Lorentzian CFT correlators in momentum space

Hadi Godazgar
Albert Einstein Institute
Potsdam
with Teresa Bautista
arXiv:1908.04733 [hep-th]
September, 162019
Tenth Crete Regional Meeting on String Theory
Kolymbari

Introduction

- CFT correlators in position space well-understood [Polyakov '70; Osborn Petkou '94]
- 2-point and 3-point functions fixed by conformal symmetry and given by relative distances
- Euclidean simple: symmetric under permutations and analytic at non-coincident points
- Lorentzian correlators obtained straightforwardly by Wick rotation using the $i \epsilon$-prescription
- Simpler understanding of OPE in position space (convergence)

Why Lorentzian and momentum space?

Lorentzian more complicated but also richer; encode causality

- E.g. causality proof of ANEC [Hartman Kundu Tajdini '16]
- E.g. Analytic bootstrap [Fitzpatrick Kaplan Poland Simmons-Duffin '12][Komargodski Zhiboedov '12]...
- E.g. Lorentzian inversion formula [Caron-Huot '17]...

Momentum space

- Cosmology [Maldacena Pimental '11][Creminelli, Norena, Simonovic '12]...[Sleight Taronna '19]
- Want to understand collider bounds as expectation values [Hofman Maldacena '08]...
- Also more generally light-ray operators [Zhiboedov...]

Even in Euclidean signature correlators in momentum space have only been found relatively recently [Bzowski McFadden Skenderis '13-'18][Coriano Delle Rose Mottola Serino '13]...

Outline

- 2-point function
- 3-point function
- $\langle\mathcal{O T O}\rangle$ correlator
- Application to ANEC and collider bounds
- Outlook

2-point function and main idea

Euclidean 2-point function of scalar operators \mathcal{O}_{1} and \mathcal{O}_{2} with dimensions Δ

$$
\left\langle\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)\right\rangle_{E}=\frac{1}{\left(t_{E}^{2}+|\vec{x}|^{2}\right)^{\Delta}}
$$

The two different Wick rotations $t_{E}=i t$
\longrightarrow two possible Wightman 2-point functions
\longrightarrow Wick rotations given by $i \epsilon$ prescription

Lorentzian correlators

Order of operators dictated by $i \epsilon$ prescription $(\epsilon>0)$

$$
\begin{aligned}
\left\langle\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)\right\rangle & =\frac{1}{\left(-(t-i \epsilon)^{2}+|\vec{x}|^{2}\right)^{\Delta}} \\
\left\langle\mathcal{O}_{2}(0) \mathcal{O}_{1}(x)\right\rangle & =\frac{1}{\left(-(t+i \epsilon)^{2}+|\vec{x}|^{2}\right)^{\Delta}}
\end{aligned}
$$

- Relates unitary Lorentzian theory to reflection-positive Euclidean theory
- Prescription such that for ordering

$$
\ldots e^{i H\left(t_{i}-i \epsilon_{i}\right)} \mathcal{O}_{i}\left(\vec{x}_{i}\right) e^{-i H\left(\left(t_{i}-t_{j}\right)-i\left(\epsilon_{i}-\epsilon_{j}\right)\right)} \mathcal{O}_{j}\left(\vec{x}_{j}\right) e^{-i H\left(t_{j}-i \epsilon_{j}\right)} \ldots
$$

$\epsilon_{i}>\epsilon_{j}$ to have a decaying exponential

2-point function in momentum space

- Fourier transform of Euclidean correlator (d-dimensions)

$$
\langle\langle\mathcal{O}(p) \mathcal{O}(-p)\rangle\rangle_{E}=\frac{\pi^{d / 2} \Gamma(d / 2-\Delta)}{2^{2 \Delta-d} \Gamma(\Delta)}\left(p_{E}^{2}+|\vec{p}|^{2}\right)^{\Delta-d / 2}
$$

- Fourier transform of Lorentzian correlator

$$
\begin{gathered}
\langle\langle\mathcal{O}(p) \mathcal{O}(-p)\rangle\rangle=\frac{\pi^{d / 2+1}}{2^{2 \Delta-d-1} \Gamma\left(\Delta-\frac{d}{2}+1\right) \Gamma(\Delta)} \theta\left(p^{0}-|\vec{p}|\right)|p|^{2 \Delta-d}, \\
|p|=\sqrt{\left(p^{0}\right)^{2}-|\vec{p}|^{2}}
\end{gathered}
$$

- Not straightforward $p_{E}=-i p^{0}$
- E.g. Lorentzian correlator well-defined at $\Delta-d / 2 \in \mathbb{N}^{0}$
- Direct Fourier transform not simple \longrightarrow even more complicated for 3-point functions!

Wick rotation in momentum space

- By definition, correlator in Euclidean position and momentum space related by Fourier transform

$$
G_{E}(x)=\int \frac{d^{d} p}{(2 \pi)^{d}} e^{i p \cdot x} G_{E}(p)
$$

- Simple relation between Euclidean and Lorenztian correlators in momentum space

$$
G(x)=G_{E}(i(t-i \epsilon), \vec{x})
$$

- Hence

$$
G(x)=\int \frac{d^{d-1} \vec{p}}{(2 \pi)^{d-1}} e^{i \vec{p} \cdot \vec{x}} \int_{-\infty}^{\infty} \frac{d p_{E}}{2 \pi} e^{-p_{E}(t-i \epsilon)} G_{E}\left(p_{E}, \vec{p}\right)
$$

- No longer a Fourier transform, but turn into a Fourier tranform by Wick-rotating p_{E} to the imaginary axis \longrightarrow yields Lorentzian correlator in momentum space

Example: 2-point function

Euclidean 2-point function in momentum space
$G_{E}(p) \sim\left(p_{E}^{2}+|\vec{p}|^{2}\right)^{\Delta-d / 2}$
Branch points at $\pm i|\vec{p}|$
Deform contour to integrate along imaginary axis

Contribution from arcs vanish
 because of $\epsilon, e^{-p_{E}(t-i \epsilon)}$

Integral around branch
cut gives the step function
$\theta\left(p^{0}-|\vec{p}|\right)$
Deforming contour gives Lorentzian 2-point function in momentum space without need to Fourier transform

3-point function

Euclidean 3-point functions in momentum space [Bzowski McFadden Skenderis '13-'18]

$$
\begin{gathered}
C_{E}\left(\left\{\beta_{j}\right\}\right) \sim \prod_{j=1}^{3} \frac{\Gamma\left(d / 2-\beta_{j}\right)}{\Gamma\left(\beta_{j}\right)} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{\left|p_{2}+k\right|^{d-2 \beta_{1}}\left|p_{1}-k\right|^{d-2 \beta_{2}}|k|^{d-2 \beta_{3}}} \\
C_{E}\left(\left\{\beta_{j}\right\}\right) \sim \int_{0}^{\infty} d t t^{d / 2-1} \prod_{j=1}^{3}\left|p_{j}\right|^{\nu_{j}} K_{\nu_{j}}\left(\left|p_{j}\right| t\right) \\
\beta_{j}=\frac{\Delta_{t}}{2}-\Delta_{j}, \quad \nu_{j}=\Delta_{j}-\frac{d}{2}
\end{gathered}
$$

Requires renormalisation for

$$
\beta_{j}-\frac{d}{2} \in \mathbb{N}^{0}
$$

Position space correlator expression

$$
\left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{3}\left(x_{3}\right)\right\rangle=\frac{c_{123}}{\left(x_{23}^{2}\right)^{\beta_{1}}\left(x_{13}^{2}\right)^{\beta_{2}}\left(x_{12}^{2}\right)^{\beta_{3}}}
$$

not defined at coincident points

Lorentzian 3-point function in momentum space

$$
C\left(\left\{\beta_{j}\right\}\right) \sim \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\theta\left(k^{0}-|\vec{k}|\right) \theta\left(p_{2}^{0}+k^{0}-\left|\vec{p}_{2}+\vec{k}\right|\right) \theta\left(p_{1}^{0}-k^{0}-\left|\vec{p}_{1}-\vec{k}\right|\right)}{\left|p_{2}+k\right|^{d-2 \beta_{1}}\left|p_{1}-k\right|^{d-2 \beta_{2}}|k|^{d-2 \beta_{3}}}
$$

- No renomalisation needed because of $i \epsilon$ prescription \longrightarrow no coincident points
- 3-point function vanishes when $p_{1}=0$ or $p_{3}=0$

Fourier transform of triple-K expression

$$
C\left(\left\{\beta_{j}\right\}\right) \sim \int_{0}^{\infty} d t t^{d / 2-1} \prod_{j=1}^{3} p_{j}^{\nu_{j}} \mathcal{B}_{\nu_{j}}\left(p_{j} t\right)
$$

- each term is multplied by various combinations of step function, e.g.

$$
\begin{gathered}
\theta\left(p_{1}^{0}-\left|\vec{p}_{1}\right|\right) \theta\left(p_{2}^{0}-\left|\vec{p}_{2}\right|\right) \\
\theta\left(p_{1}^{0}-\left|\vec{p}_{1}\right|\right) \theta\left(-p_{3}^{0}-\left|\vec{p}_{3}\right|\right) \theta\left(-p_{1}^{0}+\left|\vec{p}_{3}\right|\right) \theta\left(-p_{2}^{0}+\left|\vec{p}_{2}\right|\right)
\end{gathered}
$$

- $\mathcal{B}_{\nu_{j}}$ Bessel functions of the first (J) or second kind (Y) or modified Bessel function K

Tensorial 3-point functions

Tensorial functions found from scalar case by differentiation, e.g.

$$
\begin{aligned}
& \int \prod_{i} d^{d} x_{i} e^{-i p_{i} \cdot x_{i}} \frac{x_{12} \mu x_{12}}{\left(x_{23}^{2}\right)^{\beta_{1}}\left(x_{13}^{2}\right)^{\beta_{2}}\left(x_{12}^{2}\right)^{\beta_{3}}} \\
& \quad \sim \delta^{(d)}\left(p_{1}+p_{2}+p_{3}\right)\left(\frac{\partial}{\partial p_{1}^{\mu}}-\frac{\partial}{\partial p_{2}^{\mu}}\right)\left(\frac{\partial}{\partial p_{1}^{\nu}}-\frac{\partial}{\partial p_{2}^{\nu}}\right) C\left(p_{1}, p_{2} ;\left\{\beta_{j}\right\}\right)
\end{aligned}
$$

Using Osborn-Petkou, e.g. $\left\langle\mathcal{O}\left(p_{1}\right) T_{--}\left(p_{2}\right) \mathcal{O}\left(p_{3}\right)\right\rangle$ is

$$
\begin{aligned}
& \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\theta\left(p_{1}^{0}-k^{0}-\left|\vec{p}_{1}-\vec{k}\right|\right) \delta\left(k^{0}-|\vec{k}|\right) \delta\left(p_{2}^{0}+k^{0}-\left|\vec{p}_{2}+\vec{k}\right|\right)}{|\vec{k}|\left|\vec{p}_{2}+\vec{k}\right|\left|p_{1}-k\right|^{2(d-1-\Delta)}} \\
& \times {\left[\frac{4(d-1)}{d-2}\left(k^{+} k^{+}+k^{+} p_{2}^{+}\right)+p_{2}^{+} p_{2}^{+}\right] } \\
& k^{+}=k^{0}+k^{1}
\end{aligned}
$$

ANEC expectation values on HM states

- Original calculation done in position space
- Seems more natural in momentum space: ANEC operator commutes with momentum operator at ∞
- Positivity of ANEC operator in HM states:

$$
\langle\mathcal{E}\rangle=\lim _{r \rightarrow \infty} r^{d-2}\langle\mathcal{O}(q)| \int_{-\infty}^{\infty} d x^{-} T_{--}\left(x^{+}, x^{-}\right)|\mathcal{O}(q)\rangle \geq 0
$$

- In momentum space

$$
\langle\mathcal{E}\rangle=\lim _{r \rightarrow \infty} r^{d-2} \int \frac{d^{d-1} \vec{p}}{(2 \pi)^{d-1}} e^{2 i p^{1} r}\left\langle\left\langle\mathcal{O}(q, \overrightarrow{0}) T_{--}\left(-p^{1}, \vec{p}\right) \mathcal{O}\left(p^{1}-q,-\vec{p}\right)\right\rangle\right\rangle
$$

- Integrals just reduce to δ-function integrals
- In $r \rightarrow \infty$ limit, momenta of the ANEC operator become zero \longrightarrow clear why this is an expectation value

$$
\langle\mathcal{E}\rangle \sim\left\langle\left\langle\mathcal{O}(q, \overrightarrow{0}) T_{--}(0, \overrightarrow{0}) \mathcal{O}(-q, \overrightarrow{0})\right\rangle\right.
$$

Outlook

- A way to obtain Lorentzian correlators from Euclidean ones by analytic continuation
- Only need to know analytic properties of the Euclidean correlator in momentum space
- ANEC simplifies considerably
- More recently, expression in terms of Appell F_{4} function [Gillioz '19]
\longrightarrow what is relation?
- Nicer treatment of tensorial correlators
- Can we use ANEC away from fixed point?

Thank you!

