$\mathcal{N} = 1$ conformal dualities

Shlomo S. Razamat

Technion

SSR, Zafrir 1906.05088

Regional Meeting

September 16, 2019 - Crete.

<□> <@> < E> < E> E

590

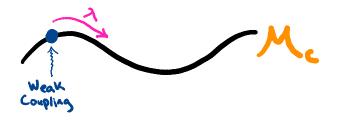
• 4d, $\mathcal{N} = 1$, conformal, Lagrangian

• What is the space of $\mathcal{N} = 1$ SCFTs in four dimensions?

• What fraction of the space is captured by conformal Lagrangians?

Guage fields (Gauge group G), chiral fields with R-sharge $\frac{2}{3}$ (Representation \mathcal{R}), cubic superpotentials, all β -functions vanish

Conformal Manifolds



• Example A: $\mathcal{N} = 4$ SYM $G = SU(2), \dim \mathcal{M}_c = 1$

• Example B: $\mathcal{N} = 4$ SYM G = SU(N > 2), dim $\mathcal{M}_c = 3$

• Example C: $\mathcal{N} = 1$ SQCD G = SU(3), dim $\mathcal{M}_c = 7$

4 3 k

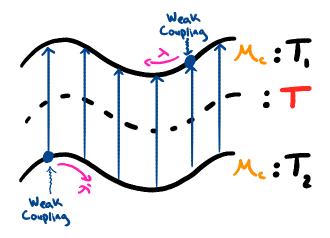
Image: A matrix

Theories at different points of the conformal manifold are different SCFTs in general. However some properties are invariants of the manifold

- dim \mathcal{M}_c
- G_F : symmetry on a *generic* locus
- 't Hooft anomalies
- $\bullet\,$ conformal anomalies a and c
- protected quantities, indices

Image: A matrix

Conformal dualities



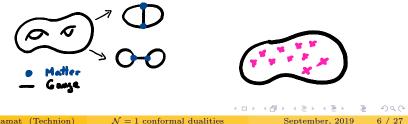
• Example A: $\mathcal{N} = 4$, T_1 has G = so(2N + 1), T_2 has G = usp(2N)

1

< D > < B

Geometry of dualities

- Example B: Many of the known dual pairs with extended supersymmetry were understood geometrically as compactifications on equivalent geometries of the same 6d theory
- $\mathcal{N} = 2 N_f = 2N$ SQCD is same (2,0) on a four punctured sphere
- Some more examples with minimal supersymmetry have been understood in recent years. For example, SU(3) SQCD with $N_f = 9$ can be obtained as a compactification on a sphere with 10 punctures of some 6d SCFT and thus has 7 dimensional conformal manifold



• How ubiquitous are $\mathcal{N} = 1$ conformal dualities?

• Can we construct $\mathcal{N} = 1$ conformal duals to strongly coupled (non-Lagrangian) SCFTs?

• Can these duals shed some light on geometry of dualities?

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへの

Algorithm

- Say are given an $\mathcal{N} = 1$ SCFT. By this I mean know all the \mathcal{M}_c invariants
- In particular,

 $a = n_v a_v + n_\chi a_\chi, \qquad c = n_v c_v + n_\chi c_\chi$

- Here $a_v = \frac{3}{16}, a_\chi = \frac{1}{48}, c_v = \frac{1}{8}, c_\chi = \frac{1}{24}$
- Step I: Find all conformal gauge theories with $dim G = n_v$ and $dim\mathcal{R} = n_{\chi}$ – there is a finite number of these
- Step II: Out of these isolate only the ones with matching \mathcal{M}_c invariants
- Step III: Perform any farther checks you can
- You have a putative dual

Shlomo S. Razamat (Technion)

 $\mathcal{N} = 1$ conformal dualities

Surprizingly, this simple algorithm provides duals for many SCFTs

• $\mathcal{N} = 1$ conformal gauge theory duals to $\mathcal{N} = 1$ conformal gauge theories with simple G

• $\mathcal{N} = 1$ conformal gauge theory duals to $\mathcal{N} = 2$ strongly-coupled theories of class \mathcal{S}

• $\mathcal{N} = 1$ conformal gauge theory duals to compactifications of E-string on genus g Riemann surface

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへの

$\mathcal{N} = 1$ (simple) gauge theories

- Organise the assault by n_v
- $n_v = 3 \ G = SU(2)$, no $\mathcal{N} = 1 \ \text{SCFTs}$
- $n_v = 8 \ G = SU(3)$, many $\mathcal{N} = 1 \ \text{SCFTs} \ (2adj + 3f + 3\bar{f}, 10f + 3\bar{f} + 1\bar{6}, \cdots)$
- 8 is not divisible by 3; all these models have different \mathcal{M}_c invariants; so can be only self-dual
- $n_v = 10 \ G = USp(4)$, same as SU(3) many SCFTs but 10 cannot be constructed out of 3 and 8 so only possibility is self-duality

• $n_v = 14 \ F = G_2$, two examples $3 \times 7 + 27$ and 12×7

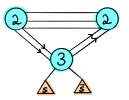
14 = 3 + 3 + 8

◆□▶ ◆□▶ ★∃▶ ★∃▶ → 亘 − つへで

- Can compute \mathcal{M}_c invariants
- $n_v = 14$ and $n_v = 48$
- dim $\mathcal{M}_c = 3$. deduced by computing the Kahler quotient $\{\lambda_i\}/G_{c}^{free}$
- $G_F = SU(2)$, the symmetry at the free point is $G^{free} = SU(3) \times U(1)$ which is broken on a generic point of \mathcal{M}_c to SU(2)
- Can compute the supersymmetric indices

Example A: $G_2 + 3 \times 7 + 27$: dual

- We are after a dual theory with $n_v = 14$, thus the group is $SU(2) \times SU(2) \times SU(3)$ and $n_{\chi} = 48$ so that all the β functions vanish
- Here is a solution

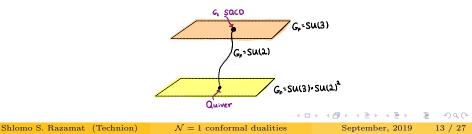


- dim $\mathcal{M}_c = 3$, $G_F = SU(2)$, $TrRSU(2)^2 = -\frac{14}{3}$ 't Hooft anomaly matches, indices match
- We have a putative duality

< ∃ ► = √Q ∩

Example A: $G_2 + 3 \times 7 + 27$: comments

- We can farther check the duality by studying flows. Giving vev to one of the fundamentals maps to giving vevs to one of the bifundamentals of the two SU(2)s.
- In both cases the flow can be explicitly analyzed and leads to $\mathcal{N} = 2$ SQCD with G = SU(3), one fundamental hypermultiplet, one **6** hypermultiplet, and free chiral field
- The structure of the conformal manifold is as follows,



• \mathcal{M}_c invariant information is,

 $n_v = 14, n_\chi = 84, dim \mathcal{M}_c = 77, G_F = \emptyset$, indices

• Match perfectly the following quiver

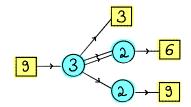


Image: A matrix

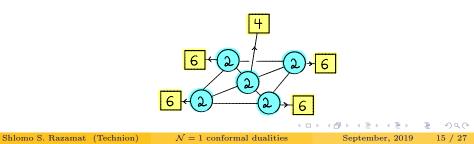
< 注→ 注

Example C: $SU(4) + 8 \times 4 + 8 \times \overline{4} + 4 \times 6$

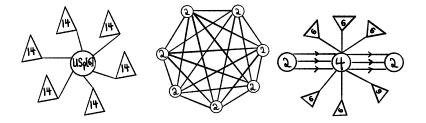
• \mathcal{M}_c invariant information is,

 $n_v = 15, n_{\chi} = 88, dim \mathcal{M}_c = 82, G_F = U(1),$ 't Hooft anomalies, indices

• Match perfectly the following quiver



Example D: triality



• $n_v = 21, n_\chi = 84, dim \mathcal{M}_c = 21, G_F = \emptyset$, indices

Shlomo S. Razamat (Technion) $\mathcal{N} = 1$ conformal dualities September, 2019

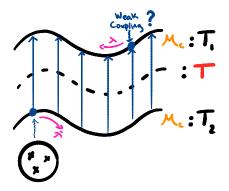
3

DQC

A D > A D >

Class \mathcal{S} : generalities

Conformal duals of strongly coupled "non-Lagrangian" SCFTs?



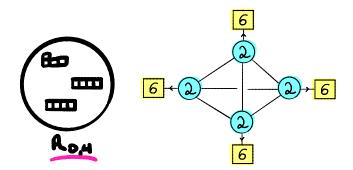
- Need $\mathcal{N} = 2$ SCFT with $\mathcal{N} = 1$ conformal manifold
- Typically this means need to have marginal Higgs and Coulomb operators

Shlomo S. Razamat (Technion)

 $\mathcal{N} = 1$ conformal dualities

September, 2019

Class \mathcal{S} Example A: $R_{0,4}$



• $n_v = 12, n_\chi = 72, dim \mathcal{M}_c = 74, G_F = \emptyset$, indices

Shlomo S. Razamat (Technion) $\mathcal{N} = 1$ conformal dualities September, 2019 18 / 27

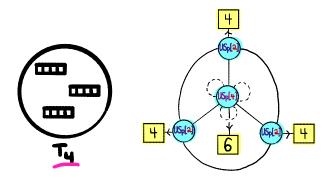
• □ > < □ > <</p>

- ◆ 臣 → - 臣 - -

- E

DQC

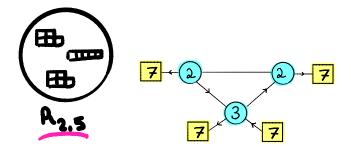
Class S Example B: T_4



• $n_v = 19, n_{\chi} = 99, dim \mathcal{M}_c = 83, G_F = \emptyset$, indices

		$\bullet \square \bullet$	★週 ▶ ★ 国 ▶ ★ 国 ▶	1	596
Shlomo S. Razamat (Technion)	$\mathcal{N} = 1$ conformal dualities		September, 2019		19 / 27

Class S Example C: $R_{2.5}$

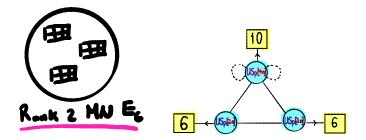


• $n_v = 14$, $n_{\chi} = 86$, $dim \mathcal{M}_c = 36$, $G_F = \emptyset$, indices

	< □		$\equiv \mathcal{O} \land \mathcal{O}$
Shlomo S. Razamat (Technion)	$\mathcal{N} = 1$ conformal dualities	September, 2019	20 / 27

Class \mathcal{S} Example D: even rank MN E_6

- Finally let us mention an example of sequences of theories
- $n_v = N(3N+2), n_\chi = 9N^2 + 30N 2$



			4 L P		-	\$) Q (\$
Shlomo S. Razamat	(Technion)	$\mathcal{N} = 1$ conformal dualities		September, 2019		21 / 27

Conformal dual of E-string on genus g

- \bullet Consider taking rank one E-string on a genus g surface
- Integrating 6d anomaly polynomial on the surface we obtain

$$n_v = 16(g-1), \qquad n_\chi = 81(g-1)$$

• For g > 1 we expect,

$$dim \mathcal{M}_c = 3g - 3 + 248(g - 1) + \delta_{q,2}$$
.

Here 248 is $dim E_8$, the symmetry group of the 6d SCFT

• Indices are known

Shlomo S. Razamat (Technion)

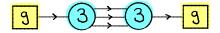
 $\mathcal{N} = 1$ conformal dualities

September, 2019

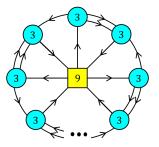
▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへの

Conformal dual of E-string on genus g

- Consider g = 2, here $n_v = 16$ and $n_{\chi} = 81$
- Natural guess 16 = 8 + 8 and the gauge group is $SU(3) \times SU(3)$



• And for general g we get,



• All \mathcal{M}_c invariant information matches expectations

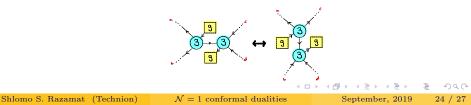
Shlomo S. Razamat (Technion)

 $\mathcal{N} = 1$ conformal dualities

September, 2019

Conformal dual of E-string on genus g: Geometry

- Note that we have 3g 3 bifundamentals and 2g 2 SU(3) gauge groups
- It is tempting to identify then pairs-of -pants with gauge nodes and the tubes with matter
- Note this is opposite to class ${\mathcal S}$ where matter is pairs-of-pants and tubes are gauge groups
- This geometric interpretation implies the following duality move on the quiver



Yet another duality

• The geometric move when applied for genus two implies the following duality

- This is an example of a duality between two theories with not simple gauge groups
- Have checked that the simple duality tests are satisfied

Image: A matrix

∃ ⊳

- Have discussed a simple algorithm to seek for conformal duals of SCFTs
- Surprisingly it provides with many new conformal dualities!!
- Note that symmetry does not play an important role, moreover in many cases on generic points of the conformal manifolds we do not have any symmetry
- Found Lagrangians to strongly coupled SCFTs
- Again a key is that the Lagrangians do not exhibit the full (super)symmetry of the SCFT

• Are these sporadic examples or there is an organizing principle?

• Were we lucky with the lower dimension cases or the ubiquity of dualities persists as we increase the dimensions of the groups?

• What is the geometry behind these dualities?

• Look for dualities with strongly coupled ingredients

Thank You!!

			• •	• • 6	▶ ▲ 문 ▶	< ≣ ►	1	500
Shlomo S. Razamat	(Technion)	$\mathcal{N} = 1$ conformal dualities			Septemb	er, 2019		27 / 27