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PLANCK SCALE PHYSICS

Lp=10"(-33) cm->Tp=10"(-44)
Mp=10"19 Gev/C

Where ?
BING BANG ->O0ORIGIN OF TIME

BH CENTER->SINGULARITY,INFINITE
DENSITIES

RED SHIFT FOR BH OBSERVER AT INFINITY

PROBE OF PLANCK SCALE DISTANCES FROM
BH HORIZONS



« PERTURBATIVE QUANTUM GRAVITY BREAKS
DOWN

* PERTURBATIVE STRING THEORY BREAKS DOWN

* STRING DUALITIES CONNECT WEAK AND
STRONG COUPLING PHASES BH SPECTRA OF
PLANCK SCALE MASSES->D-BRANES->M-
THEORY UNIFICATION

STRINGS PRODUCE EXOTIC GEOMETRIES -
NON GEOMETRIC BACKGROUNDS

STRING COSMOLOGY->BOUNCE
GRAVITY AND SPACE TIME IS EMERGENT!

NO ANSWER YET FOR PLANCK SCALE
PHYSICS



AdS/CFT PLANCK SCALE
CURVATURES=

STRONGLY COUPLED STRING THEORY

ON CFT SIDE FREE FIELD THEORIES
BUT THE

BULK PHENOMENA EXTREMELY
COMPLICATED SECTORS OF
OPERATORS

ALSO LOCAL DIFFEOMORPHISM
INVARIANCE YET TO BE
UNDERSTOOD

PROGRESS FOR BH INTERIORS CLOSE



CONTINUUM vs DISCRETUM
OR NON-COMPUTABLE vs COMPUTABLE

« CONTINUUM LOCAL FIELD THEORIES
INFINITE AMOUNT OF INFORMATION PER
PLANCK VOLUME

* CONTINUUM STRING THEORY THE SAME!
* BH REMNANT PROBLEM
« EXPERIMENT AT PLANCK SCALE ENERGIES

PRODUCE MASS Mp BH ‘S ->THEY DO
NOT PROBE SPACETIME STRUCTURE AT
THE PLANCK SCALE DISTANCE!
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singul-
arity

onset
horizon

Hawking
radiation

maftter

falling in

imploding

matter

— space

Shapiro shift

Matter going in will
gravitationally deform its
surrounding space-time.

This effect can be
calculated precisely
(standard gravity):

Let pt (6, ) be the
momentum distribution of
the in-particles, and

oxt (6, ) the

out
displacement of the

out-partcles, then



T | A — T
Grdn) = e MOBE (A (m)iE(—r) + A (R (—x)
(k) = Lr(l_ _ _
AT(r) = »/_F(Q ik)(cosh 5 i sinh 2)
N TS B TK
A (h’) _ ﬁr(g 'I-ﬁ")( 2 2

Thus, in-going waves bounce against a kind of “brick wall”
to become out-going waves. Take inverse Hawking temp. 3 — 27

At given k:
e BF(K) — L (210gA+log B+~ + log(k2/ 87G
=5(2log gf+7+log
U = Z(BF), S=BU-F), B—2r

A is size of box around black hole.
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[d%kS(k) diverges (S(k) only depends on log log(k?))

To reproduce Hawking's entropy, a cut-off is needed at m
somewhere near the Planck energy:

7.2 2pa2
|k | < C MPlanck 1 14 < IC---'ﬂ'"";lr]:'lzm::k-"'

This is a Brillouin zone — a perfect circle due to rotational
symmetry. Only a random distribution of points in 2-space can
have a circular boundary in k space. Transverse coordinates
(coord. of bh. horizon) must be discrete, and random.

G. Dvali: the total number of Hawking particles emitted by black hole:

~ (Mg /Mpianck)?, that is, one per unit L of the black hole
horizon. No lattice finer that the Planck scale will ever be necessary!
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ARITHMETIC UV CUTOFF OF AdS2
BH HORIZONS

EMBEDDING 2 TIME -1 SPACE MINKOWSKI
Xx0"24+x172-x272=Rads"2=1

‘Ruling surface —»Light cone rotation around the
*AdS?2 throat

UV CUTOFF

‘MINKOWSKI LATTICE spacing a=Rads/M,

‘M integer 1,2,3,4,..

x0=k a,x1=Ila,x2=m a, INTEGRAL AdS2 LATTICE
Kk™2+172-m”"2=M"2

‘BREAKING OF SO[2,1,R]-»S0[2,1,Z]









where o 1= defined by eq (2.22).
If u=mn <X we woulki ke to show that zpin) and z(n) are, also, integers.
Thi= implies that

&+ il
ro(n) + ixin) = : —:-iﬂ']-{j + im) (2 Z5)
should be a Gaussian inceper, e, (1 +im) Sl +in} = a+ ib with a, b < E.

Therefore
il =a—mh

= anm -+ b (226

1—|-'L11.=|:£t—rr1.ﬁ:|+l[nm-|—|!i-}~=_|-{
These expressvons inply, tn ourm, that

2y = k + bk — )
T =1+ bk + lm) |
T =n=m+ W1+ m%)

‘This complecss cthe deecionary beoween the ratmmal points on the circle and the ineepral poanes on
AidS,. In these axpresmons b can take any integer value, a

Comversely, any rational poont on the ume circle,

R e e
ﬂ_mﬁ:{.+tr|_u_]_h{]+m:| (2 2H)

with o, b £ £, o obtain an integral p=mne, for g = n, we must hayve
l+in
a — b

= d+ i (2 2

with o, d & &
We immedsately deduce that
1l = oef — bz
7l = e + b
These expressaons anpdy that, geven the indepers o andd b, 1°s poesmible to ind che iniegers ¢ and
Al to express the coondinates o, 2 and 2 8=
Ty = od + Be
T, — ac — bd (231)
Ty = e + bd
The hMophantine equation 1 = ad — e 35 sobved for ¢ and d, piven tano coprime inpegers a amd & by
the Encliddian algorichm-—which seems o lead o a unaque soladion, implying thac che point [T, T, Tl
5 LETHIC)ALE.
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Therefore thers 1= & one-parameter farmody of poanes, labeled by the mnteger &

T = ad + e + 2nel
7 = ac — bd + K{a® — ) (232
Tz = ac+ bd + w{a® + )

We remark, however, that the vector (2ab, o — B2, a® + &) is light- ke, with respect to the {4+ + —)
metric: (2ab)? + (o — #)? — (2 + *)* = 0. So eq (232) describes a shife of the, oripinal, point
(aid + be,ae — b, oe + W), along & hghe-like direction; and sance the shift s Linear in the “affine
parameter, K, this pemerates a Lght-like line, passing throuph che original poant.

In this way we have established the dictionary betwesn the rational points of the crcke and che
incegral poanes of the hyperbodoad.

Now we procesd with the scudy of the discrete symmetries of cthe mneepral, _# %!, Lorentzian
latrice, where the lactice of intepral points on AdSs is embedded. _# %', with one space-like and two
cume-hike darmensuns, Carmies a8 asbmetry group che group of integral Lorenez boosts S00(2, 1, ), a5
well &5 inpepral Poincars franslanons. The double oover of the infimeee and discrece group is SLI2, ],
che modular proap. This has been shown by Schild |50, 51] in che 1840s. The proup S00(2, 1, £) can
be penerated by reflections, &5 has been shown by Coxeeer [G4], follewed by Vinberg [65] and, inally,
try Kac in his famous book |52], where he iniroduced the notion of hyperbolic, infinite dimensional,
Lie algebras. The characieristic property of sach alpebras is that the discrete Weyl group of their
oo space 15 an integral Lorente proup. Geperalwacion from SE{2, ) oo other normed alpebras has
besn soudied i JGG].

The fundamental domain of 3002, 1, £} i8 the minimum et of pomnts of the integral latoice of
-#*" which are not related by any element of the proup and from which, all the other poines of
the lattice can be generabed by repesated action of the elements of the group. & turms oat thae che
fundamental region 15 an infinite set of pomnes and can be penerated by repeated action of refleceions
in the following way:

Using the metric i = diag(1, 1, —1) on _#& %! the genmerating reflections, elements of S0O(2, 1, &),
are piven by the matrices

() () ()
ﬂ'=(_%;' ‘f)

If (k,I,m] are the coordinates of the integral lateice, the fundamental domein of S0(2, 1, ) can

- -






Figure 3- The numbs=r of incegral poines, on AdSs, &5 a funcoion of cthe heighe, m. Due oo symmeeny,
m ++ —m, we plot only the positoee values of m.

we may repackage these as follows
E 4+l

ir, = k+il = &*(1 +ip) = *{1 + i gt = 221
Ty + ixy +1 (1+ip) {(1+im) & I + i [ )
benoe
E+im I —mk
_ i == '}
o0E o Ty and sing = T (222}

We remark thae chese are ratonal nambers- chersfore they label rational poines on the orche JG3.
The Lght cons lines ae (B [ m) are, ctherefors, parametrieed ==

oy = ;:u.m _FJ —mak
= +.|'-"|_—I'—:" (223)
T3 = .f-‘

('When g = rx=m, To= k amd = = [.]
On these specafic hight-cone hnes we shall show that thers exise nfimeely many mntepral poants,
when p, chat labels the space- like directxon rq, cakes integer valwes

Froaf. We wrice !
zol(p) + iz (p) = (1 + ip) (224)
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IR /UV CUTOFF AND SPACE-TIME ORIGIN OF
FINITE BH ENTROPY FOR AdS2

/R CUTOFF= PERIODIC BOX OF SIZE L
‘.=Na, N>M, 1,2,3,4,...

sINTEGRAL AdS2 LATTICE —» FOLDED INFINITE MANY
TIMES INSIDE THE BOX- (k,I,m)—=(k,|,m)modN

k*2+172-m"2=M"2 modN, kI m=0,1,2,...N-1
FINITE ARITHMETIC GEOMETRY AdS2[Z]->AdS2[Z/NZ]
*S0O[2,1,Z]- SO[2,1,Z/NZ]

*FINITE DIM HILBERT SPACE FOR 1 DOF PER SPATIAL
POINT

«dimH=N —FINITE ENTROPY S=N




5-5







.
.

. . * [ ] ‘.. . . i wU
.‘ .‘.. L] . .. . L] %. L4 ... E o . . .
* s . *o% ...to....- .oﬂr * "n o, o .oo.._ * ° e " " .

s . *e ® * “ e . .
* . ° - ] [ ] L] ] . [ ] e & L] °
t...i “© ' : * g0 G _-__-.0. ,* .i__-_ &
o v “ v ] o oo o ° o o * * o *
o . “ °c *.°% | 80,0 s Y ¢
. ® L . s @ oy b [ = ‘_. ’ [
¢ ° _* ¢ L . e ¢ °,° «*
. o’ s ® . L . 2® o % * e ¢ by
. ® y l_oo.n.__l_- . . . o .y
4 o S ° PR o L . .
. . e ® | ® o..:l ® o ° o
L ] [ ] ._' ® “ - ..' [ T ] .a .. [ ] L ] ..
LA o’ - e o ° s *
e ® * o ®e e * e ™ 2 3 ¢ . Yt L
. o e “ "y % . « ° $
* . . . ¢ o’ ¢ | o o o ey * *
¢ L .o -4 * "¢ L o’ o o o3 - o’
. % .o . e * ~ 18 2° . : * e * 3 .
[ ] e, 8 4 0y “. . e ‘@ 4 e® ™ ™ . _.!
L ] . L ] . . & ° . .

3 “ o ® a * * L' i . e ” . o

=] [ ] _. 1 L ] L . [ ] . L ] .” -

% . o o ° : 1 . « °* °e . Ay e * **

S0 o *® & . * = $ 'y s ® L%,0 0 o o*
e °* °* % * e o ® L _ . ® - . .
*e . “. L ] [ ] .. ._.n.. & 1 '_ 1 *
c ., . * * T A N .
) e o * % * -y s | o* ® e oﬂ. : g a— _..c
D o d e ¢ oo 18 .-..d e ' = * o PP
* o . . N e e ® o e
L ‘f. ..'.‘._ e | » t.._ . ._-_ . . o
“ [ ] [ ] - [ ] [ ] - L ] ._.
* ' * o $ . * e * .o, * o .
. L . . & [ ] ™ “ . tﬂ L ] ._‘ -~ ..- »
s o . ., * Lt e oo .fo.o .o ...o . . ., .
L ° [ . ol:..o.-. . L . I P
.‘ ‘ L] - LI r' o % s @
.y & o LI . . * o o,* o’ .
L ._-_. % . . W [ ] [ ] e *
% 6 - . .
* d [ ® Sl o o ° * e %
o, o e 0" . s . °* g L s lo.”..
* e *e, . . ., *e *e * * . . J.. D) e .
‘4 ) * e ‘el e * 3 _-o. o . o %, %
... uo... | o o ‘e .. oo et ® o °
c . . . .
o ® . R .
.







by the ruling parametrization of AdSa|N).

3.2 Counting points of AdS;|N|

The finite peometry, AdS:(p|, has as sometry group the finite projective modular group, PSLa|p|.
This proup is obtained as the reduction modp, of all elements of PSL{2 Z). The kernel of this
homamorphism is the “principal conpruent subgroup™, Ty The order of PSLalp| is p(p® — 1)/2 and
the order of its dilacation subgroup is (p — 1)/2, thus, the number of poines of AdSa(g is p(p + 1).

It is easy to find the mumber of points of AdS.[N|, for any integer N.

Numencal expenments sugpest the following recurssoon relation for the number of poants of
AdSa[r¥), Salip®),

Solp*) = p*~150l(p) = Salip®) = p™*'(p+ 1) (3.14)

where Sol{p) = pip+ 1) and & = 1, 2, ... for any prime integer @

The validity of the above counting, can be proved directly by using the coset property of AdS,[p"|
andd then using factorization of integers for any NV |G0). Indeed the rank of the group PSLalp™| is
known to be p*—2(p* — 1)/2 and it=s dilatation subgroup PSO(L, 1, p~), p*p — 1)/2 since it is equal
ea the number of invertible numbers modulo p* diveded by 2 ( due to s progective stracture). Thus
since MEQ[F"| i identified with the coset peometry PSLa[p™|/ PSO{L, 1, ™), we get the promised
result, g™ 1{p + 1).

For N = 2™ we fimd Sol{2) = 4, Sol(4) = 24, and Sol(2¥) = 45cl(2*-1), for k > 3. We remark that
N = 4 is an exeception. The solution is Sol(2%) = 9% for k& > 3. We display the results of exact
enameration n fig. 9 for 3 < N < 20, We notice that there are peaks for composite values of N,
Therefore we have many more points inside the bac, for AdSs[V), than on AdSq|Z]. The additional
points count the equivalence classes of points of AdS:[%| mod V.

From chese results we dedues chat, for large N, the number of solut:ons, mod N, scales hke che
area, ie N2, So most of the points of AdS,|N| are close o its boundary and holography s possible
m Ehas case oo |70



Figure O: The number of solucions to B2 + F — m® = 1 (hlue curve) and B2 + 2 —m® = 1mod N
(yellow curve), for 3 < N < 20 obtained by exace enumeration.

4 Continuum limit for large N

4.1 Al solutions of M* = lmad N

In seceion 2.3, we construceed the discreee peometry AdSs(W] by introdocing, firse, a IV cooof
(@ = iy g /M, with M integer) and, also, an IR cuesdf L = Na, with N another integer, bigper than
M.

The continuum lmit is defined by any sequence of pairs of intepers, (M, Moo m = 1,23 ..,
such thae, for any n, (8] N, = M, (b) M2 = 1mod A, and (c) the imit of che ratio N /A, cakes
8 finice value, = 1 (a5 n — o), which we can ddentify wich L Rass, .

Belew we shall present che peneral solution to che equation M? = 1 mod V. Subsequently, we
shall selece those solutions that szseisfy che other requirements.

The first step is to factor N ineo (powers of) primes, N = Ny x N2 x --- x N = gf'gl® - - gt
Then the equation M? = 1mod NV, is equivalent to the system

MP= lmodgf (4.1}

where [ = 1.2 ... I. The Chinese Remainder Theoremn |62 then implies chat all the solutions of
e (4.1} can be wmed eo conseruce W, with W = Mympmg + - - - Mimgng, where My = M mod WV,
my = MN/Np, ny Emf'l o] iy -



CONTINUUM LIMIT OF THE AdS2

IR/UV ARITHMETIC GEOMETRY
‘Rads=M a L=N a

*AdS2[Z/NZ]

e >k™2+172-m”~2=M"2 mod N, k,I,m=0,1,2,..

CONTINUUM LIMIT a—-0 COMPLICATED IF IT
EXISTS!

BUT ! CHOOSE,SEQUENCE OF PAIRS OF
INTEGERS M, N SUCH THAT
1) N>M

2) M~ 2=1modN

*3) N/M- THE WELL DEFINED FINITE RATIO
L/Rads=r

*AS a-0

INDEED WE FOUND SEVERAL SOLUTIONS
( FIBONACCI SEQUENCE + THEIR

.N-1



4.2 Fibonacel sequences for the UV/IR cutoffs

Although it 1= easy to demnonstrate the exstence of such sequences for example, N, = 2™ and
My, =2"1+1 where M? = 1 mod N, and N./M. — 2, in this section we focus on & particular class
of sequences, based on the Fibonace: numbers, f [62]. This case = of partacular interest, since, in our
previous paper [41], where we studed fast scrambling, we found chat, for peodesic observers, moving
in AdSa|N], with evolution operator the Amol’d cat map, the fast scrambling bound is sarurated,
when N 15 8 Fibonaco integer.

The Fibonaom ssquence, defined by

fo=0fi=1
.|rl'l.-i| — fn_l'.rr:—i I:JE}
can be written in matrix form
Ju 01 fu- :
[:fm:]={1 1)(1:) (4.3)
"-u—n._....—-’
A
We remark that che famous Amol’d cat map can be written as
[i i é ) — A (4.4)

Sinee the matrix A doesn’t depend on n, we can sodve the recursion relation in closed form, by seteng
fu = Cpr and find the aquation, satisfied by o

- 1+45
rl=pr+riard-p-l=0sp=p= =
Therefore, we may express f| a5 a hnear combination of o7 and g~ = (—)=p7™
i fo=A;+4A_=10
fu—ﬂ|p’,‘+ﬂ_p’_‘ﬁ{ el A p =1 (4.5)
whence we find that 1 i
A, =—-4A_ = —
: Bs—p- /5



therefore,
forinl o i~ Pl :
At S A L6
I; N (4.6)
lt's quite fascinating that the LHS of this expression is an integer!
The eigenvalue g, == 1 is known as the “golden ratio”™ {often denated by @) and it’s strasgheforward
to show ehat f ./, — o, 88 m— oo
Furthermore, it can be shown, by induction, thae the elements of A™ are, in fact, the Fibonaec)
numbers themselves, arrangad a5 follows:

o-(5 )

(Ome reason this expression is useful is that it implies that det A™ = (—)™ = fat1fas1 — o

For i = 2i + 1, we remark chac chis relation cakes the form JI'§__| =1+ fufu,a.

Now, sinoe fo .y and fy.o are sucoessive iterates, they're coprime, which imples, thae _||'§“1
1 mod fopsa.

Therefore, the sequence of paims, (M) = fug1, N = fap2), where [ = 1,23, . .., satisfy all of the
requirements and the cormesponding, limating ratio, L/ R, 40, can be found analytically, It s, indeed,
equal to o, = (1 + +5)/2, the pokden ratio.

We recall here thar the periods of the Fibonace: sequence moed N, for amy integer N, has been
apalyzed i the hterature (of. [T1]} and, in the case when N, the IR copoff, 15, iself, a Fibonaeo
integer, then the period of the corresponding Arnol’d cat map grows logarchrmically with & and chas
i5 the reason for the saturation of the fast scrambling bound |41 In the nexe subsection we shall
consider the so-called &—Fibonaee) sequences, which will be imporeant for removing the TR cuod.

4.3 Generalized k-Fibonacei sequences and UV/IR cutoffs
li's possible oo peneralize the Fibonacer ssquence in the following way:
Onit = Klin + 1 (4.8)

with go = 0 and 4 = 1 and & an integer. Thas = known as the “k—Fibonacs” sequence |[T2].
We may sobhre for g, = Cp™; the characeeristic equation for o, now, reads

E+E+ 4 :
f—ﬁ‘p—]:ﬂﬁm{k]=T [d.9)
aned express g, &5 & linear combination of the g.:
k'u_ — kn l'k =T
gﬂ=ﬂlm[mﬂ__d_i}_[mn=.ﬂl{] (—)"py (k) (4 10)

V1
chat peneralizes eq. (4.6).



In matriz form

(ﬁft):w(ﬁ.) (411)

Ak]
Simalarly as for the usual Fibonace: sequence, we may show, by indoction, thae
n a1 fn
k" = 41
ALK) ( Gn  Buil ) il
We find cthat det A(k)™ = {—)", therefore that ﬁhl = 1mod gy o7 ts, guyo/gu =+ LiHas, =

P (k), where the eigenvalue of A(k), p, (k), that's preater than 1, of course, depends on k. At this
point we have decermaned [, the IIt cueodf, 1n eerms of Hy e, This hmiting procedure has removed
the UV cueodf, zance a — (), howewver the TR cutoff, I 1=, stll, present.

What 1= remarkable 15 that, using the additional parameter, &, of the E—Fibonaco ssquence, it
15 possable o remeee the IR catoff, as well, sinee it 1= possible to send I — oo, 88 B — oo, keepang
iy g, fooed.

If k remains fimee, the periodic box cannod be removed and, in che contimom hme, o — 0, we
obtain infimeely many foldimps of the AdSs surface inssde the box due o the mod L operation.

The Fibonacs sequence, taken mod N, = periodic, with period T{N); this tums oot o be &
“random” functxon of V. The “shortese™ penods, as heas been shown by Falk and Doson [71], oceur
when N = Fj, for any [. In that case, T{F}) = 2.

We may, thus, ask the same question for the k—Fibonaco sequence, where the ratio of its suc-
cessive elements, §,,,,/q, tend to the so-called *k—silver ratio”,

E+vEE+4
o) = =

(4.13)
(the “milver ratio” i\ g, (k = 2))

From eq. (4.12), taking mod g on both sides, we fid chat, when n = [, the matnx becomes
+{the identiey matrix), so Tig) = | or 2, respectively; therety peneralizing the Falk Dys=on result
for the k— Fibonacc sequences. Since, for larpe I, g ~ &'“2#+ & Jop o, (k) can be identified with the
Lyapunoy exponent of the dynarmes of the Alk) map. What 1= mteresting in this peneralmanon 15
that g, (k) ~ k, s0, for, large k. can become sipmficantly larper than the Lyapunov exponent of the
Arnol’d cat map-so the scrambling time 15 sipmficantly shoreer.



CONCLUSIONS - OPEN ISSUES

 We presented an information-theoretic
finite-discretization of the AdS,

geometry introducing a natural UV and
IR cutoff.

 The SL(2,R) iIsometry is deformed to
the finite arithmetic group SL(2,Z,).

* This group iIs the isometry group of the
AdS.[Z,] observers.

e The UV-cutoff is at the sub-Planckian
levvel while the IR-ciitoff i< the Planck



 The continuum limit exists for sequences of pairs of
UV and IR-cutoffs from the K-Fibonacci integers
which are related through the UV/IR
correspondence.

* The IR-cutoff can be removed when K—oo.

* The QM Hilbert space for single particles has a finite
dimension equal to the BH entropy and the AdS/CFT
correspondence is exact.

* For geodesic observers there is a strong chaotic
scrambling of Gaussian wavepackets along the
spatial direction of AdS,.

* The scrambling time bound is saturated for UV/IR
cutoffs from generalized K-Fibonacci sequences with
ratios (golden/silver).



NEW DIRECTIONS (work in progress)

e The arithmetic modular discretization
works with UV/IR cutoffs for AdS, , -

the BTZ black hole, wormholes and in
general for geometries with global
algebraic minimal embeddings in flat
Minkowski spacetimes.



 MOTIVATION ON TOP OF THE
ASSUMPTIONS

1)THE EIGENSTATE THERMALIZATION
HYPOTHESIS

GAUSSIAN PDF OF EIGENSTATE" S PROB
VALUES

FLAT PDF OF EIGENSTATE’S PHASES

2) SATURATION OF THE SCRAMBLING
TIME BOUND

3) RELATION OF QUANTUM COMPLEXITY

\AJITT L




SIMPLEST EXAMPLE
DIFUSION OF SINGLE PARTICLE WAVE PACKETS ON ADS2
TIME-RADIAL GEOMETRY OF EXTREMAL BH'S

* OLD AND LARGE NEAR EXTREMAL BH'S
* GEOMETRY =AdS2 X2, 2=COMPACT ANGULAR DIRECTIONS

« ADS2 RADIAL MOTION
* AdS2[R]=SL[2,R]/SOI[1,1,R]

DISCRETIZE
 AdS2[N]=SL[2,ZN]/SO[1,1,ZN]

* CONSTRUCT THE AdS2 UNITARY EVOLUTION MATRIX
OF PROBE STRING BITS
-> USE SUPERDCONFORMAL QM
OF SL[2,ZN] ISOMETRY QUANTUM MAPS
(TOWNSEND-STROMINGER-KALOSH 1998)



EIGENSTATE THERMALIZATION SENARIO
PAGE,DEUTSCH,BERRY,SREDNICKI

IF THE EIGENSTATES OF A CLOSED QM SYSTEM
ARE RANDOM

(RANDOM PHASES AND GAUSSIAN
DISTRIBUTED AMPLITUDES)

THEN ANY INITIAL PURE STATE OF A
SUBSYSTEM THERMALIZES

TO

THE THERMAL DENSITY MATRIX OF THE
SUBSYSTEM

RELATION TO THE INFORMATION PARADOX



ARNOLD QUANTUM CAT MAP A={{1,1},{2,1}}

E)IslACT CONSTRUCTION OF THE SPECTRUM AND EIGENSTATES FOR
=p,prime,

LINEAR SPECTRUM

RANDOM EIGENSTATES ->LINEAR COMBINATIONS OF MULTIPLICATIVE
CHARACTERS OF

GF[P]

1)RANDOM PHASES
2)GAUSSIAN RANDOM AMPLITUDES

BUT SCARS(VOROS.,NONEMACHER)F
FOR SEQUENCES OF N's WITH SHORT PERIODS

QUANTUM CHAOS, STRONG MIXING

FACTORIZATION FOR ARNOLD CAT MAPS IMPLIES LOGARITHMIC
IMPROVEMENT FROM N~2->N LOGN

*USING QUANTUM CIRCUITS FOR THE IMPLEMENTATION OF THE
QUANTUM MAP AND

COUNTING THE NUMBER OF GATES NLOGN->(LOGN)"2

g?:(ASEITc;.X AS FOR THE QUANTUM FOURIER FACTORIZATION ALGORITHM



* N=461,T[461]=23 ,GROUND

CTATE DHI—N
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* GROUND STATE AMPLSQUARE DF




* GROUND STATE PHASE DF




* SCATTERING EXPERIMENT, N=p=461
* GAUSSIAN WF AT T=0
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