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Motivation I.

Since the discovery of the initial correspondence, there is an extensive
research towards to more realistic gauge/gravity dualities (confinement,
no susy, temperature, quarks, phase transitions...).

X This talk: Theories with Broken Rotational Symmetry in
Gauge/Gravity correspondence.

Why?
The existence of strongly coupled anisotropic systems.

The expansion of the Quark-Gluon plasma at the earliest times after
the collision, momentum anisotropic plasmas.

Strong Magnetic Fields in strongly coupled theories.

New interesting phenomena in presence on such fiels, i.e. inverse
magnetic catalysis.

eg: (Bali, Bruckmann, Endrodi, Fodor, Katz, Krieg et al. 2011)

Anisotropic low dimensional materials in condensed matter.
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Why? More:

Weakly coupled vs strongly coupled anisotropic theories.
(Dumitru, Strickland, Romatschke, Baier,...)

Properties of top-down supergravity Black hole solutions that are
AdS in UV flowing to Lifshitz-like in IR :
? Fixed scaling parameter z for such anisotropic solutions or even
isotropic flows?

(Azeyanagi, Li, Takayanagi, 2009; Mateos, Trancanelli, 2011;...)

? New flows to alternative IR fixed points?
————————————————————————————

New Features! Several Universality Relations for the isotropic
theories are violated in aniso!
Shear viscosity η over entropy density s: takes parametrically low
values wrt degree of anisotropy η

s <
1

4π .
(Rebhan, Steineder 2011; D.G. 2012; Jain, Samanta, Trivedy 2015; D.G.,

Gursoy, Pedraza, 2017)
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Reminding Slide:

The anisotropic hyperscaling violation metric

ds2 = u−
2θ
d

(
−u2z

(
dt2 + dy2

i

)
+ u2dx2

i +
du2

u2

)
exhibits a critical exponent z and a hyperscaling violation exponent
θ.

θ = 0, z = 1⇒ AdS.
θ = 0⇒ scale invariant theory.
In general no scale invariance.

t → λz t, y → λzy , x → λx , u → u

λ
, ds → λ

θ
d ds .
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How is Anisotropy introduced? A Pictorial Representation:

• For the Lifshitz-like IIB Supergravity solutions
ds2 = u2z (dx2

0 + dx2
i ) + u2dx2

3 + du2

u2 + ds2
S5 .

Introduction of additional branes: (Azeyanagi, Li, Takayanagi, 2009)

• Which equivalently leads to the following AdS/CFT deformation.    
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•dC8 ∼ ?dχ with the non-zero component Cx0x1x2S5 .
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A Theory with Phase Transitions in One Page:

How the Field Theory looks like?

X 4d SU(N) Strongly coupled anisotropic gauge theory.
X Its dynamics are affected by a scalar operator O∆.
X Anisotropy is introduced by another operator Õ ∼ θ(x3)TrF ∧ F with

a space dependent coupling.

The gravity dual theory is an Einstein-Axion-Dilaton theory in 5
dimensions with a non-trivial potential.

X A ”backreacting” scalar field depending on spatial directions, the
axion; and a non-trivial dilaton.

X Solutions are non-trivial RG flows:
Conformal fixed point in the UV ⇒ Anisotropic (Hyperscaling
Lifshitz-like) in IR.

The vacuum state confines color and there exists a phase transition
at finite Tc above which a deconfined plasma state arises.

(D.G., Gursoy, Pedraza, 2017)
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An Anisotropic Theory

The generalized Einstein-Axion-Dilaton action with a potential for the
dilaton and an arbitrary coupling between the axion and the dilaton:

S =
1

2κ2

∫
d5x
√
−g
[
R − 1

2
(∂φ)2 − V (φ)− 1

2
Z(φ)(∂χ)2

]
.

Where

Z(φ) = e2γφ , V (φ) ∼ −12 cosh(σφ)−
(
m(∆)2

2
− 6σ2

)
φ2 .

((Gubser, Nellore), Pufu, Rocha 2008a,b;Gursoy, Kiritsis, Nitti, 2007;...)

Remark: For σ = 0, γ = 1,m(∆) = 0 the action and the solution of
eoms, are reduced of IIB supergravity.
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A Solution : The RG Flow

ds2 =
1

u2

(
−F(u)B(u) dt2 + dx2

1 + dx2
2 +H(u)dx2

3 +
du2

F(u)

)
,

χ = αx3 , φ = φ(u) , F(uh) = 0 .

⇓ ⇓

ds2 = u
− 2θ

3

−u2z
(

f (u)dt2 + dx2
1,2

)
+ α̃u2dx2

3 +
du2

f (u)u2
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We have obtained the theories, are they physical
and stable?

⇓
⇓

X Energy Conditions Analysis: TµνN
µNν ≥ 0 , NµNµ = 0 .

AND

X Local Thermodynamical Stability Analysis
⇓
⇓

YES!
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Three conditions that constrain (z , θ) and as a result (γ, σ).

(z − 1)(1− θ + 3z) ≥ 0 , z =
2 + 4γ2 − 3σ2

2γ(2γ − 3σ)
,

θ2 − 3 + 3z(1− θ) ≥ 0 , θ =
3σ

2γ
,

1− θ + 2z ≥ 0 .

The blue region is the acceptable for the theory parameters.
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Phase Transitions

Competition for dominance between different gravitational
backgrounds.

The Critical Temperature of the theories vs the anisotropy gives:

Plasma I

Plasma II

Confined

1 2 3 4

0.1

0.2

0.3

0.4

0.5

The Tc is reduced in presence of anisotropies of the theory.
(D.G., Gursoy, Pedraza, 2017)
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A Proposal

The Tc(α) decrease with anisotropy α.

No charged fermionic degrees of freedom in our case; our plasma is
neutral.

Anisotropy causes lower Tc = ”Inverse Anisotropic Catalysis”.
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Universal Results: η/s in Theories with Broken Symmetry

Consider a finite T theory in the deconfined phase:

ds2 = gtt(u)dt2 + g11(u)(dx2
1 + dx2

2 ) + g33(u)dx2
3 + guu(u)du2

The anisotropic shear viscosity violates the isotropic “bound” of
1/4π :

ηij,kl = lim
ω→0

1

ω
Im

∫
dtdxe iωtθ(t)〈[Tij (t, x),Tkl (0, 0)]〉

”Frictionless” Anisotropic Plasma.

The Ratio:

4π
η‖
s

=
g11

g33

∣∣∣∣
u=uh

∼
(
T

α

)p

, p = 2− 2

z
∼ [0,∞) , α� T .
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Langevin Dynamics and Brownian Motion

κ‖

κ⊥
=

(
g00g‖‖

)′
g⊥⊥g‖‖

(
g00
g‖‖

)′

∣∣∣∣∣
u=uwh

,
〈

p2
‖,⊥

〉
∼ κ‖,⊥T

A Universal Inequality for Isotropic Theory:
κ‖ ≥ κ⊥ for any isotropic strongly coupled plasma!

Can be inverted in the anisotropic theories: κ‖≥<κ⊥.

(Gursoy, Kiritsis, Mazzanti, Nitti, 2010; D.G, Soltanpanahi, 2013a,b; D.G. 2018)
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Anisotropic candidate of c-function

A proposed c-function is
(Chu, Giataganas, 2019;(2d) Casini, Huerta 2006; (iso 2d+) Ryu, Takayanagi

2006; Myers, Singh 2012; (nrcft) Cremonini, Dong 2014)

cx := βx
ldx−1
x

Hd1−1
x Hd2

y

∂Sx

∂ ln lx
, dx := d1 + d2

n2

n1

where H is the infrared regulator, d1 (xi ), d2 (yi ) are the spatial
dimensions and n1, n2 are defined at the fixed point:

[t] = Lnt , [xi ] = Ln1 , [yj ] = Ln2 .

A relativistic ”c-theorem” is guaranteed as long as the NEC:
T r

r − T 0
0 ≥ 0 is satisfied:

dc

dr
∝
∫ l

0

dxA′−2
(
T r

r − T 0
0

)
≥ 0 .

How about the Anisotropic Theories?
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Not a one-to-one correspondence between NEC and c-function
monotonicity, but not surprising!

The NEC can be written as f ′i (r) > 0, where fi (r) are functions of
metric elements.

Observation: For an anisotropic theory with a conformal UV fixed
point and d1 = d2 the metric boundary condition

fi UV , r=∞ ≤ 0 ,

guarantees the right monotonicity for the c-functions along the RG
flow

dc

dr
∝ −

∫
fi (r) .
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Conclusions

X Observation: In strongly coupled theories many phenomena are more
sensitive to the presence of the anisotropy than the source that
triggers it.

X Strongly Coupled Confining Anisotropic theories with confinement
/deconfinement phase transition.

X The phase transitions occur at lower critical Temperature as the
anisotropy is increased = Inverse Anisotropic Catalysis!

X Several Universal Isotropic relations are anisotropically violated.

X Holographic monotonic functions and conditions of monotonicity for
(anisotropic) RG flows.

Are there any other observables that form functions, such that to
have monotonic behavior along the RG flow?

(Chu, Derendinger, DG in progress)
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An Anisotropy of the Quark-Gluon Plasma

Pressure gradients for non-central collisions along the short axis of the elliptic
flow are higher than the long axis. The expansion along the short axis is more
rapid leading to anisotropic momentum distribution.
                                                                                                                         Coordinate             Momentum   

                                                                                                                    Space                        Space 

                                                               Y 

                                                                                Participants 

 

                                                                                                      X 

 

                                                    

                                              Spectators 

                               

                                         
The elliptic flow parameter

v2 =

〈
p2

x − p2
y

〉
〈p2

x + p2
y 〉

can be measured experimentally through the particle distributions.
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A New Analytic Black-Hole Solution

The potential and the axion-dilaton coupling

V (φ) = 6eσφ, Z (φ) = e2γφ.

A Lifshitz-like anisotropic hyperscaling violation background which may
accommodate a black hole

(D.G., 2018)

ds2
s = α2CRe

φ(u)
2 u−

2θ
3z

(
−u2

(
f (u)dt2 + dx2

i

)
+ CZu

2
z dx2

3 +
du2

f (u)α2u2

)
,

where

f (u) = 1−
(uh

u

)3+(1−θ)/z

, e
φ(u)

2 = u

√
θ2+3z(1−θ)−3√

6z ,

CR =
(3z − θ)(1 + 3z − θ)

6z2
, CZ =

z2

2(z − 1)1 + 3z − θ
,

z =
4γ2 − 3σ2 + 2

2γ(2γ − 3σ)
, θ =

3σ

2γ
.
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Axion-Dilaton Coupling and Potential, rule the Scaling
Coefficients

The values of (θ, z) dependence on (γ, σ)

z =
4γ2 − 3σ2 + 2

2γ(2γ − 3σ)
, θ =

3σ

2γ
.

Special case: (σ = 0, γ = 1) supergravity truncated action with a
single solution (θ = 0, z = 3/2).

The scaling factors z and θ are determined by the constants in the
Axion-Dilaton Coupling and the Potential. This is the reason that in
the particular setup the supergravity solutions have them fixed.
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Baryons in Theories with External Fields

The quark distribution for baryons in theories with anisotropic
dynamics:
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Baryon on the transverse plane and Baryon on the plane that the
field lies. (D.G. 2018)

System of fundamental F1 strings with a vertex Dp-brane, in an
anisotropic gravity theory.
Similar effect on Q-distribution, for speeding baryons in strong
coupled isotropic plasma. (Athanasiou, Liu, Rajagopal 2008)
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Local Thermodynamic Stability

The necessary and sufficient conditions for local thermodynamical
stability in the canonical ensemble are

cα = T

(
∂S

∂T

)
α

≥ 0 , Φ′ =

(
∂Φ

∂α

)
T

≥ 0

cα is the specific heat: increase of the temperature leads to increase
of the entropy.
Φ′ is derivative of the potential: the system is stable under
infinitesimal charge fluctuations.

In the GCE these conditions should be equivalent of having no
positive eigenvalues of the Hessian matrix of the entropy with
respect to the thermodynamic variables. (Gubser, Mitra 2001)

In the IR the positivity of the specific heat imposes

cα = 1− θ + 2z ≥ 0
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Confinement/Deconfinement Phase transitions

Competition for dominance between different gravitational
backgrounds.
The free energy of the theories vs the temperature T for different
anisotropy (α/j=0,1,3):
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Horizontal Axis: Confining Phase.
Upper Branch: Black hole A:Deconfining Plasma Phase.
Lower Branch: Black hole B:Deconfining Plasma Phase.
α/j ' 2: A critical value above which a richer structure in the phase
diagram exist.
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η/s for our theories

Shear Viscosity over Entropy Density

ηij,kl = − lim
ω→0

1

ω
Im

∫
dtdxe iωt〈Tij (t, x),Tkl (0, 0)〉

s =
2π

κ2
A .

The two-point function is obtained by calculating the response to
turning on suitable metric perturbations in the bulk.

The relevant part of the perturbed action is mapped to a Maxwell
system with a mass term.

S =
1

2κ2

∫
d4x
√
−g
(
− 1

4g2
eff

F 2 − 1

4
m2(u)A2

)
,

where

m2(u) = Z (φ+
1

4
log g33)α2 ,

1

g2
eff

= g
3/2
33 (u) , Aµ =

δgµ3

g33
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Langevin Dynamics and Brownian Motion

Langevin coefficients κ: Consider a heavy quark (M � T ) moving along
the ”‖” direction in a strongly coupled plasma.

The Macroscopic Langevin equation:

ṗi (t) = −ηDpi (t) + ξi (t) ,

p: the momentum of the particle, ηD : the friction coefficient, ξ: the
random force.〈
ξ‖,⊥(t)

〉
= 0 ,

〈
ξ‖,⊥(t)ξ‖,⊥(t ′)

〉
= κ‖,⊥δ(t−t ′) ,

〈
p2
‖,⊥

〉
= 2κ‖,⊥T
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Parts of the Theory Timeline-Related bibliography:
Non-Confining Anisotropic Theories:
(Azeyanagi, Li, Takayanagi, 2009; Mateos, Trancanelli, 2011; Jain, Kundu, Sen, Sinha,

Trivedi, 2015;...)

Confining Anisotropic Theories:
(D.G., Gursoy, Pedraza, 2017 )

Similar ideas in different context. For example:
(Gaiotto, Witten 2008; Chu, Ho, 2006; Choi, Fernadez, Sugimoto 2017;...)
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A proposed c-function is (Chu, Giataganas, 2019)

cx := βx
ldx−1
x

Hd1−1
x Hd2

y

∂Sx

∂ ln lx
, dx := d1 + d2

n2

n1

with the dimensions n1, n2 are defined at the fixed point

[t] = Lnt , [xi ] = Ln1 , [yj ] = Ln2 .

For the holographic dual consider the background form:

ds2
d+2 = −e2B(r)dt2 + dr2 + e2A1(r)dx2

i + e2A2(r)dy2
i .

where d1 + d2 = d the space dimensions.

Then the effective dimensions are

dx := d1 + d2α , α := lim
r→∞

A2(r)

A1(r)
.
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The derivative of the c-function along the RG flow is

4G
(d+2)
N

βx

∂cx

∂rm

= ekm ldx−1
x dx

[
k ′m

∫ lx

0

dx
1

k ′(r)

(
k ′(r)

dx
− A′1(r)− k ′′(r)

k ′(r)

)]
,

where k(r) := d1A1(r) + d2A2(r) .

The null energy conditions rewritten in terms of monotonic functions
are

g ′1(r) :=
(

(B ′(r)− A′1(r))eB(r)+k(r)
)′
≥ 0 ,

g ′2(r) :=
(

(B ′(r)− A′2(r))eB(r)+k(r)
)′
≥ 0 ,

f ′(r)e−k(r)/(d1+d2)+B(r) − d1d2

d1 + d2
(A′1(r)− A′2(r))

2 ≥ 0 ,

where
f (r) := −k ′(r)ek(r)/(d1+d2)−B(r) .

Not a one-to-one correspondence between NEC and c-function
monotonicity, but not surprising!
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The sufficient conditions of c-function monotonicity are

f (r) ≤ 0 ,

f ′(r)eB(r)− k(r)
d +

f (r)e−
(d+1)k(r)

d

d1 + d2
((d1 − d2)g1(r) + 2d2g2(r)) +

k′(r)2d2(1− α)

(d1 + d2)(d1 + d2α)
≥ 0,

f ′(r)eB(r)− k(r)
d +

f (r)e−
(d+1)k(r)

d

d1 + d2
((d2 − d1)g2(r) + 2d1g1(r))−

k′(r)2d1(1− α)

(d1 + d2)(d1 + d2α)
≥ 0,

where f (r) and g1,2(r) are the monotonically increasing functions.

It is possible to impose boundary data for a generic background to
guarantee monotonic c-function for the whole flow!

For example, for a theory with d1 = d2, the boundary condition

gi UV ≤ 0 and α = 1 ,

guarantees the right monotonicity the c-functions along the RG flow.
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A simple example: A theory with Lifshitz-like anisotropic symmetry:

ds2 = r 2z
(
−dt2 + d~x2

)
+ r 2d~y 2 +

dr 2

r 2
,→

ds2 = e2zr
(
−dt2 + d~x2

)
+ e2rd~y 2 + dr 2 ,

t → λz t, x → λzx , y → λx , r → r

λ
.

z measures the degree of Lorentz symmetry violation and
anisotropy.

The entanglement entropy is

SEEx = N2Hd1−1
x Hd2

y

[
β1

εd1−1+
d2
z

− β2

l
d1−1+

d2
z

x

]
,

SEEy = N2Hd1
x Hd2−1

y

[
β̃1

εd1+
d2−1

z

− β̃2

l
d1z+(d2−1)
y

]
.

dx = d1 + d2/z and dy = d1z + d2 appear in the entanglement
entropy formula.

Sufficient conditions z = 1; Necessary conditions z ≥ 1.
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