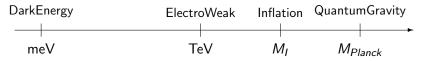
The cosmological constant in supergravity and string theory

I. Antoniadis

Albert Einstein Center, University of Bern LPTHE, Sorbonne Université, CNRS Paris 10th Crete Regional Meeting in string theory Kolymbari, Greece, 15-22 September 2019


Universe evolution: based on positive cosmological constant

Dark Energy

simplest case: infinitesimal (tuneable) +ve cosmological constant

• Inflation (approximate de Sitter)

describe possible accelerated expanding phase of our universe

The cosmological constant in Supergravity

Highly constrained: $\Lambda \geq -3m_{3/2}^2$

• equality \Rightarrow AdS (Anti de Sitter) supergravity

 $m_{3/2} = W_0$: constant superpotential

- o inequality: dynamically by minimising the scalar potential
 ⇒ uplifting Λ and breaking supersymmetry
- Λ is not an independent parameter for arbitrary breaking scale $m_{3/2}$ What about breaking SUSY with a $\langle D \rangle$ triggered by a constant FI-term? standard supergravity: possible only for a gauged $U(1)_R$ symmetry: absence of matter $\Rightarrow W_0 = 0 \rightarrow dS$ vacuum Friedman '77
- exception: non-linear supersymmetry

gauge invariant at the Lagrangian level but non-local becomes local and very simple in the unitary gauge

Global supersymmetry: $\mathcal{L}_{\mathrm{FI}}^{new} = \xi_1 \int d^4\theta \frac{\mathcal{W}^2 \overline{\mathcal{W}}^2}{\mathcal{D}^2 \mathcal{W}^2 \overline{\mathcal{D}}^2 \overline{\mathcal{W}}^2} \mathcal{D} \overset{\text{gauge field-srength superfield}}{\mathcal{W}} = -\xi_1 \mathrm{D} + \mathrm{fermions}$

It makes sense only when $<\mathrm{D}>\neq0\Rightarrow$ SUSY broken by a D-term

Supergravity generalisation: straightforward

unitarity gauge: goldstino = U(1) gaugino = 0 \Rightarrow standard sugra $-\xi_1 D$

Pure sugra + one vector multiplet \Rightarrow

$$\mathcal{L} = R + \bar{\psi}_{\mu}\sigma^{\mu\nu\rho}D_{\rho}\psi_{\nu} + m_{3/2}\bar{\psi}_{\mu}\sigma^{\mu\nu}\psi_{\nu} - \frac{1}{4}F_{\mu\nu}^{2} - \left(-3m_{3/2}^{2} + \frac{1}{2}\xi_{1}^{2}\right)$$

- $\xi_1 = 0 \Rightarrow AdS$ supergravity
- $\xi_1 \neq 0$ uplifts the vacuum energy and breaks SUSY

e.g. $\xi_1 = \sqrt{6}m_{3/2} \Rightarrow$ massive gravitino in flat space

The cosmological constant in Supergravity

New FI-term evades this problem in the absence of matter Presence of matter \Rightarrow non trivial scalar potential

but breaks Kähler invariance

However new FI-term in the presence of matter is not unique

Question: can one modify it to respect Kähler invariance?

Answer: yes, constant FI-term + fermions as in the absence of matter

 \Rightarrow constant uplift of the potential, Λ free (+ve) parameter besides $m_{3/2}$

It can also be written in N = 2 supergravity

I.A.-Derendinger-Farakos-Tartaglino Mazzucchelli '19

String theory: vacuum energy and inflation models

related to the moduli stabilisation problem

Difficulties to find dS vacua led to a conjecture:

$$rac{|
abla V|}{V} \ge c \quad ext{or} \quad \min(
abla_i
abla_j V) \le -c' \quad ext{in Planck units}$$

with c, c' positive order 1 constants Ooguri-Palti-Shiu-Vafa '18 Dark energy: forbid dS minima but allow maxima Inflation: forbid standard slow-roll conditions

Assumptions: heuristic arguments, no quantum corrections

 \longrightarrow here: explicit counter example

Moduli stabilisation in type IIB

Compactification on a Calabi-Yau manifold $\Rightarrow N = 2$ SUSY in 4 dims

Moduli: Complex structure in vector multiplets

Kähler class + dilaton in hypermultiplets

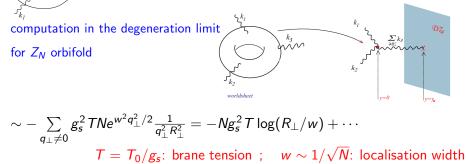
 \Rightarrow decoupled kinetic terms

turn on appropriate 3-form fluxes (primitive self-dual) $\Rightarrow N = 1$ SUSY + orientifolds and D3/D7-branes

vectors and companions of geometric moduli are projected away \Rightarrow all moduli in N = 1 chiral multiplets + superpotential for the complex structure and dilaton \rightarrow fixed in a SUSY way Frey-Polchinski '02 Kähler moduli: no scale structure, vanishing potential (classical level) Non perturbative superpotential from gaugino condensation on D-branes \Rightarrow stabilisation in an AdS vacuum Derendinger-Ibanez-Nilles '85 Uplifting using anti-D3 branes Kachru-Kallosh-Linde-Trivedi '03 or D-terms and perturbative string corrections to the Kähler potential Large Volume Scenario Conlon-Quevedo et al '05 Ongoing debate on the validity of these ingredients in full string theory While perturbative stabilisation has the old Dine-Seiberg problem put together 2 orders of perturbation theory violating the expansion possible exception known from filed theory: logarithmic corrections \rightarrow Coleman-Weinberg mechanism

Log corrections in string theory

Effective propagation of massless bulk states in $d \le 2 \Rightarrow$ IR divergences d = 1: linear, d = 2: logarithmic corrections for (brane) localised couplings on the size of the bulk due to local closed string tadpoles I.A.-Bachas '98 e.g. gauge coupling corrections, linear dilaton dependence on the 11th dim Type II strings: corrections to the Kähler potential \leftrightarrow Planck mass I.A.-Ferrara-Minasian-Narain '97


Large volume limit: it corresponds to a 4d localised Einstein-Hilbert term in the 6d internal space I.A.-Minasian-Vanhove '02

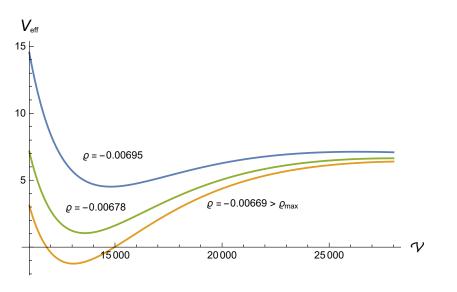
$$S_{\text{grav}}^{IIB} = \frac{1}{(2\pi)^7 \alpha'^4} \int_{M_4 \times \mathcal{X}_6} e^{-2\phi} \mathcal{R}_{(10)} + \frac{\chi}{(2\pi)^4 \alpha'} \int_{M_4} \left(2\zeta(3) e^{-2\phi} + \frac{2\pi^2}{3} \right) \mathcal{R}_{(4)}$$

$$\chi: \text{ Euler number} = 4(n_H - n_V) \qquad \text{4-loop } \sigma\text{-model} \nearrow \text{ vanishes for orbifolds}$$

perturbative moduli stabilisation I.A.-Chen-Leontaris '18, '19

localised vertices from $\mathcal{R}_{(4)}$ can emit massless closed strings \Rightarrow local tadpoles in the presence of distinct 7-brane sources

propagation in 2d transverse bulk $\rightarrow \log R_{\perp}$ corrections


perturbative moduli stabilisation I.A.-Chen-Leontaris '18, '19

Kähler potential:
$$\mathcal{K}=-2\ln\left(\mathcal{V}\!+\!\xi\!+\!\eta\ln\mathcal{V}_{\perp}\!+\!\mathcal{O}(rac{1}{\mathcal{V}})
ight)\!=\!-2\ln\left(\mathcal{V}\!+\!\eta\ln\mu\mathcal{V}_{\perp}
ight)$$

$$\xi = -\frac{1}{4}\chi f(g_s); \quad f(g_s) = \begin{cases} \zeta(3) \simeq 1.2 & \text{smooth CY} \\ \frac{\pi^2}{3}g_s^2 & \text{orbifolds} \end{cases} \quad \eta = -\frac{1}{2}g_s T_0 \xi$$

Using 3 mutual orthogonal 7-brane stacks with D-terms (magnetic fluxes) and minimising with respect to transverse volume ratios

 $\Rightarrow V \simeq \frac{3\eta W_0^2}{\mathcal{V}^3} (\ln \mu \mathcal{V} - 4) + 3\frac{d}{\mathcal{V}^2} \qquad \mathcal{W}_0: \text{ constant superpotential, } d: \text{ D-term}$ de Sitter minimum: $-0.007242 < \frac{d}{\eta W_0^2 \mu} \equiv \rho < -0.006738 \text{ with } \mathcal{V} \simeq e^5/\mu$ exponentially large volume for $\mu = e^{\xi/\eta}/w = |\chi|e^{-\frac{2}{g_s T_0}} \rightarrow 0$ weak coupling and large χ or/and \mathcal{W}_0 from 3-form flux to keep ρ fixed requirement: negative χ ($\eta < 0$) and surplus of D7-branes ($T_0 > 0$)

2 extrema min+max ightarrow -0.007242 < ho < -0.006738 \leftarrow +ve energy of min

Novel D-terms in supergravity that do not gauge the R-symmetry

allow to write a positive cosmological constant even without matter fields

their implementation in string theory: open problem

New mechanism of moduli stabilisation is string theory (type IIB)

- perturbative: weak coupling, large volume
- based on log corrections in the transverse volume of 7-branes due to local tadpoles induced by localised gravity kinetic terms arising only in 4 dimensions!
- can lead to de Sitter vacua in string theory explicit counter-example to dS swampland conjecture

Open question: realise slow-roll inflationary models in string theory