Solving Holographic Defects

Georgios Linardopoulos
 NCSR "Demokritos"

general secretariat for

10th Crete Regional Meeting in String Theory Kolymbari, 21st September 2019

based on Phys.Lett. B781 (2018) 238 [arXiv:1802.01598] and J.Phys. A: Math.Theor. 50 (2017) 254001 [arXiv:1612.06236] with Charlotte Kristjansen and Marius de Leeuw

Table of Contents

(1) Introduction

- Defect conformal field theories
- Holography and dCFTs
(2) One-point Functions in the D3-D5 System
- The (D3-D5) ${ }_{k}$ system
- Determinant formulas
(3) Outlook \& Applications

Section 1

Introduction

Conformal field theory

- A well-known result in CFT is that the form of 2 and 3-point functions of quasi-primary scalars is completely determined by conformal symmetry, while 1-point functions are zero:

$$
\begin{gathered}
\left\langle\phi_{1}\left(x_{1}\right)\right\rangle=0 \quad(\text { except }\langle c\rangle=c) \\
\left\langle\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right)\right\rangle=\frac{C_{12}}{x_{12}^{2 \Delta}}, \quad \Delta \equiv \Delta_{1}=\Delta_{2}, \quad x_{12} \equiv\left|x_{1}-x_{2}\right| \\
\left\langle\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right)\right\rangle=\frac{C_{123}}{x_{12}^{\Delta_{1}+\Delta_{2}-\Delta_{3}} x_{23}^{\Delta_{2}+\Delta_{3}-\Delta_{1}} x_{31}^{\Delta_{3}+\Delta_{1}-\Delta_{2}}},
\end{gathered}
$$

- If we have more than 3 points we may construct conformally invariant cross ratios, as e.g. in the case of 4 points:

$$
\frac{x_{12} x_{34}}{x_{13} x_{24}} \& \frac{x_{12} x_{34}}{x_{14} x_{23}}
$$

- The corresponding n-point function $(n \geq 4)$ has an arbitrary dependence on them, e.g. for $n=4$:

$$
\left\langle\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right) \phi_{4}\left(x_{4}\right)\right\rangle=f\left(\frac{x_{12} x_{34}}{x_{13} x_{24}}, \frac{x_{12} x_{34}}{x_{14} x_{23}}\right) \cdot \prod_{i<j}^{4} x_{i j}^{\Delta / 3-\Delta_{i}-\Delta_{j}}, \quad \Delta \equiv \sum_{i=1}^{4} \Delta_{i}
$$

Operator product expansion (OPE)

- Generally, we don't need a Lagrangian to define a CFT. A CFT is defined by its local operators and their n-point correlation functions:

$$
\left\{\mathcal{O}_{k}(x)\right\} \quad\left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \ldots \mathcal{O}_{n}\left(x_{n}\right)\right\rangle .
$$

- The latter can be determined by using the operator product expansion (OPE). E.g. for scalars:

$$
\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right)=\sum_{k} \frac{C_{12 k}}{C_{k k}} \cdot \mathcal{P}_{k}\left(x_{12}, \partial_{2}\right) \phi_{k}\left(x_{2}\right)
$$

where the sum is over all the primary operators of the CFT.

- In general, the ($n+2$)-point function can be computed recursively:

$$
\left\langle\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \prod_{i=3}^{n} \phi_{i}\left(x_{i}\right)\right\rangle=\sum_{k} \frac{C_{12 k}}{C_{k k}} \cdot \mathcal{P}_{k}\left(x_{12}, \partial_{2}\right)\left\langle\phi_{k}\left(x_{2}\right) \prod_{i=3}^{n} \phi_{i}\left(x_{i}\right)\right\rangle .
$$

- The CFT is fully specified by the CFT data: $\left\{\Delta_{k}, \ell_{k}, f_{k}, C_{i j}, C_{i j k}\right\}$.

Defect conformal field theory (dCFT)

Now consider a CFT_{d} and introduce a boundary at $z=0$, where $x_{\mu}=(z, \mathbf{x})$ (Cardy, 1984).

Defect conformal field theory (dCFT)

Now consider a CFT ${ }_{d}$ and introduce a boundary at $z=0$, where $x_{\mu}=(z, \mathbf{x}) \quad$ (Cardy, 1984).
The subgroup of the d-dimensional (Euclidean) conformal group $S O(d+1,1)$ that leaves the plane $z=0$ invariant contains:

- $(d-1)$ dimensional translations: $\mathbf{x}^{\prime}=\mathbf{x}+\mathbf{a}$
- $(d-1)$ dimensional rotations $S O(d-1)$
- d dimensional rescalings $x_{\mu}^{\prime}=\alpha x_{\mu} \&$ inversions $x_{\mu}^{\prime}=x_{\mu} / x^{2}$

That is the conformal group in $d-1$ dimensions, $S O(d, 1)$.
The resulting setup that contains a CFT_{d} and a codimension 1 boundary/interface/domain wall/defect upon which a CFT $_{d-1}$ lives, is known as a defect Conformal Field Theory (dCFT).

dCFT correlators: bulk

Due to the presence of the $z=0$ boundary we may form cross ratios from only 2 bulk points:

$$
\xi=\frac{x_{12}^{2}}{4\left|z_{1}\right|\left|z_{2}\right|} \quad \& \quad v^{2}=\frac{\xi}{\xi+1}=\frac{x_{12}^{2}}{x_{12}^{2}+4\left|z_{1}\right|\left|z_{2}\right|}
$$

This means that 1-point bulk functions are nonzero and the only ones fully determined by symmetry:

$$
\langle\phi(z, \mathbf{x})\rangle=\frac{C}{|z|^{\Delta}}
$$

n-point bulk functions $(n \geq 2)$ will contain an arbitrary dependence on the cross ratio ξ. E.g. the 2-point bulk function of two scalars will be:

$$
\left\langle\phi_{1}\left(z_{1}, \mathbf{x}_{1}\right) \phi_{2}\left(z_{2}, \mathbf{x}_{2}\right)\right\rangle=\frac{f_{12}(\xi)}{\left|z_{1}\right|^{\Delta_{1}}\left|z_{2}\right|^{\Delta_{2}}}
$$

McAvity-Osborn, 1995
i.e. it will not vanish if $\Delta_{1} \neq \Delta_{2}$.

dCFT correlators: bulk

Due to the presence of the $z=0$ boundary we may form cross ratios from only 2 bulk points:

$$
\xi=\frac{x_{12}^{2}}{4\left|z_{1}\right|\left|z_{2}\right|} \quad \& \quad v^{2}=\frac{\xi}{\xi+1}=\frac{x_{12}^{2}}{x_{12}^{2}+4\left|z_{1}\right|\left|z_{2}\right|}
$$

This means that 1-point bulk functions are nonzero and the only ones fully determined by symmetry:

$$
\langle\phi(z, \mathbf{x})\rangle=\frac{C}{|z|^{\Delta}}
$$

n-point bulk functions $(n \geq 2)$ will contain an arbitrary dependence on the cross ratio ξ. E.g. the 2-point bulk function of two scalars will be:

$$
\left\langle\phi_{1}\left(z_{1}, \mathbf{x}_{1}\right) \phi_{2}\left(z_{2}, \mathbf{x}_{2}\right)\right\rangle=\frac{f_{12}(\xi)}{\left|z_{1}\right|^{\Delta_{1}}\left|z_{2}\right|^{\Delta_{2}}}
$$

McAvity-Osborn, 1995
i.e. it will not vanish if $\Delta_{1} \neq \Delta_{2}$. In principle, all correlation functions can be determined recursively.

dCFT correlators: bulk

Due to the presence of the $z=0$ boundary we may form cross ratios from only 2 bulk points:

$$
\xi=\frac{x_{12}^{2}}{4\left|z_{1}\right|\left|z_{2}\right|} \quad \& \quad v^{2}=\frac{\xi}{\xi+1}=\frac{x_{12}^{2}}{x_{12}^{2}+4\left|z_{1}\right|\left|z_{2}\right|}
$$

This means that 1-point bulk functions are nonzero and the only ones fully determined by symmetry:

$$
\langle\phi(z, \mathbf{x})\rangle=\frac{C}{|z|^{\Delta}}
$$

n-point bulk functions $(n \geq 2)$ will contain an arbitrary dependence on the cross ratio ξ. E.g. the 2-point bulk function of two scalars will be:

$$
\left\langle\phi_{1}\left(z_{1}, \mathbf{x}_{1}\right) \phi_{2}\left(z_{2}, \mathbf{x}_{2}\right)\right\rangle=\frac{f_{12}(\xi)}{\left|z_{1}\right|^{\Delta_{1}}\left|z_{2}\right|^{\Delta_{2}}}
$$

McAvity-Osborn, 1995
i.e. it will not vanish if $\Delta_{1} \neq \Delta_{2}$. In principle, all correlation functions can be determined recursively.

- 1-point functions are fundamental building blocks of dCFTs (along with the CFT data).

Subsection 2

Holography and dCFTs

Holographic dCFTs

Holographic dCFTs can be realized in the context of the $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ correspondence:
$\left\{\right.$ Type IIB String Theory in $\left.\mathrm{AdS}_{5} \times \mathrm{S}^{5}\right\} \longleftrightarrow\{\mathcal{N}=4, \mathfrak{s u}(N)$ Super Yang-Mills Theory in 4d $\}$
Maldacena, 1998
as shown by Karch and Randall in 2001, in an attempt to provide an explicit realization of gravity localization on an AdS 4 brane (Karch-Randall, 2001a).

The D3-D5 system: bulk geometry

IIB string theory on $\operatorname{AdS}_{5} \times S^{5}$ is encountered very close to a system of N coincident D3-branes:

The D3-branes extend along $x_{1}, x_{2}, x_{3} \ldots$

	t	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}
D3	\bullet	\bullet	\bullet	\bullet						

The D3-D5 system: bulk geometry

IIB string theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ is encountered very close to a system of N coincident D3-branes:

Now insert a single (probe) D5-brane at $x_{3}=x_{7}=x_{8}=x_{9}=0 \ldots$

	t	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}
D3	\bullet	\bullet	\bullet	\bullet						
D5	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet			

The D3-D5 system: bulk geometry

IIB string theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ is encountered very close to a system of N coincident D3-branes:

Now insert a single (probe) D5-brane at $x_{3}=x_{7}=x_{8}=x_{9}=0 \ldots$ its geometry will be $\operatorname{AdS}_{4} \times S^{2} \ldots$

	t	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}
D3	\bullet	\bullet	\bullet	\bullet						
D5	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet			

The D3-D5 system: description

- In the bulk, the D3-D5 system describes IIB string theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ bisected by a D5 brane with worldvolume geometry $\mathrm{AdS}_{4} \times \mathrm{S}^{2}$.
- The dual field theory is still $\operatorname{SU}(N), \mathcal{N}=4$ SYM in $3+1$ dimensions, that interacts with a CFT living on the $2+1$ dimensional defect:

$$
S=S_{\mathcal{N}=4}+S_{2+1}
$$

DeWolfe-Freedman-Ooguri, 2001

- Due to the presence of the defect, the total bosonic symmetry of the system is reduced from $S O(4,2) \times S O(6)$ to $S O(3,2) \times S O(3) \times$ SO(3).
- The corresponding superalgebra $\mathfrak{p s u}(2,2 \mid 4)$ becomes $\mathfrak{o s p}(4 \mid 4)$.

Section 2

One-point Functions in the D3-D5 System

Subsection 1

The (D3-D5) ${ }_{k}$ system

The (D3-D5) ${ }_{k}$ system

- Add k units of background $U(1)$ flux on the S^{2} component of the $\mathrm{AdS}_{4} \times \mathrm{S}^{2}$ D5-brane.
- Then k of the N D3-branes $(N \gg k)$ will end on the D5-brane.
- On the dual SCFT side, the gauge group $S U(N) \times S U(N)$ breaks to $S U(N-k) \times S U(N)$.
- Equivalently, the fields of $\mathcal{N}=4$ SYM develop nonzero vevs...
(Karch-Randall, 2001b)

The dCFT interface of D3-D5

- An interface is a wall between two (different/same) QFTs

- It can be described by means of classical solutions that are known as "fuzzy-funnel" solutions (Constable-Myers-Tafjord, 1999 \& 2001)
- Here, we need an interface to separate the $S U(N)$ and $S U(N-k)$ regions of the (D3-D5) ${ }_{k}$ dCFT...
- For no vectors/fermions, we want to solve the equations of motion for the scalar fields of $\mathcal{N}=4 \mathrm{SYM}$:

$$
A_{\mu}=\psi_{\mathrm{a}}=0, \quad \frac{d^{2} \Phi_{i}}{d z^{2}}=\left[\Phi_{j},\left[\Phi_{j}, \Phi_{i}\right]\right], \quad i, j=1, \ldots, 6 .
$$

- A manifestly $S O(3) \simeq S U(2)$ symmetric solution is given by $(z>0)$:

$$
\begin{array}{r}
\Phi_{2 i-1}(z)=\frac{1}{z}\left[\begin{array}{cc}
\left(t_{i}\right)_{k \times k} & 0_{k \times(N-k)} \\
0_{(N-k) \times k} & 0_{(N-k) \times(N-k)}
\end{array}\right] \quad \& \quad \Phi_{2 i}=0, \\
\text { Nagasaki-Yamaguchi, } 2012
\end{array}
$$

where the matrices t_{i} furnish a k-dimensional representation of $\mathfrak{s u}(2)$:

$$
\left[t_{i}, t_{j}\right]=i \epsilon_{i j k} t_{k} .
$$

1-point functions

Following Nagasaki \& Yamaguchi (2012), the 1-point functions of local gauge-invariant scalar operators

$$
\langle\mathcal{O}(z, x)\rangle=\frac{C}{z^{\Delta}}, \quad z>0
$$

can be calculated within the D3-D5 dCFT from the corresponding fuzzy-funnel solution, for example:

$$
\mathcal{O}(z, x)=\psi^{i_{1} \ldots i_{L}} \operatorname{Tr}\left[\Phi_{2 i_{1}-1} \ldots \Phi_{2 i_{L}-1}\right] \xrightarrow[\text { interface }]{\stackrel{S U(2)}{\longrightarrow} \frac{1}{z^{L}} \cdot \Psi^{i_{1} \ldots i_{L}} \operatorname{Tr}\left[t_{i_{1}} \ldots t_{i_{L}}\right], ~}
$$

where $\Psi^{i_{1} \ldots i_{L}}$ is an $\mathfrak{s o}(6)$-symmetric tensor and the constant C is given by (MPS=matrix product state)

$$
C=\frac{1}{\sqrt{L}}\left(\frac{8 \pi^{2}}{\lambda}\right)^{L / 2} \cdot \frac{\langle\mathrm{MPS} \mid \Psi\rangle}{\langle\Psi \mid \Psi\rangle^{\frac{1}{2}}}, \quad\left\{\begin{array}{l}
\langle\mathrm{MPS} \mid \Psi\rangle \equiv \Psi^{i_{1} \ldots i_{L}} \operatorname{Tr}\left[t_{i_{1}} \ldots t_{i_{L}}\right] \quad \text { ("overlap") } \\
\langle\Psi \mid \Psi\rangle \equiv \Psi^{i_{1} \ldots i_{L}} \Psi_{i_{1} \ldots i_{L}}
\end{array}\right\}
$$

which ensures that the 2-point function will be normalized to unity $\left(\mathcal{O} \rightarrow(2 \pi)^{L} \cdot \mathcal{O} /\left(\lambda^{L / 2} \sqrt{L}\right)\right.$

$$
\left\langle\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right)\right\rangle=\frac{1}{\left|x_{1}-x_{2}\right|^{2 \Delta}}
$$

within $\operatorname{SU}(N), \mathcal{N}=4$ SYM (i.e. without the defect).

Bethe eigenstates

We will only consider the 1-point functions of Bethe eigenstates $|\Psi\rangle$ of the integrable $\mathfrak{s o}(6)$ spin chain:

$$
\mathbb{D}=L \cdot \mathbb{I}+\frac{\lambda}{8 \pi^{2}} \cdot \mathbb{H}+\sum_{n=2}^{\infty} \lambda^{n} \cdot \mathbb{D}_{n}, \quad \mathbb{H}=\sum_{j=1}^{L}\left(\mathbb{I}_{j, j+1}-\mathbb{P}_{j, j+1}+\frac{1}{2} \mathbb{K}_{j, j+1}\right), \quad \lambda=g_{\mathrm{YM}}^{2} N
$$

Minahan-Zarembo, 2002
which describes the mixing of single-trace operators $\mathcal{O}(x)$ up to one loop in $\mathcal{N}=4$ SYM. We've set:

$$
\begin{aligned}
\mathbb{I} \cdot\left|\ldots \Phi_{a} \Phi_{b} \ldots\right\rangle & =\left|\ldots \Phi_{a} \Phi_{b} \ldots\right\rangle \\
\mathbb{P} \cdot\left|\ldots \Phi_{a} \Phi_{b} \ldots\right\rangle & =\left|\ldots \Phi_{b} \Phi_{a} \ldots\right\rangle \\
\mathbb{K} \cdot\left|\ldots \Phi_{a} \Phi_{b} \ldots\right\rangle & =\delta_{a b} \sum_{c=1}^{6}\left|\ldots \Phi_{c} \Phi_{c} \ldots\right\rangle .
\end{aligned}
$$

The above result is unaffected by the presence of a defect in the SCFT (DeWolfe-Mann, 2004).

Subsection 2

Determinant formulas

M. de Leeuw, C. Kristjansen, G. Linardopoulos, Scalar One-point functions and matrix product states of AdS/dCFT, Phys.Lett. B781 (2018) 238 [arXiv:1802.01598]

1-point functions in $\mathfrak{s u}(2)$

In the $\mathfrak{s u}(2)$ sector our goal is to calculate the one-point function coefficient:

$$
C=\frac{1}{\sqrt{L}}\left(\frac{8 \pi^{2}}{\lambda}\right)^{L / 2} \cdot \frac{\langle\mathrm{MPS} \mid \mathbf{p}\rangle}{\langle\mathbf{p} \mid \mathbf{p}\rangle^{\frac{1}{2}}}, \quad k \ll N \rightarrow \infty
$$

where the $k \times k$ matrices $t_{1,3}$ form a k-dimensional representation of $\mathfrak{s u}(2)$:

$$
\langle\mathrm{MPS} \mid \mathbf{p}\rangle=\mathfrak{N} \cdot \sum_{\sigma \in S_{M}} \sum_{1 \leq x_{k} \leq L} \exp \left[i \sum_{k} p_{\sigma(k)} x_{k}+\frac{i}{2} \sum_{j<k} \theta_{\sigma(j) \sigma(k)}\right] \cdot \operatorname{Tr}\left[t_{3}^{x_{1}-1} t_{1} t_{3}^{x_{2}-x_{1}-1} \ldots\right] .
$$

Overlap properties:

- The overlap $\langle\mathrm{MPS} \mid \mathbf{p}\rangle$ vanishes if $M \equiv N_{1}$ or L is odd: $\left.\operatorname{Tr}\left[t_{3}^{x_{1}-1} t_{1} t_{3}^{x_{2}-x_{1}-1} \ldots\right]\right|_{M \text { or } L \text { odd }}=0$
- The overlap $\langle\mathrm{MPS} \mid \mathbf{p}\rangle$ vanishes if $\sum p_{i} \neq 0$: due to trace cyclicity
- The overlap $\langle\mathrm{MPS} \mid \mathbf{p}\rangle$ vanishes if momenta are not fully balanced $\left(p_{i},-p_{i}\right)$: due to $Q_{3} \cdot|\mathrm{MPS}\rangle=0$ de Leeuw-Kristjansen-Zarembo, 2015

The $\mathfrak{s u}(2)$ determinant formula

Vacuum overlap:

$$
\langle\mathrm{MPS} \mid 0\rangle=\operatorname{Tr}\left[t_{3}^{\llcorner }\right]=\zeta\left(-L, \frac{1-k}{2}\right)-\zeta\left(-L, \frac{1+k}{2}\right), \quad \zeta(s, a) \equiv \sum_{n=0}^{\infty} \frac{1}{(n+a)^{s}}
$$

where $\zeta(s, a)$ is the Hurwitz zeta function. For M balanced excitations the overlap becomes:

$$
C_{k}\left(\left\{u_{j}\right\}\right) \equiv \frac{\left\langle\mathrm{MPS} \mid\left\{u_{j}\right\}\right\rangle_{k}}{\sqrt{\left\langle\left\{u_{j}\right\} \mid\left\{u_{j}\right\}\right\rangle}}=C_{2}\left(\left\{u_{j}\right\}\right) \cdot \sum_{j=(1-k) / 2}^{(k-1) / 2} j^{L}\left[\prod_{l=1}^{M / 2} \frac{u_{l}^{2}\left(u_{l}^{2}+k^{2} / 4\right)}{\left[u_{l}^{2}+(j-1 / 2)^{2}\right]\left[u_{l}^{2}+(j+1 / 2)^{2}\right]}\right]
$$

where

$$
C_{2}\left(\left\{u_{j}\right\}\right) \equiv \frac{\left\langle\mathrm{MPS} \mid\left\{u_{j}\right\}\right\rangle_{k=2}}{\sqrt{\left\langle\left\{u_{j}\right\} \mid\left\{u_{j}\right\}\right\rangle}}=\left[\prod_{j=1}^{M / 2} \frac{u_{j}^{2}+1 / 4}{u_{j}^{2}} \frac{\operatorname{det} G^{+}}{\operatorname{det} G^{-}}\right]^{\frac{1}{2}},
$$

and the $M / 2 \times M / 2$ matrices $G_{j k}^{ \pm}$and $K_{j k}^{ \pm}$are defined as:

$$
G_{j k}^{ \pm}=\left(\frac{L}{u_{j}^{2}+1 / 4}-\sum_{n} K_{j n}^{+}\right) \delta_{j k}+K_{j k}^{ \pm} \quad \& \quad K_{j k}^{ \pm}=\frac{2}{1+\left(u_{j}-u_{k}\right)^{2}} \pm \frac{2}{1+\left(u_{j}+u_{k}\right)^{2}} .
$$

Buhl-Mortensen, de Leeuw, Kristjansen, Zarembo, 2015

The $\mathfrak{s u}$ (3) determinant formula

Moving to the $\mathfrak{s u}(3)$ sector, let us define the following Baxter functions Q and R :

$$
Q_{1}(x)=\prod_{i=1}^{M}\left(x-u_{i}\right), \quad Q_{2}(x)=\prod_{i=1}^{N_{+}}\left(x-v_{i}\right), \quad R_{2}(x)=\prod_{i=1}^{2\left\lfloor N_{+} / 2\right\rfloor}\left(x-v_{i}\right)
$$

All the one-point functions in the $\mathfrak{s u}(3)$ sector are then given by

$$
C_{k}\left(\left\{u_{j} ; v_{j}\right\}\right)=T_{k-1}(0) \cdot \sqrt{\frac{Q_{1}(0) Q_{1}(i / 2)}{R_{2}(0) R_{2}(i / 2)} \cdot \frac{\operatorname{det} G^{+}}{\operatorname{det} G^{-}}}
$$

de Leeuw-Kristjansen-GL, 2018
where $u_{i} \equiv u_{1, i}, v_{j} \equiv u_{2, j}$ and

$$
T_{n}(x)=\sum_{a=-n / 2}^{n / 2}(x+i a)^{L} \frac{Q_{1}(x+i(n+1) / 2) Q_{2}(x+i a)}{Q_{1}(x+i(a+1 / 2)) Q_{1}(x+i(a-1 / 2))}
$$

The validity of the $\mathfrak{s u}(3)$ formula has been checked numerically for a plethora of $\mathfrak{s u}(3)$ states.

The $\mathfrak{s o}$ (6) determinant formula

The one-point function in the $\mathfrak{s o}$ (6) sector is given by

$$
C_{k}\left(\left\{u_{j} ; v_{j} ; w_{j}\right\}\right)=\mathbb{T}_{k-1}(0) \cdot \sqrt{\frac{Q_{1}(0) Q_{1}(i / 2) Q_{1}(i k / 2) Q_{1}(i k / 2)}{R_{2}(0) R_{2}(i / 2) R_{3}(0) R_{3}(i / 2)} \cdot \frac{\operatorname{det} G^{+}}{\operatorname{det} G^{-}}}
$$

where $u_{i} \equiv u_{1, i}, v_{j} \equiv u_{2, j}, w_{k} \equiv u_{3, k}$ and

$$
\mathbb{T}_{n}(x)=\sum_{a=-n / 2}^{n / 2}(x+i a)^{L} \frac{Q_{2}(x+i a) Q_{3}(x+i a)}{Q_{1}(x+i(a+1 / 2)) Q_{1}(x+i(a-1 / 2))}
$$

de Leeuw-Kristjansen-GL, 2018
This formula has also been verified numerically. The $M / 2 \times M / 2$ matrices $G_{j k}^{ \pm}$and $K_{j k}^{ \pm}$are defined as:

$$
\begin{aligned}
G_{a b, j k}^{ \pm}=\delta_{a b} \delta_{j k}\left[\frac{L q_{a}^{2}}{u_{a, j}^{2}+q_{a}^{2} / 4}-\sum_{c=1}^{3} \sum_{l=1}^{\lceil N / 2\rceil} K_{a c, j l}^{+}\right]+K_{a b, j k}^{ \pm}, & K_{a b, j k}^{ \pm}=\mathbb{K}_{a b, j k}^{-} \pm \mathbb{K}_{a b, j k}^{+} \\
& \mathbb{K}_{a b, j k}^{ \pm} \equiv \frac{M_{a b}}{\left(u_{a, j} \pm u_{b, k}\right)^{2}+\frac{1}{4} M_{a b}^{2}}
\end{aligned}
$$

The $\mathfrak{s o}$ (6) determinant formula

The one-point function in the $\mathfrak{s o}$ (6) sector is given by

$$
C_{k}\left(\left\{u_{j} ; v_{j} ; w_{j}\right\}\right)=\mathbb{T}_{k-1}(0) \cdot \sqrt{\frac{Q_{1}(0) Q_{1}(i / 2) Q_{1}(i k / 2) Q_{1}(i k / 2)}{R_{2}(0) R_{2}(i / 2) R_{3}(0) R_{3}(i / 2)} \cdot \frac{\operatorname{det} G^{+}}{\operatorname{det} G^{-}}}
$$

where $u_{i} \equiv u_{1, i}, v_{j} \equiv u_{2, j}, w_{k} \equiv u_{3, k}$ and

$$
\mathbb{T}_{n}(x)=\sum_{a=-n / 2}^{n / 2}(x+i a)^{L} \frac{Q_{2}(x+i a) Q_{3}(x+i a)}{Q_{1}(x+i(a+1 / 2)) Q_{1}(x+i(a-1 / 2))}
$$

More properties of one-point functions in $\mathfrak{s o}$ (6):

- One-point functions vanish if M or $L+N_{+}+N_{-}$is odd.
- Because $Q_{3} \cdot|\mathrm{MPS}\rangle=0$, all 1-point functions vanish unless all the Bethe roots are fully balanced:

$$
\begin{gathered}
\left\{u_{1}, \ldots, u_{M / 2},-u_{1}, \ldots,-u_{M / 2}, 0\right\} \\
\left\{v_{1}, \ldots, v_{N_{+} / 2},-v_{1}, \ldots,-v_{N_{+} / 2}, 0\right\}, \quad\left\{w_{1}, \ldots, w_{N_{-} / 2},-w_{1}, \ldots,-w_{N_{-} / 2}, 0\right\}
\end{gathered}
$$

Section 3

Outlook \& Applications

Outlook

Surface critical phenomena are described by means of dCFTs and BCFTs... the surface critical exponents are related to the conformal dimensions of boundary operators...

Applications

- Boundary conformal bootstrap (Liendo-Rastelli-van Rees, 2012): The insertion of a boundary in the bulk of a CFT can be used to constrain both the dCFT and the original CFT...
- D3-D7 system proposed as a holographic model of graphene (Rey, 2009) and topological insulators (Kristjansen-Semenoff, 2016)....
- Relation to the quench action approach (Piroli-Vernier-Calabrese-Pozsgay, Bertini-Tartaglia-Calabrese, 2018)...
- Strong-coupling methods... String integrability in the presence of boundaries (Dekel-Oz, 2011)...

Outlook

Surface critical phenomena are described by means of dCFTs and BCFTs... the surface critical exponents are related to the conformal dimensions of boundary operators...

Applications

- Boundary conformal bootstrap (Liendo-Rastelli-van Rees, 2012): The insertion of a boundary in the bulk of a CFT can be used to constrain both the dCFT and the original CFT...
- D3-D7 system proposed as a holographic model of graphene (Rey, 2009) and topological insulators (Kristjansen-Semenoff, 2016)....
- Relation to the quench action approach (Piroli-Vernier-Calabrese-Pozsgay, Bertini-Tartaglia-Calabrese, 2018)...
- Strong-coupling methods... String integrability in the presence of boundaries (Dekel-Oz, 2011)...

Eux $\alpha \rho \iota \tau \omega!$

Research supported by the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT), in the framework of the 1st post-doctoral researchers support, under grant agreement N. 2595.

