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K3 σ-model is also of importance through its role in Mathieu moon-
shine. [Ooguri ’89; Eguchi, Ooguri, Tachikawa ’10]

Decomposition of the elliptic genus of K3 (EK3) into the characters
of the small N = 4 algebra gives multiplicities which correspond to
dimensions of representations of the Mathieu group M24:

[Eguchi, Ooguri, Taormina, Yang ’88]

EK3 = 20ch 1
4
,0 − 2ch 1

4
, 1

2
+ 90ch1,0 + 462ch2,0 + 1540ch3,0 + · · · ,

where

90 = 45⊕ 45 , 462 = 231⊕ 231 , 1540 = 770⊕ 770 , · · · .
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Characters of these representations satisfy expected modular trans-
formation properties.

[Cheng, ’10; Gaberdiel, Hohenegger, Volpato ’10; Eguchi, Hikami ’10]

Even though the explicit construction of the moonshine module
VM24 =

⊕
n≥1 V

M24
n is established [Gannon ’12], it is not natural one.

The goal of understanding M24 moonshine is to find a natural
construction, namely a vertex operator algebra or CFT with auto-
morphism group M24 whose elliptic genus reproduces that of K3.

An obvious approach to such a natural construction is to use the
non-linear σ-model of K3: structure of BPS states at generic points
on the moduli space.
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K3 σ-models

The moduli space of K3 σ-model has real dimension 80.

We do not have an explicit construction for the σ-model at a generic
point in this moduli space.

Only in regions with enhanced symmetries we know explicit con-
structions, e.g. for the case where K3 is a Kummer surface, namely
a torus orbifold T4/Z2.
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multiplicities given by the hodge diamond of K3.
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Away from these points, we only know the spectrum of states with
high enough supersymmetry: chiral ring. The space of 1

2 -BPS states
is protected, their number is constant across the moduli space with
multiplicities given by the hodge diamond of K3.

1
4 -BPS states are, however, not protected: their multiplicity can
change. Their index is a protected quantity and the elliptic genus
counts the index.

As we move around in the moduli space, two 1
4 -BPS states may pair

up and form a non-BPS state and leave the elliptic genus.
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Generic points in moduli space

A ‘generic’ point in the moduli space: all 1
4 -BPS states that can

be lifted are lifted. The index counts the actual number of states.
Points of moduli space where we have an explicit CFT description
are not generic.

For torus orbifold T4/Z2, and for sufficiently generic radii and B-
fields of T4, the number of 1

4 -BPS states of holomorphic dimension
h = 1 is 102. From elliptic genus we know that the index is 90.

If we move away from the orbifold point, 12 of those states are
expected to get lifted. We confirm this expectation by performing
perturbation theory:

102 = (90 + 6) + 6

90 = (90 + 6)− 6
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Gµν
r , and J in (similar for anti-holomorphic generators).
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Holomorphic complex bosons and complex fermions on T4 are:

Ψi , Ψ̄i , ∂X i , ∂X̄ i , i = 1, 2 ,

with (anti-)commutation relations

[∂X (i)
m , ∂X̄ (j)

n ] = mδijδm,−n , {Ψ(i)
r , Ψ̄

(j)
s } = δijδr ,−s

Small N = 4 primaries |φ〉 are defined in the NS sector as:

Ln|φ〉 = 0 , Gr |φ〉 = 0 , Jn|φ〉 = 0 , n ∈ Z>0 , r ∈ Z>0 +
1

2
.
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At the Z2 orbifold point associated with the Kummer locus the
symmetry algebra is larger: there are 6 fermionic bilinear fields where
3 of them are the R-symmetry currents J±,3 which generate the
SU(2) R-symmetry. The other 3 fields, Ĵ±,3, generate the SU(2)
flavour symmetry. The latter are lifted when perturbing away from
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number operator FR :
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flavour symmetry. The latter are lifted when perturbing away from
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We work with the elliptic genus which is defined as the trace over the
NS⊗ R̃ sector of the K3 σ-model with the insertion of the fermion
number operator FR :

ENS
K3 (τ, z) = trNSR̃

(
qL0− 1

4 y J0 q̄L̃0− 1
4 (−1)FR

)
, q = e2πiτ , y = e2πiz .

Elliptic genus counts anti-holomorphic Ramond ground states and
non-BPS holomorphic states. We study states with conformal di-
mensions hNS = 1 and h̄R̃ = 1

4 : there are 102 such states.
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Denote space of ENS
K3 by VBPS

n with (hNS , h̃R) = (n, 1
4 ) , n ≥ 1. This

splits into the untwisted sector, Un, and the twisted sector, Tn.

VBPS
n has two possible anti-holomorphic short representation:

VBPS
n = U l̃=0

n ⊕ U
l̃= 1

2
n ⊕ T l̃=0

n ⊕ T
l̃= 1

2
n

where n is the holomorphic dimension and l̃ is the anti-holomorphic
short representation.

We analyze the states in VBPS
1 = U l̃=0

1 ⊕ U
l̃= 1

2
1 ⊕ T l̃=0

1 ⊕ T
l̃= 1

2
1 .
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For ease of computations we perform a spectral flow transformation
on the anti-holomorphic part and work in the NS⊗ ÑS sector.

[Schwimmer and Seiberg, ’86]

Spectrum of orbifold invariant states in the untwisted sector states
with hNS = 1 is: U l̃=0

1 = 0.

6 N = 4 primary states contribute to U
l̃= 1

2
1 : 3 holomorphic

Ψ1
−1/2Ψ̄2

−1/2|0〉NS ⊗ |0〉ÑS ,

Ψ̄1
−1/2Ψ2

−1/2|0〉NS ⊗ |0〉ÑS ,

(−Ψ1
−1/2Ψ̄1

−1/2 +−Ψ2
−1/2Ψ̄2

−1/2)|0〉NS ⊗ |0〉ÑS ,

and 3 non-holomorphic states

Ψ1
−1/2Ψ̄2

−1/2|0〉NS ⊗ Ψ̃
(1)
−1/2Ψ̃

(2)
−1/2|0〉ÑS ,

Ψ̄1
−1/2Ψ2

−1/2|0〉NS ⊗ Ψ̃
(1)
−1/2Ψ̃

(2)
−1/2|0〉ÑS ,

(−Ψ1
−1/2Ψ̄1

−1/2 +−Ψ2
−1/2Ψ̄2

−1/2)|0〉NS ⊗ Ψ̃
(1)
−1/2Ψ̃

(2)
−1/2|0〉ÑS ,

which correspond to holomorphic flavour symmetry currents Ĵ3,±.



Twisted sector spectrum

Toroidal orbifold T4/Z2 has 16 fixed points: β ∈ Z4
2. For a given

fixed point sector β, denote the twisted ground state by |σ−−〉. For
ENS
K3 , left-movers are in twisted NS sector where there are fermionic

zero modes: NS sector twisted ground state is degenerate.
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Toroidal orbifold T4/Z2 has 16 fixed points: β ∈ Z4
2. For a given

fixed point sector β, denote the twisted ground state by |σ−−〉. For
ENS
K3 , left-movers are in twisted NS sector where there are fermionic

zero modes: NS sector twisted ground state is degenerate.

Spectrum of orbifold invariant twisted sector states:

T
l̃= 1

2
1 = 0 ,

T l̃=0
1 = |1̄2〉 , |2̄1〉 , |11〉 , |22〉 ,

1√
2

(|1̄1〉 − |2̄2〉) , 1√
2

(|21〉+ |12〉) ,
where

|ij〉 ≡
√

2∂X
(i)
−1/2Ψ

(j)
0 |σ

−−〉 , |̄ıj〉 ≡
√

2∂X̄
(i)
−1/2Ψ

(j)
0 |σ

−−〉 .
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First order perturbation vanishes at first order: conformal weight of
BPS states saturates the unitarity bound. If we perturb by λ, then
h(0) has to be a minimum of h(λ). Thus, we need to go to second
order in conformal perturbation theory:

λ2

2

∫
d2z2d

2z3〈ϕ†(z1, z̄1)O(z2, z̄2)O(z3, z̄3)ϕ(z4, z̄4)〉 .
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First order perturbation vanishes at first order: conformal weight of
BPS states saturates the unitarity bound. If we perturb by λ, then
h(0) has to be a minimum of h(λ). Thus, we need to go to second
order in conformal perturbation theory:

λ2

2

∫
d2z2d

2z3〈ϕ†(z1, z̄1)O(z2, z̄2)O(z3, z̄3)ϕ(z4, z̄4)〉 .

Using the Möbius transformation, we have

πλ2 log

(
|z1 − z4|2

ε2

)
1

(z1 − z4)2hϕ(z̄1 − z̄4)2h̄ϕ

∫
d2x〈ϕ†(∞)O(1)O(x)ϕ(0)〉 .

Numerical coefficient of log |z1 − z4|, namely the x integral of the
4-point function, gives the shift of conformal dimension.
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Regularisation

We regularise the integrals

λ2

2

∫
d2z2d

2z3〈ϕ†(z1)O(z2)O(z3)ϕ(z4)〉

by cutting out ε-discs around insertion points.

This imposes the constraint: h 6= hϕ or h̄ 6= h̄ϕ.

This condition is satisfied for states we study in both untwisted and
twisted sectors.



Lifting the untwisted sector: holomorphic states

For ϕ = Ĵ3,±
−1 |0〉NS⊗|0〉ÑS

, one method to compute the lifting matrix
is using the general formula derived for lifting of higher-spin currents
[Gaberdiel, Peng, IZ, ‘15]:

γk` = λ2π2
s mod 1∑
m=1−s

(−1)dse−1−bmc
(

2s − 2

s −m − 1

)
〈O|ϕ(s)k

−m ϕ(s)`
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where s = 1. We find

γk` =
λ2π2
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is using the general formula derived for lifting of higher-spin currents
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γk` = λ2π2
s mod 1∑
m=1−s

(−1)dse−1−bmc
(

2s − 2

s −m − 1

)
〈O|ϕ(s)k

−m ϕ(s)`
m |O〉 ,

where s = 1. We find

γk` =
λ2π2

2
δk` .

Another method is to use our regularisation scheme to compute∫
d2x〈ϕk(∞)O†(1)O(x)ϕ`(0)〉 =

∫
d2x

(
1

(1− x)2
+

1

2x

)
1

(1− x̄)2
.

Writing the antiholomorphic part as a total derivative, we apply
Stokes’ theorem

∫
∂U

Fdz + Gdz̄ =

∫
U

(∂zG − ∂z̄F ) dz ∧ dz̄

around x = 0, 1, and ∞ and find the same result.



Lifting the untwisted sector: non-holomorphic states

For ϕ = Ĵ3,±
−1 |0〉NS ⊗ J̃+

−1|0〉ÑS
, we define the modes

ϕm := Vm

(
ΨI
− 1

2
ΨJ
− 1

2
|0〉
)
, ϕ̃m := Vm

(
Ψ̃

(1)

− 1
2

Ψ̃
(2)

− 1
2

|0〉
)

and compute the 4-point function

〈O|ϕ(1)ϕ(x)|O〉 =
∑
m,n

||ϕmϕ̃n|O〉||2x−m−1x̄−n−1 .
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There are 16 fixed point sectors in the twisted sector. In each sector,
there are 8 states of weight (1, 1
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−1/2Ψ

(j)
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−−
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where i , j = 1, 2 and α runs over the 16 fixed point sectors.

Of these 8 states, 6 are N = 4 primary fields and 2 are N = 4
descendants of the chiral primaries. The lifting matrix is defined as

γk` = πλ2Dk` , Dk` :=

∫
d2x〈ϕ`†(∞,∞)O†(1, 1)O(x , x̄)ϕk(0, 0)〉

D is a 128 × 128 matrix. Because the anti-holomorphic part has
enough supersymmetry, we can use superconformal Ward identities
to write it as a total derivative. We then use Stokes’ theorem to
reduce the area integral to a contour integral around the the insertion
points 0, 1,∞.



Lifting the twisted sector

We define D ≡ D(1)⊗D(2), where D(1) is a 16×16 matrix, encoding
the information of the 16 fixed point sectors and D(2) is the 8 × 8
matrix encoding |ij ;α〉 and |̄ıj ;α〉.



Lifting the twisted sector

We define D ≡ D(1)⊗D(2), where D(1) is a 16×16 matrix, encoding
the information of the 16 fixed point sectors and D(2) is the 8 × 8
matrix encoding |ij ;α〉 and |̄ıj ;α〉.

It follows that D(1) is diagonal: unless the state in the exchange
channel is in vacuum sector, there are no log terms.

D(2) simplifies even further: it is block diagonal with two 4 × 4
blocks D(3), which are in turn again block diagonal

D(2) =

(
D(3) 0

0 D(3)

)
, D(3) =

π

2


1 0 0 0
0 1 0 0
0 0 1

2
− 1

2

0 0 − 1
2

1
2

 ,

which has eigenvalues {π2 ,
π
2 ,

π
2 , 0}.



Lifting the twisted sector

Diagonalizing D = D(1) ⊗ D(2), all the states outside of the fixed
point sector α are left invariant. In fixed point sector α, 2 descendant
states have eigenvalues 0 and are left invariant. The remaining 6
states have eigenvalue

γk` =
λ2π2

2
δk` .



Lifting the twisted sector

Diagonalizing D = D(1) ⊗ D(2), all the states outside of the fixed
point sector α are left invariant. In fixed point sector α, 2 descendant
states have eigenvalues 0 and are left invariant. The remaining 6
states have eigenvalue

γk` =
λ2π2

2
δk` .

They are lifted by the exact same amount as their partners in U
l̃=1/2
1

and U l̃=0
1 , forming a long representation of the small N = 4 algebra.



Mathieu moonshine

The challenge in Mathieu moonshine is to find the action of M24 on
the states. To find the action on 90, we need to pick the modulus
to be invariant under permutations of the fixed point sectors

[Taormina, Wendland ’13]
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1
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The challenge in Mathieu moonshine is to find the action of M24 on
the states. To find the action on 90, we need to pick the modulus
to be invariant under permutations of the fixed point sectors

[Taormina, Wendland ’13]

Os :=
1

4

∑
α

Oα .

Computations for the untwisted states does not change. For the
twisted states, the 8 × 8 matrix D(2) does not change either. The
16×16 matrix D(1), however, will be a linear combination of previous
computations: 〈ϕα|Oβ(1)Oγ(x)|ϕδ〉. We find

D(1) =
1

16


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 ,

which has one eigenvalue 1, corresponding to eigenvector Os , and
15 eigenvalues 0.



Mathieu moonshine

This is exactly what we expect: namely, the states corresponding
to the linear combination Os get lifted, whereas the 15 directions
orthogonal to it do not. [Gaberdiel, Keller, Paul ’16].

It would be interesting to analyse higher 1
4 -BPS states and examine

whether they agree with the pattern proposed recently by Taormina
and Wendland (2019).





Second order perturbation theory

Naively, take the x integral to be independent of z2. Then evaluate
the z2 integral. This integral is divergent, regularising it thorugh
cutting ε-discs around z1 and z4:

πλ2 log

(
|z1 − z4|2

ε2

)
1

(z1 − z4)2hϕ(z̄1 − z̄4)2h̄ϕ

∫
d2x〈ϕ†(∞)O(1)O(x)ϕ(0)〉 .

Numerical coefficient of log |z1 − z4|, namely the x integral of the
4-point function, gives the shift of conformal dimension. The x in-
tegral is itself divergent and needs to be regularised. One would
expect that a change of regularisation scheme may change the con-
stant part of the integral, which would then imply that the shift in
conformal dimension is scheme-dependent.



Regularisation

This, however, turns out not to be the case: our original regulari-
sation scheme introduces a z2 dependence for the x integral. More
precisely, we already need to regularise the integrals

λ2

2

∫
d2z2d

2z3〈ϕ†(z1)Φ(z2)Φ(z3)ϕ(z4)〉 .

We regularize the z3 integral by cutting out ε-discs around z1, z2, z4.
For instance, for z4, Möbius transformation, cuts out a disc in the
x integral around x = 0. The cross-ratio is x = (z3−z4)(z2−z1)

(z3−z1)(z2−z4) and
so that the x integral depends on z2 if there are divergences.

Let us assume that the OPE of Φ and ϕ contains a relevant field φ:

O(x)ϕ(0) ∼ 1

x1+hϕ−hx̄1+h̄ϕ−h̄
φ(0) .

• The integral around 0 vanishes unless ϕ and φ have the same spin,
• As long as ∆ 6= ∆ϕ, regularisation of the x integral does not give
a log |z1 − z4| term.



Regularisation

This puts the constraint: h 6= hϕ or h̄ 6= h̄ϕ.

This condition is satisfied for states we study:

• For holomorphic states in untwisted sector ϕ = Ĵ3,±
−1 |0〉NS⊗ |0〉ÑS

there is no such OPE simply because (hϕ, h̄ϕ) = (1, 0) but φ will be
in the twisted sector and hence, non-holomorphic: h̄ 6= h̄ϕ.

• For non-holomorphic states ϕ = Ĵ3,±
−1 |0〉NS⊗ J̃+

−1|0〉ÑS
is marginal

(hϕ, h̄ϕ) = (1, 1). The condition requires that there should be no
marginal fields in the OPE, i.e. the usual condition at first order.

• For the twisted sector states |ij〉 and |̄ıj〉 with (hϕ, h̄ϕ) = (1, 1
2 ),

the condition is satisfied.

Similar argument leads to same conclusion for divergences at x = 1
and x =∞.
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