GEOMETRY FROM MODULAR CHAOS

Lampros Lamprou MIT

THE LIFE OF QUANTUM INFORMATION

Quantum systems store information in their entanglement pattern, e.g. quantum error correcting codes.

Entanglement assists the efficient transport of information through quantum teleportation.
propagation

Unitarity and locality impose bounds on the allowed speed of information processing, e.g. maximal chaos bound.

THE GRAVITYINFORMATION TRIANGLE

1) Features of entanglement are mapped to aspects of geometry, e.g. Entanglement entropy = Area of minimal surface.
2) The teleportation protocol in the thermofield double state of two CFTs holographically propagates the excitation through a bulk traversable wormhole.
3) The scrambling of CFT operators due to chaotic dynamics descibes the exponential blueshifting of the infalling bulk particle due to the black hole's gravitational well.

$E R=E P R$
teleportation
\&
bulk transport

THE PLAN

I will present a chaos bound characterizing the modular flow of a QFT subregion.

Saturation of modular chaos bound will allow us to construct bulk
$T_{\mu \nu}$ lightray operators from CFT data.

Bulk curvature and local Poincare algerba is extracted from
chaos commutators.

MODULAR HAMILTONIAN ESSENTIALS I

Consider a state $|\psi\rangle$ and the algebra $\mathcal{A}(R)$ of observables localized in spacetime region R.

The modular Hamiltonian $H_{\text {mod }}$ is a Hermitian operator generating an automorphism of $\mathcal{A}(R)$.

It encodes the pattern of entanglement between degrees of freedom in R and its complement.

In lattice systems it is defined as:

$$
H_{\mathrm{mod}}=-\log \rho(R)+\log \rho\left(R^{c}\right)
$$

$H_{\text {mod }}$ is an unbounded operator. However:

$$
\begin{array}{r}
\left\|e^{i H_{\text {mod }} s} O \mid\langle\psi\rangle\right\|<\infty \\
\text { for: } \quad O \in \mathcal{A}(R) \\
-\frac{1}{2} \leq \operatorname{Im}|s| \leq 0
\end{array}
$$

For two subregions $R_{1} \subset R_{2}$ one can prove that:

1) $H_{\bmod }\left(R_{1}\right) \leq H_{\bmod }\left(R_{2}\right)$
2) $\left\|e^{-i H_{\text {mod }}\left(R_{2}\right) s} e^{i H_{\text {mod }}\left(R_{1}\right) s}\right\| \leq 1$
in the complex strip: $-\frac{1}{2} \leq \operatorname{Im}[s] \leq 0$

MODULAR HAMILTONIAN ESSENTIALS II

Jafferis-Lewkowycz-Maldacena-Suh:
In holographic CFTs, the modular Hamiltonian of a subregion is equal to the modular
Hamiltonian for the bulk degrees of freedom in the entanglement wedge:

$$
H_{\mathrm{mod}}^{\mathrm{bulk}}=H_{\mathrm{mod}}^{\mathrm{CFT}}
$$

In a small neighborhood of the RT surface, generates homogeneous boosts along the orthogonal 2-d plane.

$$
H_{\bmod }^{\text {bulk }} \rightarrow \epsilon^{\alpha \beta} x_{\beta} \partial_{\alpha}+\mathcal{O}\left(x^{2}\right)
$$

A BOUND ON MODULAR CHAOS

Suppose we infinitesimally perturb the modular Hamiltonian of a subalgebra $H_{\bmod } \rightarrow H_{\bmod }+\delta H_{\bmod }$.
This can be done either by a state perturbation $|\psi\rangle \rightarrow|\psi\rangle+\delta|\psi\rangle$ or by a shape deformation $R \rightarrow R+\delta R$.
The modular chaos bound states that the matrix elements of $\delta H_{\bmod }(s)$ cannot grow under modular flow faster than exponentially with exponent 2π.

$$
\left.\frac{d}{d s} \log \left|\left\langle\chi_{i}\right| \delta H_{\bmod }(s)\right| \chi_{j}\right\rangle \mid \leq 2 \pi \text { for: } s \gg 1
$$

$$
\text { where: } \delta H_{\bmod }(s)=e^{-i H_{\bmod } s} \delta H_{\bmod } e^{i H_{\mathrm{mod}} s}
$$

The modular chaos bound picks out a special set of operators that saturate the allowed exponential growth.

They can be extracted from the large modular parameter limit of $\delta H_{\text {mod }}(s)$

$$
\begin{aligned}
G_{+} & =\frac{1}{2 \pi} \lim _{s \rightarrow+\Lambda} e^{-2 \pi s} \delta H_{\bmod }(s) \\
G_{-} & =-\frac{1}{2 \pi} \lim _{s \rightarrow-\Lambda} e^{2 \pi s} \delta H_{\bmod }(s)
\end{aligned}
$$

In holographic theories, $\Lambda \sim \log N^{2}$ and the modular scrambling modes are stress-tensor lightray operators

$$
G_{ \pm}=\int_{-\ell_{K}}^{\ell_{K}} d x^{ \pm} \int_{R T} d^{d} y \sqrt{\gamma} \zeta_{(\pm)}^{\mu}\left(y^{i}, x^{ \pm}\right) T_{\mu \pm}
$$

generating parallel transport of the RT surface.

ROAD MAP
 OF THE DERIVATION

$$
\begin{aligned}
& \delta H_{\mathrm{mod}}^{(R)}=-\delta \log \rho^{(R)} \\
& =\lim _{b \rightarrow 0} \int_{-\infty}^{+\infty} \frac{d s}{4 \sinh ^{2}\left(\frac{s+i \alpha}{2}\right)} \int_{\partial M} \zeta^{\mu} n^{\nu} e^{-i H_{\bmod d} s}: T_{\mu \nu}: e^{i H_{\bmod } s}
\end{aligned}
$$

Euclidean path integral
for density matrix

Variation of $\rho=T_{\mu \nu}$ insertion along the cut

ROAD MAP OF THE DERIVATION

$$
\begin{aligned}
\delta H_{\bmod }^{(R)} & =\int_{0}^{+\infty} d s e^{-2 \pi s} e^{-i H_{\mathrm{mod}} s} T_{+\mu} \zeta^{\mu} e^{i H_{\bmod } s} & & \\
& -\int_{-\infty}^{0} d s e^{2 \pi s} e^{-i H_{\bmod s}} T_{-\mu} \zeta^{\mu} e^{i H_{\bmod s} s} & & e^{-2 \pi|s|} \delta H_{\bmod }(s) \sim \int_{-\ell_{K}}^{\ell_{K}} d x^{ \pm} T_{ \pm \mu} \zeta_{(\pm)}^{\mu} \\
& =\int_{0}^{\ell_{K}} d x^{+} T_{+\mu} \zeta_{(+)}^{\mu}-\int_{-\ell_{K}}^{0} d x^{-} T_{-\mu} \zeta_{(-)}^{\mu} & & \text { where: } \ell_{K} \sim 1 / \mid K_{i j| \pm|} \\
& + \text { non local } & & \text { the non-locality scale of the bulk modular H. }
\end{aligned}
$$

Holographic dictionary \& gravitational "Gauss' law"

POINCARE FROM LYAPUNOV

CURVATURE FROM CHAOS COMMUTATORS

$\left[G_{+}, G_{-}\right] \in$ zero mode algebra \rightarrow large diffeo ξ^{μ}

The commutator of scrambling modes is a modular zero mode:

$$
\left[H_{\bmod },\left[G_{+}, G_{-}\right]\right]=0
$$

In holographic theories it is an element of the RT surface symmetry algerba that preserve the surface and commute with modular boosts:

$$
\xi^{\mu} \partial \mu=\omega(y) \epsilon^{\alpha \beta} x_{\beta} \partial_{\alpha}+\zeta^{i}(y) \partial_{i}+\mathcal{O}\left(x^{2}\right)
$$

The Noether charge of the large diffeomorphism generated by the commutator of the scrambling modes associated to two infinitesimal shape deformations of the modular Hamiltonian measures the bulk curvature:

$$
Q_{\text {Noether }}=\int_{R T} \sqrt{\gamma} \epsilon_{\alpha \beta} \delta x_{1}^{\alpha} \delta x_{2}^{\mu}\left(R_{\alpha}^{\alpha}+K_{\alpha \mid i j} K^{\alpha \mid i j}\right)
$$

OPEN QUESTIONS

Can the modular chaos bound be proved in full generallity?
Gravitation as effective theory for scrambling modes?

Is there a more local version of the story in the bulk?

- Is modular chaos the right principle for extracting the local Poincare symmetry algebra in an observer's neighborhood?
- Can we use it to translate ourselves inside a black hole?

IN COLLABORATION WITH

Jan de Boer \& L.L. in progress
B. Czech, J. de Boer, Dongsheng Ge \& L.L.

A Modular Sewing Kit for Entanglement Wedges arXiv: 1903.04493

