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Motivation

-

1) Short distance singularities. 7?7

2) External fluxes.

3) Seiberg-Witten map.
4) Large N gauge theories and matrix models.

5) The construction of gauge theories using the techniques
of non-commutative geometry.
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|7 Ty, ] =10, T

simplest case: 6 is constant (canonical, or Heisenberg
case).

Other cases:

x,, x| = iF},x, (Lie algebra case)
x,r, = q 'Rl z,7, (Quantum space case)
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- N

Ty, ] =10,
simplest case: 6 is constant (canonical, or Heisenberg
case).

Other cases:
x,, x| = iF},x, (Lie algebra case)
x,r, = q 'Rl z,7, (Quantum space case)

Definition of the derivative:
oHx, = by, 1z, f(z)] =10,0" f(x)

Define a * product
i 0 0

frg=emw f(2)g(y)|amy

. |
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-

fAII computations can be viewed as expansions in ¢
expansions in the external field

More efficient ways?
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Large N field theories
P

o'(x)i=1,...N; N = ¢
¢'(x) = ¢(o,2) 0 <o < 2w
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Large N field theories
[ -

o'(x)i=1,...N; N = ¢

gbz(a:) — ¢(o,x) 0< 0 <27

S22 ¢ (@) (@) — [ do(p(o,x))?
but

ot = ()

however

LFor a Yang-Mills theory, the resulting expression is local J
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Gauge theories on surfaces

- N

Given an SU(N) Yang-Mills theory in a d—dimensional
space

Auz) = AZ(@ ta

there exists a large N limit such that:

(AM(ZE))Z — Au(a:,al,az) (FW(CE))Z — .7:;“/(:1:,01, 0'2) (1)
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Gauge theories on surfaces

-

The gauge transformations of the SU(/N) Yang-Mills theory
become area preserving diffeomorphisms of the surface:

-

0A, =0w(z)+ [Ay,w] — A, = Ow(x,01,02) + { A, w}
0F = Fu,w — 0F, = {Fuw,w}

Jr,uu :a,uAV — aVA,u - {A/MAV}
(2)
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(3)

The SU(N) matrix commutators are replaced by Poisson
brackets with respect to the variables ¢; and os.
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Gauge theories on surfaces

-

The gauge transformations of the SU(/N) Yang-Mills theory
become area preserving diffeomorphisms of the surface:

-

0A, =0w(z)+ [Ay,w] — A, = Ow(x,01,02) + { A, w}
0F = Fu,w — 0F, = {Fuw,w}
Fu =0,A, — A, + {A,, A}

(4)

The SU(N) matrix commutators are replaced by Poisson
brackets with respect to the variables 1 and o9

The classical action becomes

1 1
LS ~ —Z/TTFWFWd4x — S ~ Z/FMVF””d4xd01d02 J

(5)
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Gauge theories on surfaces

-

The SU(N) algebra — The algebra of the area preserving
diffeomorphisms of a closed surface.
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Gauge theories on surfaces

-

The SU(N) algebra — The algebra of the area preserving
diffeomorphisms of a closed surface.

-

-The structure constants of [SDif f(S5?)] are the limits for
large N of those of SU(N).
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Gauge theories on surfaces

o

r1 = cosp sinfl, xo = sing sinf, x3 = cosH

-

or a sphere:

}/l,m(ea gb) — Zik:l’2’3 Oégn)zl Ly ey

where a(m).l IS a symmetric and traceless tensor.

il...Z
For fixed [ there are 2/ + 1 linearly independent tensors
(m)

&il---il, m — _17 ...71.
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-

Choose, inside SU(N), an SU(2) subgroup.
1S, 55| = i€;j1Sk
A basis for SU(N):

S<N>: Zik=1,23 cv( ) S@ SZ

Im

[S(N) ( ]_ flmll’ / l(/{V)

lom >’
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- N

The three SU(2) generators S;, rescaled by a factor
proportional to 1/N, will have well-defined limits as N goes
to Infinity.

T, 1] = 2te;x Ty
1
T*?=T{+T5+T8=1— 55

In other words: under the norm ||z||? = Traz?, the limits as N
goes to infinity of the generators 7; are three objects z;
which commute and are constrained by

x%+x%+x§:1
| o
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9f 09 T

9] = €ijr T g,

N
2i

(V)

N
N TN Y Yo}

2t L"Im

N[A,WAV] — {AM($797¢)7AV($797¢)}
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1. To all orders

L N

Given an SU(N) Yang-Mills theory in a d—dimensional
space

Auz) = AZ(SL’) ta

there exists a reformulation in d+2 dimensions

Ay (r) = Ay, 21, 22) Fu(z) = Fu(z, 21, 22)

2|

with [Zl, ZQ] —

o |
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-

Au(r), Ap(z)] — {Au(z, 21, 22), A (T, 21, 22) } Moyal

-

[Ali(x% Q(ZC)] — {'A,u(xa %15 22)7 “(2(337 <1, ZQ)}Moya,l

fd4x Tr (F(x)FM(x) —
f d*rdzidzo Fuv (T, 21, 22) * FF (2, 21, 22)



. N

or the sphere:
We can parametrize the 7;’s in terms of two operators, z;

and zo.

o |
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-

If we assume that z; and z satisfy:

(21, 29] = %

The T;’s satisfy the SU(2) algebra.

If we assume that the 7T;’s satisfy the SU(2) algebra, the z;’s
satisfy the Heisenberg algebra

o |
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Techniques of non-com. geometry

-

Gauge transformations are: T
-Diffeomorphisms space-time
-Internal symmetries

Question: Is there a space on which Internal symmetry
transformations act as Diffeomorphisms?
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The technigues of non-com. geometry

L N

Gauge transformations are:
-Diffeomorphisms space-time
-Internal symmetries

Question: Is there a space on which Internal symmetry
transformations act as Diffeomorphisms?

Answer: Yes, but it Is a space with non-commutative

geometry.
A space defined by an algebra of matrix-valued functions

o |
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Conclusions

-

Non-Commutative Geometry has come to stay!

-

Whether it will turn out to be convenient for us to use Is stll
guestionable.

It will depend on our ability to simplify the mathematics
sufficiently, or to master them deeply, in order to get new
Insights

Hopefully, a subject for Costas’ 70eth birthday
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