,O2) ≡
Tr(O†1O2)

Tr(1)
, Tr(1) = N

1. Begin with O0 = O such that (O0,O0) = 1 and O†0 = O0.

2. Find an orthogonal operator

A1 = [H,O0]− (O0, [H,O0])

(O0,O0)
O0 = [H,O0]

(O0, [H,O0]) ∼ Tr(O0[H,O0]) = 0.

3. Normalize it

O1 =
1

b1
A1, b1 =

√
(A1,A1)
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4. Find the operator orthogonal to O0,O1

A2 = [H,O1]− (O1, [H,O1])
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(O0, [H,O1])
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(O0, [H,O1]) = ([H,O0],O1) = b1(O1,O1) = b1.

5. Normalize it O2 = 1
b2
A2 with b2 =

√
(A2,A2).

6. Recursively, we define

An = [H,On−1]− bn−1On−2

with On = 1
bn
An and bn =

√
(An,An).
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I A set of Lanczos coefficients {bn}.
I Orthonormal Krylov basis of operators {On}.
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In a system with S degrees of freedom, the size of the Hilbert
space is N ∼ O(eS) and the size of the Hilbert space of operators
is N 2 ∼ O(e2S).

For a generic Hamiltonian we expect this basis to span the Hilbert
space of operators and therefore bn = 0 only when n = N 2.
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Time Evolution and Complexity

The operator can be expanded in the Krylov basis

O(t) =
N 2∑
n=0

inϕn(t)On

where ϕn(t) for each t can be thought of as the “wavefunction”
on the operator basis.

n

ϕn
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O1 O2 O3

t = 0
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From the Heisenberg equation

d

dt
O(t) = i [H,O(t)]

N 2∑
n=0

inϕ̇n(t)On = i
N 2∑
n=0

inϕn(t)[H,On]

Using [H,On] = bn+1On+1 + bnOn−1 and taking an inner product
on both sides, we get a recurrence equation for ϕn(t)

ϕ̇n(t) = bnϕn−1(t)− bn+1ϕn+1(t)

with initial and boundary conditions

ϕ0(0) = 1, ϕn>0(0) = 0, ϕ−1(t) = 0.
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The K -Complexity is defined by

CK (t) ≡ 〈n(t)〉 =
N 2∑
n=0

n |ϕn(t)|2

How does CK evolve in time?

The answer depends on ϕn(t) whose dynamics depend solely on
the Lanczos coefficients {bn}.
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In arXiv:1812.08657, it was argued through numerous examples
that in non-integrable, chaotic quantum systems

bn ∼ αn

which is the fastest possible growth of the Lanczos coefficients.

In this case, the solution to the recurrence equation is

ϕn(t) = sech(αt) tanh(αt)n

CK (t) = sinh(αt)2 ∼ e2αt
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Scrambling time

Given this growth rate, the operator will reach maximal size n ∼ S
at

t∗ ∼ log(S)

Can CK (t) keep on growing exponentially forever?
We think that in a finite system, it cannot.
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To show this, let’s look at the moments µ2n, of the autocorrelation
function

(O0,O(t)) = ϕ0(t) =
N 2∑
n=0

(−1)n

(2n)!
µ2nt

2n

where
µ2n ≡ (O0, [H, [H, . . . , [H,O0] . . . ]])

If we expand the operator in the energy basis,

O0 =
N∑

a,b=0

Oab|Ea〉〈Eb|

the moments have the simple form

µ2n =
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For a system with S degrees of freedom, the largest energy
differences are

(Ea − Eb)max ∼ ΛS

where Λ is a UV cutoff.

For n� S , the main contribution to the sum comes from the
maximal energy differences

µ2n ∼ (ΛS)2n, n� S

How can we use this to constrain the bn-sequence?
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µ’s and b’s
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Asymptotically the Catalan numbers grow exponentially

Cn ∼ n−3/24n

For a bn-sequence which is non-decreasing and asymptotic to some
value b∞,

(b∞)2n ≤ µ2n ≤ Cn(b∞)2n

the moments are bound between two exponentials and therefore

µ2n ∼ (cb∞)2n

Comparing with µ2n ∼ (ΛS)2n, we find that

b∞ ∼ ΛS
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Post-scrambling

We have argued that at some point bn becomes constant of order
S . What is the solution to the recurrence equation once the bn’s
become constant?

bn = b = const

Taking the Laplace transform of ϕn(t)

φn(z) =

∫ ∞
0

dt e−ztϕn(t)

the recurrence equation becomes

z φn(z)− δn0 = b(φn−1(z)− φn+1(z))
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φ0(z) =
1

z +
b2

z +
b2

z + . . .

=
1

z + b2φ0(z)

Solving for φ0(z)

φ0(z) =
−z ±

√
z2 + 4b2

2b2

and taking the inverse Laplace transform, we find

ϕ0(t) =
J1(2bt)

bt

where J1 is the (first) Bessel function of the first kind.
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Using the recurrence relation, we find in general

ϕn(t) =
(n + 1)Jn+1(2bt)

bt

CK (t) =
∑

n|ϕn(t)|2 ∼ bt
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Open Questions

I What happens after the complexity becomes of order O(e2S)?

I Analytical/Numerical calculation of the bn-sequence in a
particular system?

I Holographic bulk description?
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