$\mathcal{N}=1$ conformal dualities

Shlomo S. Razamat

Technion

SSR, Zafrir 1906.05088

Regional Meeting

September 16, 2019 - Crete.

Motivation

- $4 d, \mathcal{N}=1$, conformal, Lagrangian
- What is the space of $\mathcal{N}=1$ SCFTs in four dimensions?
- What fraction of the space is captured by conformal Lagrangians?

Guage fields (Gauge group G), chiral fields with R-sharge $\frac{2}{3}$ (Representation \mathcal{R}), cubic superpotentials, all β-functions vanish

Conformal Manifolds

- Example A: $\mathcal{N}=4$ SYM $G=S U(2), \operatorname{dim} \mathcal{M}_{c}=1$
- Example B: $\mathcal{N}=4$ SYM $G=S U(N>2), \operatorname{dim} \mathcal{M}_{c}=3$
- Example C: $\mathcal{N}=1 \mathrm{SQCD} G=S U(3), \operatorname{dim} \mathcal{M}_{c}=7$

\mathcal{M}_{c} invariants

Theories at different points of the conformal manifold are different SCFTs in general. However some properties are invariants of the manifold

- $\operatorname{dim} \mathcal{M}_{c}$
- G_{F} : symmetry on a generic locus
- 't Hooft anomalies
- conformal anomalies a and c
- protected quantities, indices

Conformal dualities

- Example A: $\mathcal{N}=4, T_{1}$ has $G=s o(2 N+1), T_{2}$ has $G=u s p(2 N)$

Geometry of dualities

- Example B: Many of the known dual pairs with extended supersymmetry were understood geometrically as compactifications on equivalent geometries of the same $6 d$ theory
- $\mathcal{N}=2 N_{f}=2 N$ SQCD is same $(2,0)$ on a four punctured sphere
- Some more examples with minimal supersymmetry have been understood in recent years. For example, $S U(3)$ SQCD with $N_{f}=9$ can be obtained as a compactification on a sphere with 10 punctures of some $6 d$ SCFT and thus has 7 dimensional conformal manifold

Questions

- How ubiquitous are $\mathcal{N}=1$ conformal dualities?
- Can we construct $\mathcal{N}=1$ conformal duals to strongly coupled (non-Lagrangian) SCFTs?
- Can these duals shed some light on geometry of dualities?

Algorithm

- Say are given an $\mathcal{N}=1$ SCFT. By this I mean know all the \mathcal{M}_{c} invariants
- In particular,

$$
a=n_{v} a_{v}+n_{\chi} a_{\chi}, \quad c=n_{v} c_{v}+n_{\chi} c_{\chi}
$$

- Here $a_{v}=\frac{3}{16}, a_{\chi}=\frac{1}{48}, c_{v}=\frac{1}{8}, c_{\chi}=\frac{1}{24}$
- Step I: Find all conformal gauge theories with $\operatorname{dim} G=n_{v}$ and $\operatorname{dim} \mathcal{R}=n_{\chi}-$ there is a finite number of these
- Step II: Out of these isolate only the ones with matching \mathcal{M}_{c} invariants
- Step III: Perform any farther checks you can
- You have a putative dual

Plan

Surprizingly, this simple algorithm provides duals for many SCFTs

- $\mathcal{N}=1$ conformal gauge theory duals to $\mathcal{N}=1$ conformal gauge theories with simple G
- $\mathcal{N}=1$ conformal gauge theory duals to $\mathcal{N}=2$ strongly-coupled theories of class \mathcal{S}
- $\mathcal{N}=1$ conformal gauge theory duals to compactifications of E-string on genus g Riemann surface

$\mathcal{N}=1$ (simple) gauge theories

- Organise the assault by n_{v}
- $n_{v}=3 G=S U(2)$, no $\mathcal{N}=1 \mathrm{SCFTs}$
- $n_{v}=8 G=S U(3)$, many $\mathcal{N}=1 \operatorname{SCFTs}(2 a d j+3 f+3 \bar{f}$, $10 f+3 \bar{f}+1 \overline{\mathbf{6}}, \cdots)$
- 8 is not divisible by 3 ; all these models have different \mathcal{M}_{c} invariants; so can be only self-dual
- $n_{v}=10 G=U S p(4)$, same as $S U(3)$ - many SCFTs but 10 cannot be constracted out of 3 and 8 so only possibility is self-duality
- $n_{v}=14 F=G_{2}$, two examples $3 \times \mathbf{7}+\mathbf{2 7}$ and $12 \times \mathbf{7}$

$$
14=3+3+8
$$

Example $A: G_{2}+3 \times \mathbf{7}+\mathbf{2 7}$

- Can compute \mathcal{M}_{c} invariants
- $n_{v}=14$ and $n_{\chi}=48$
- $\operatorname{dim} \mathcal{M}_{c}=3$,
deduced by computing the Kahler quotient $\left\{\lambda_{i}\right\} / G_{\mathbb{C}}^{f r e e}$
- $G_{F}=S U(2)$,
the symmetry at the free point is $G^{\text {free }}=S U(3) \times U(1)$ which is broken on a generic point of \mathcal{M}_{c} to $S U(2)$
- Can compute the supersymmetric indices

Example $A: G_{2}+3 \times \mathbf{7}+\mathbf{2 7}$: dual

- We are after a dual theory with $n_{v}=14$, thus the group is $S U(2) \times S U(2) \times S U(3)$ and $n_{\chi}=48$ so that all the β functions vanish
- Here is a solution

- $\operatorname{dim} \mathcal{M}_{c}=3, G_{F}=S U(2), \operatorname{Tr} R S U(2)^{2}=-\frac{14}{3}{ }^{\prime} \mathrm{t}$ Hooft anomaly matches, indices match
- We have a putative duality

Example $A: G_{2}+3 \times \mathbf{7}+\mathbf{2 7}$: comments

- We can farther check the duality by studying flows. Giving vev to one of the fundamentals maps to giving vevs to one of the bifundamentals of the two $S U(2)$ s.
- In both cases the flow can be explicitly anlayzed and leads to $\mathcal{N}=2$ SQCD with $G=S U(3)$, one fundamental hypermultiplet, one $\mathbf{6}$ hypermultiplet, and free chiral field
- The structure of the conformal manifold is as follows,

Example $B: G_{2}+12 \times 7$

- \mathcal{M}_{c} invariant information is,
$n_{v}=14, n_{\chi}=84, \operatorname{dim} \mathcal{M}_{c}=77, G_{F}=\emptyset$, indices
- Match perfectly the following quiver

Example $C: S U(4)+8 \times \mathbf{4}+8 \times \overline{\mathbf{4}}+4 \times \mathbf{6}$

- \mathcal{M}_{c} invariant information is,
$n_{v}=15, n_{\chi}=88, \operatorname{dim} \mathcal{M}_{c}=82, G_{F}=U(1),{ }^{\prime} \mathrm{t}$ Hooft anomalies, indices
- Match perfectly the following quiver

Example D : triality

- $n_{v}=21, n_{\chi}=84, \operatorname{dim} \mathcal{M}_{c}=21, G_{F}=\emptyset$, indices

Class \mathcal{S} : generalities

Conformal duals of strongly coupled "non-Lagrangian" SCFTs?

- Need $\mathcal{N}=2$ SCFT with $\mathcal{N}=1$ conformal manifold
- Typically this means need to have marginal Higgs and Coulomb operators

Class \mathcal{S} Example $A: R_{0,4}$

- $n_{v}=12, n_{\chi}=72, \operatorname{dim} \mathcal{M}_{c}=74, G_{F}=\emptyset$, indices

Class \mathcal{S} Example $B: T_{4}$

- $n_{v}=19, n_{\chi}=99, \operatorname{dim} \mathcal{M}_{c}=83, G_{F}=\emptyset$, indices

Class \mathcal{S} Example $C: R_{2,5}$

- $n_{v}=14, n_{\chi}=86, \operatorname{dim} \mathcal{M}_{c}=36, G_{F}=\emptyset$, indices

Class \mathcal{S} Example D : even rank MN E_{6}

- Finally let us mention an example of sequences of theories
- $n_{v}=N(3 N+2), n_{\chi}=9 N^{2}+30 N-2$

Conformal dual of E-string on genus g

- Consider taking rank one E-string on a genus g surface
- Integrating $6 d$ anomaly polynomial on the surface we obtain

$$
n_{v}=16(g-1), \quad n_{\chi}=81(g-1)
$$

- For $g>1$ we expect,

$$
\operatorname{dim} \mathcal{M}_{c}=3 g-3+248(g-1)+\delta_{g, 2}
$$

Here 248 is dim_{8}, the symmetry group of the $6 d$ SCFT

- Indices are known

Conformal dual of E-string on genus g

- Consider $g=2$, here $n_{v}=16$ and $n_{\chi}=81$
- Natural guess $16=8+8$ and the gauge group is $S U(3) \times S U(3)$

- And for general g we get,

- All \mathcal{M}_{c} invariant information matches expectations

Conformal dual of E-string on genus g : Geometry

- Note that we have $3 g-3$ bifundamentals and $2 g-2 S U(3)$ gauge groups
- It is tempting to identify then pairs-of -pants with gauge nodes and the tubes with matter
- Note this is opposite to class \mathcal{S} where matter is pairs-of-pants and tubes are gauge groups
- This geometric interpretation implies the following duality move on the quiver

Yet another duality

- The geometric move when applied for genus two implies the following duality

- This is an example of a duality between two theories with not simple gauge groups
- Have checked that the simple duality tests are satisfied

Summary

- Have discussed a simple algorithm to seek for conformal duals of SCFTs
- Surprisingly it provides with many new conformal dualities!!
- Note that symmetry does not play an important role, moreover in many cases on generic points of the conformal manifolds we do not have any symmetry
- Found Lagrangians to strongly coupled SCFTs
- Again a key is that the Lagrangians do not exhibit the full (super)symmetry of the SCFT

Open questions

- Are these sporadic examples or there is an organizing principle?
- Were we lucky with the lower dimension cases or the ubiquity of dualities persists as we increase the dimensions of the groups?
- What is the geometry behind these dualities?
- Look for dualities with strongly coupled ingredients

Thank You!!

