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Motivation

1) Short distance singularities. ???

Heisenberg → Peierls → Pauli → Oppenheimer → Snyder

2) External fluxes.

Landau (1930) ; Peierls (1933)

3) Seiberg-Witten map.

4) Large N gauge theories and matrix models.

5) The construction of gauge theories using the techniques
of non-commutative geometry.
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[xµ, xν ] = iθµν

simplest case: θ is constant (canonical, or Heisenberg
case).

Other cases:
[xµ, xν ] = iF ρ

µνxρ (Lie algebra case)
xµxν = q−1Rρσ

µνxρxσ (quantum space case)
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[xµ, xν ] = iθµν

simplest case: θ is constant (canonical, or Heisenberg
case).

Other cases:
[xµ, xν ] = iF ρ

µνxρ (Lie algebra case)
xµxν = q−1Rρσ

µνxρxσ (quantum space case)

Definition of the derivative:
∂µxν = δµν [xµ, f(x)] = iθµν∂

νf(x)

Define a * product

f ∗ g = e
i
2

∂
xµ

θµν
∂
yν f(x)g(y)|x=y
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All computations can be viewed as expansions in θ
expansions in the external field

More efficient ways?
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Large N field theories

φi(x) i = 1, ..., N ; N → ∞

φi(x) → φ(σ, x) 0 ≤ σ ≤ 2π

∑
∞

i=1 φ
i(x)φi(x) →

∫ 2π
0 dσ(φ(σ, x))2

but

φ4 → (
∫
)2
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Large N field theories

φi(x) i = 1, ..., N ; N → ∞

φi(x) → φ(σ, x) 0 ≤ σ ≤ 2π

∑
∞

i=1 φ
i(x)φi(x) →

∫ 2π
0 dσ(φ(σ, x))2

but

φ4 → (
∫
)2

however

For a Yang-Mills theory, the resulting expression is local

– p. 14/39



Gauge theories on surfaces

Given an SU(N) Yang-Mills theory in a d−dimensional
space

Aµ(x) = Aa
µ(x) ta
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Gauge theories on surfaces

Given an SU(N) Yang-Mills theory in a d−dimensional
space

Aµ(x) = Aa
µ(x) ta

there exists a large N limit such that:

(Aµ(x))
a
b → Aµ(x, σ1, σ2) (Fµν(x))

a
b → Fµν(x, σ1, σ2) (1)
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Gauge theories on surfaces

The gauge transformations of the SU(N) Yang-Mills theory
become area preserving diffeomorphisms of the surface:

δAµ = ∂µω(x) + [Aµ, ω] → δAµ = ∂µω(x, σ1, σ2) + {Aµ, ω}

δFµν = [Fµν , ω] → δFµν = {Fµν , ω}

Fµν = ∂µAν − ∂νAµ + {Aµ,Aν}

(2)
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The SU(N) matrix commutators are replaced by Poisson
brackets with respect to the variables σ1 and σ2.
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Gauge theories on surfaces

The gauge transformations of the SU(N) Yang-Mills theory
become area preserving diffeomorphisms of the surface:

δAµ = ∂µω(x) + [Aµ, ω] → δAµ = ∂µω(x, σ1, σ2) + {Aµ, ω}

δFµν = [Fµν , ω] → δFµν = {Fµν , ω}

Fµν = ∂µAν − ∂νAµ + {Aµ,Aν}

(4)

The SU(N) matrix commutators are replaced by Poisson
brackets with respect to the variables σ1 and σ2

The classical action becomes

S ∼ −
1

4

∫
TrFµνF

µνd4x → S ∼
1

4

∫
FµνF

µνd4xdσ1dσ2

(5)
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Gauge theories on surfaces

The SU(N) algebra → The algebra of the area preserving
diffeomorphisms of a closed surface.
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Gauge theories on surfaces

The SU(N) algebra → The algebra of the area preserving
diffeomorphisms of a closed surface.

-The structure constants of [SDiff(S2)] are the limits for
large N of those of SU(N).
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Gauge theories on surfaces

For a sphere:

x1 = cosφ sinθ, x2 = sinφ sinθ, x3 = cosθ

Yl,m(θ, φ) =
∑

ik=1,2,3

k=1,...,l

α
(m)
i1...il

xi1 ...xil

where α
(m)
i1...il

is a symmetric and traceless tensor.
For fixed l there are 2l + 1 linearly independent tensors

α
(m)
i1...il

, m = −l, ..., l.
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Choose, inside SU(N), an SU(2) subgroup.

[Si, Sj ] = iǫijkSk

A basis for SU(N):

S
(N)
l,m =

∑
ik=1,2,3

k=1,...,l

α
(m)
i1...il

Si1 ...Sil

[S
(N)
l,m , S

(N)
l′,m′ ] = if

(N)l′′,m′′

l,m; l′,m′ S
(N)
l′′,m′′
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The three SU(2) generators Si, rescaled by a factor
proportional to 1/N , will have well-defined limits as N goes
to infinity.

Si → Ti =
2
NSi

[Ti, Tj ] =
2i
N ǫijkTk

T 2 = T 2
1 + T 2

2 + T 2
3 = 1− 1

N2

In other words: under the norm ‖x‖2 = Trx2, the limits as N
goes to infinity of the generators Ti are three objects xi
which commute and are constrained by

x21 + x22 + x23 = 1
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N
2i [f, g] → ǫijk xi

∂f
∂xj

∂g
∂xk

N
2i [T

(N)
l,m , T

(N)
l′,m′ ] → {Yl,m, Yl′,m′}

N [Aµ, Aν ] → {Aµ(x, θ, φ), Aν(x, θ, φ)}
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II. To all orders

Given an SU(N) Yang-Mills theory in a d−dimensional
space

Aµ(x) = Aa
µ(x) ta

there exists a reformulation in d+2 dimensions

Aµ(x) → Aµ(x, z1, z2) Fµν(x) → Fµν(x, z1, z2)

with [z1, z2] =
2i
N
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[Aµ(x), Aν(x)] → {Aµ(x, z1, z2),Aν(x, z1, z2)}Moyal

[Aµ(x),Ω(x)] → {Aµ(x, z1, z2),Ω(x, z1, z2)}Moyal

∫
d4x Tr (Fµν(x)F

µν(x)) →∫
d4xdz1dz2 Fµν(x, z1, z2) ∗ F

µν(x, z1, z2)
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For the sphere:
We can parametrize the Ti’s in terms of two operators, z1
and z2.

T+ = T1 + iT2 = e
iz1
2 (1− z22)

1

2 e
iz1
2

T− = T1 − iT2 = e−
iz1
2 (1− z22)

1

2 e−
iz1
2

T3 = z2
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If we assume that z1 and z2 satisfy:

[z1, z2] =
2i
N

The Ti’s satisfy the SU(2) algebra.

If we assume that the Ti’s satisfy the SU(2) algebra, the zi’s
satisfy the Heisenberg algebra

– p. 29/39



Gauge theories and non-com. geometry

Gauge transformations are:

-Diffeomorphisms space-time
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Techniques of non-com. geometry

Gauge transformations are:
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-Internal symmetries

Question: Is there a space on which Internal symmetry
transformations act as Diffeomorphisms?
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The techniques of non-com. geometry

Gauge transformations are:

-Diffeomorphisms space-time

-Internal symmetries

Question: Is there a space on which Internal symmetry
transformations act as Diffeomorphisms?

Answer: Yes, but it is a space with non-commutative
geometry.
A space defined by an algebra of matrix-valued functions
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Conclusions
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Conclusions

Non-Commutative Geometry has come to stay!

Whether it will turn out to be convenient for us to use is stll
questionable.

It will depend on our ability to simplify the mathematics
sufficiently, or to master them deeply, in order to get new
insights

Hopefully, a subject for Costas’ 70eth birthday
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