

Nicosia, September 29th 2012 Kounnas Fest.

Supergravity, black holes and E7

Sergio Ferrara (CERN, Geneva)

Many publications with Costas

	citation
E. Cremmer, S. Ferrara, C. Kounnas and D.V. Nanopoulos, <i>Naturally Vanishing Cosmological Constant in N=1 Supergravity</i> Phys. Lett. B133 (1983) 61	532
J.P. Derendinger, S. Ferrara, C. Kounnas and F. Zwirner, On loop corrections to string effective field theories: Field dependent gauge couplings and sigma model anomalies Nucl. Phys. B372 (1992) 145	309
E. Cremmer, C. Kounnas, A. Van Proeyen, J.P. Derendinger, S. Ferrara, B. de Wit and L. Girardello, <i>Vector Multiplets Coupled to N=2 Supergravity: SuperHiggs Effect, Flat Potentials and Geometric Structure</i> Nucl. Phys. B250 (1985) 385	263
S. Ferrara, C. Kounnas and M. Porrati, <i>General Dimensional Reduction of Ten-Dimensional Supergravity and Superstring</i> Phys. Lett. B181 (1986) 263	230

	citations
S. Ferrara, C. Kounnas, M. Porrati and F. Zwirner, Superstrings with Spontaneously Broken Supersymmetry and their Effective Theories Nucl. Phys. B318 (1989) 75	225
S. Ferrara, C. Kounnas and F. Zwirner, Mass formulae and natural hierarchy in string effective supergravities Nucl. Phys. B429 (1994) 589	143
J.P. Derendinger, S. Ferrara, C. Kounnas and F. Zwirner, <i>All loop gauge couplings from anomaly cancellation in string effective theories</i> Phys. Lett. B271 (1991) 307	122
S. Ferrara, C. Kounnas, D. Lust and F. Zwirner, Duality invariant partition functions and automorphic superpotentials for (2,2) string compactifications Nucl. Phys. B365 (1991) 431	102

One paper in particular (1985):

CREMMER, KOUNNAS, VAN PROEYEN, DERENDINGER, FERRARA, DE WIT, GIRARDELLO

Vector multiplets coupled to N=2 Supergravity: Super-BEH (Brout-Englert-Higgs) mechanism study scalar potential arising from "gauging"

Examples of spontaneous breaking of local SUSY with vanishing cosmological constant

"vanishing flat potentials"

Associated sigma model can be obtained from 5D: geometric structure given by cubic F

404

E. Cremmer et al. / Vector multiplets

to

$$\phi(z^A, \bar{z}^A) = \sum_{\alpha, \beta, \gamma = 1}^n d_{\alpha\beta\gamma}(f^{\alpha}(z^A) + \bar{f}^{\alpha}(\bar{z}^A))$$

$$\times (f^{\beta}(z^B) + \bar{f}^{\beta}(\bar{z}^B))(f^{\gamma}(z^C) + \bar{f}^{\gamma}(\bar{z}^C)), \qquad (5.12)$$

provided that we can invert the mapping $y^{\alpha} = f^{\alpha}(z^{A})$. For N = 2 supergravity we are able to give a non-trivial extension for only one of the solutions (4.12) or (4.13):

$$F(X^0, X^A) = id_{ABC} \frac{X^A X^B X^C}{X^0},$$
 (5.13)

$$Y = -\frac{1}{4}id_{ABC}(z^A - \bar{z}^A)(z^B - \bar{z}^B)(z^C - \bar{z}^C), \qquad (5.14)$$

where the d_{ABC} are arbitrary real coefficients. With arbitrary gauge coupling con-

d-geometries

4D matter coupled supergravities originating from 5D by Kaluza-Klein dimensional reduction

 d_{IJK} is a constant symmetric invariant tensor of the duality group appearing in the 5D action with Chern-Simons term:

$$e^{-1}\mathcal{L}_{bos} = -\frac{1}{2}R - \frac{1}{4}\mathring{a}_{IJ}F^{I}_{\mu\nu}F^{J|\mu\nu} + \frac{1}{2}g_{xy}\partial_{\mu}\varphi^{x}\partial^{\mu}\varphi^{y} + \frac{e^{-1}}{6\sqrt{6}}d_{IJK}\varepsilon^{\mu\nu\rho\sigma\lambda}F^{I}_{\mu\nu}F^{J}_{\rho\sigma}A^{K}_{\lambda},$$

 $\begin{cases} \text{n scalars} & \varphi^x \\ \text{n_v = n+1 vectors} \, A_\mu^I = \{A_\mu^x, A_\mu\} \\ \text{n_v = n+1 scalars} & \lambda^I = \lambda^I(\varphi^x) \end{cases} \rightarrow \begin{cases} d_{IJK} \lambda^I \lambda^J \lambda^K = 1 \\ \text{N=2 scalar manifold} & \sigma\text{-model} \\ \frac{G_5}{H_5} \end{cases}$ N=2: GUNAYDIN SIERRA

$$\mathbf{n_v}$$
 =n+1 vectors $A_{\mu}^I = \{A_{\mu}^x, A_{\mu}\}$

$$n_v = n+1$$
 scalars $\lambda^I = \lambda^I(\varphi^x)$

$$\rightarrow d_{IJK}\lambda^I\lambda^J\lambda^K = 1$$

kinetic term for scalars: $d_{IJK}\lambda^I\partial_{\mu}\lambda^J\partial^{\mu}\lambda^K$

kinetic matrix for vectors: $\mathring{a}_{I,I}(\varphi^x)$

5D/4D Reduction: N=2 SG + Vector Multiplets

DE WIT, VAN PROEYEN 1984

$$\begin{array}{l} \bar{e}^{\dagger}h_{BOS} = -\frac{1}{2}R + Im N_{AZ}F_{\mu\nu}F^{Z\mu\nu} + \frac{e^{\dagger}R_{\mu}N_{AZ}F_{\mu\nu}F_{\rho\sigma}Z}{2} e^{\mu\nu\rho\sigma} \\ + \frac{1}{2}8r_{S}\partial_{\mu}\phi^{\dagger}\partial^{\mu}\phi^{S} \\ M_{V} + 1 \quad V \in CTORS \quad A^{\lambda}_{\mu} \begin{cases} A^{\mp}_{\mu} & m_{V} \\ g_{\mu 5} & 1 \end{cases} \qquad A^{\mp}_{5} = \alpha^{\mp} \\ M \quad SCALARS \quad \phi^{S} \begin{cases} \mathcal{A}^{\mp}_{\mu} & m_{V-1} \\ g_{55} & 1 \end{cases} \end{array}$$

in
$$N=2$$
 you can form complex scalars
$$z^{\pm} = a^{\pm} - i \lambda^{\pm} M_{Y}$$

the reduced theory is determined by $F(x) = \frac{1}{3!} d_{IJK} \frac{X^{T} X^{J} X^{K}}{X^{O}} \qquad X^{A}(z)$ SPEC

X^(2) PARAMETRIZE
SPECIAL MANIFOLD

d-spaces for N=2

©Classification of homogeneous special manifolds as cosets G/H

Various kinds of d-spaces

JORDAN ALGEBRAS: COMMUTATIVE BUT NOT ASSOCIATIVE

Counting in 5D/4D reduction for any N>1

#4D scalars = #5D scalars + # 5D vectors + I
$$\varphi^x \qquad \qquad a^I = A_5^I \qquad \phi = g_{55}$$

only in N=2 you have complex scalars
N=8: 28=27+1 vectors

70=42+27+1 scalars

Aim:

- $\ ^{\odot}$ Consider generalized d-geometry structure for $\ N \geq 2$
- Provide universal parametrization of scalar manifold reflecting 5D origin and display corresponding symplectic structure in axion frame
- Applications to BH
- Hope: useful to understand the structure of quantum corrections
 N=8,4

Symmetric Spaces G/H in Sugra

Scalars live on G/H, charges are in fundamental representation of G

G global symmetry, H local symmetry: "classical" e-m duality, limit of charges; in full quantum theory the duality is broken to discrete subgroup G(Z)=U-duality

HULL & TOWNSEND 1995

N=8: d=4
$$\frac{E_{7(7)}}{SU(8)}$$

d=5
$$\frac{E_{6(6)}}{USp(8)}$$

N=4:
$$d=4$$
 $\frac{SU(1,1)}{U(1)} \times \frac{SO(6,n)}{SO(6) \times SO(n)}$ $d=5$ $SO(1,1) \times \frac{SO(5,n)}{SO(5) \times SO(n)}$

N=2: Special geometry (Very special in d=5) defined by cubic F(X) $F(X) = \frac{1}{3!} d_{ijk} \frac{X^i X^j X^k}{X^0}$

cubic F(X)
$$F(X) = \frac{1}{3!} d_{ijk} \frac{X^i X^j X^k}{X^0}$$

can be lifted to 5d

Two way to use the 5D/4D relation in SG

A) Bottom Up:

take specific geometry of spacetime and solve equations of motion to construct solutions

- 1) trivial reduction
- 2) Taub-NUT

B) Top Down:

use symmetry of the theory (geometry, group theory) and extract general features

$$G_5 \iff G_4 \qquad E_7 \to E_6 \times O(1,1)$$

for symmetric spaces, use invariants, compare attractor solutions and their susy features

Gunaydin SF

$$I_{3}(p) = \frac{1}{3!} d_{ijk} p^{i} p^{j} p^{k}$$

$$I_{3}(q) = \frac{1}{3!} d^{ijk} q^{i} q^{j} q^{k}$$

$$I_{4} = -(p^{0} q_{0} + p^{i} q_{i})^{2} + 4[q_{0} I_{3}(p) - p^{0} I_{3}(q) + \frac{\partial I_{3}(p)}{\partial p} \frac{\partial I_{3}(q)}{\partial q}]$$

$$I_{3} \iff I_{4}$$

Menu

- Review Generalized Special Geometry in Symplectic language
- Determine universal representation of coset representative in the axion frame by 5D/4D relation
- Applications to BH

Special Geometry 101

STROMINGER 1990
CASTELLANI D'AURIA SF 1990

$$z^i = X^i/X^0 = a^i - i \ \lambda^i$$

$$R_{i\bar{\jmath}k\bar{l}} = g_{i\bar{\jmath}}g_{k\bar{l}} + g_{i\bar{l}}g_{k\bar{\jmath}} - C_{ikp}\overline{C}_{\bar{\jmath}\bar{l}\bar{p}}g^{p\bar{p}} \qquad C_{ijk} = e^{K(z,\bar{z})}d_{ijk}$$

$$F(X) \equiv \frac{1}{3!} d_{ijk} \frac{X^{i} X^{j} X^{k}}{X^{0}} \qquad (i = 1, ..., n_{V})$$

Large volume limit of Calabi-Yau compactifications, $~d_{ijk}=\partial_i\partial_j\partial_k F$ give Yukawa couplings

$$(X^{\Lambda}(z), F_{\Lambda}(z))$$

$$F_{\Lambda} = \partial_{\Lambda} F(X)$$

Simplectic Sections $Sp(2n_V + 2, R)$

$$e^{K/2}(X^{\Lambda}(z), F_{\Lambda}(z)) = (L^{\Lambda}, M_{\Lambda}) = V$$

$$D_{\overline{\imath}}V = (\partial_{\overline{\imath}} - \frac{1}{2}\partial_{\overline{\imath}}K)V = 0$$

Covariantly holomorphic sections of a flat bundle

Tool: Generalised Special Geometry

use 2n x 2n complex square matrices for Sp(2n,R), with one vector index and one flat scalar index

$$N = 2 \qquad (L^{\Lambda}, \overline{D}_{\bar{a}} \overline{L}^{\Lambda}; M_{\Lambda}, \overline{D}_{\bar{a}} \overline{M}_{\Lambda}) \qquad g_{i\bar{\jmath}} e_{i}^{a} e_{\bar{\jmath}}^{\bar{b}} \delta_{a\bar{b}}$$

$$A = (0, a); \Lambda = (0, n_{V})$$

$$N \geq 2$$
 $V_A = (f^\Lambda{}_A, h_{\Lambda}{}_A)$ generalised symplectic sections

related to the vector kinetic matrix:

$$h_{\Lambda A} = \mathcal{N}_{\Lambda \Sigma} f^{\Sigma}{}_{A}$$

$$i(f^{\dagger}h - h^{\dagger}f) = 1$$
, $f^th - h^tf = 0$

symplectic conditions on the sub blocks

Extremal Black Holes & Attractors

• N- extended susy $\{\mathcal{Q}_{\alpha A},\mathcal{Q}_{\beta B}\}=\epsilon_{\alpha\beta}Z_{AB}(p,q;\phi)$ algebra:

algebra:
$$V_{BH}=-\tfrac{1}{2}Q^T\mathcal{M}(\mathcal{N})Q=\tfrac{1}{2}Z_{AB}\overline{Z}^{AB}+Z_IZ^I \qquad \partial_\phi V_{BH}=0$$

$$egin{cases} Z_{AB} = -Z_{BA} & ext{central charges} \ Z_{I} & ext{matter charges} \end{cases}$$

A,B in SU(N)I: fundam of matter group when present

$$(N=2:Z_{AB}=\epsilon_{AB}Z,\ Z_I=D_iZ)$$
 $Z_{AB}=f^{\Lambda}_{\ AB}q_{\Lambda}-h_{AB}^{\Lambda}p^{\Lambda}$

$$\left\{ \begin{array}{ll} Q = (p^{\Lambda}, q_{\Lambda}) & \mathcal{N}(\phi) \; \text{ kinetic matrix for vector fields} & \Omega = \begin{pmatrix} 0 & -\mathbb{I} \\ \mathbb{I} & 0 \end{pmatrix} \\ Z_A = < Q, V_A > = Q^T \Omega V_A = f^{\Lambda}_{\;A} q_{\Lambda} - h_{\Lambda}_{\;A} p^{\Lambda} & Sp(2n, \mathbb{R}) \end{array} \right.$$

• BPS bound: $M_{ADM}(\phi, Q) \ge |z_1(\phi, Q)| \ge \ldots \ge |z_{[N/2]}(\phi, Q)|$

BPS states: M=highest eigenvalue of central charge

Goal:

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \Rightarrow \begin{pmatrix} f \\ h \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} A - iB \\ C - iD \end{pmatrix}$$

$$\mathbf{L} \equiv \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \sqrt{2} \begin{pmatrix} \operatorname{Re} f & -\operatorname{Im} f \\ \operatorname{Re} h & -\operatorname{Im} h \end{pmatrix}$$

$$\mathbf{L}^T \Omega \mathbf{L} = \Omega$$

Compute the generic symplectic representative using the 5D/4D relation, in the axion bases

Express the 4D N=2 extremal BH potential for cubic geometries in terms of 5D real special geometry data

 Ψ V_{BH} is a polynomial of degree 6 in the axions whose coefficients depend on d_{IJK} and on λ^I

Study generic attractors for various charge configurations and non trivial axions

Connect 5D and 4D attractors and their entropies, compare their susy features (BPS and non-BPS orbit stratification)

5D/4D relation - Lesson 2: N=8 Black Holes

Decompose
$$E_7 \to E_6 \times O(1,1)$$

$$28 = 27 + 1$$

$$\operatorname{Re}\mathcal{N} = \begin{pmatrix} \frac{d}{3} & -\frac{d_I}{2} \\ -\frac{d_J}{2} & d_{IJ} \end{pmatrix}, \quad \operatorname{Im}\mathcal{N} = \begin{pmatrix} -e^{6\phi} - e^{2\phi}a^Ia^Ja_{IJ} & a_{IJ}a^J \\ a_{IJ}a^I & -e^{2\phi}a_{IJ} \end{pmatrix}$$

$$d \equiv d_{IJK}a^Ia^Ja^k$$
, $d_I \equiv d_{IJK}a^Ja^k$, $d_{IJ} \equiv d_{IJK}a^K$

- Relate the 5D kinetic vector matrix to the 4D one
- ReN does not depend on 5D scalars
- ImN does not depend on the d-tensor

5D/4D relation - Lesson 2: N=8 Black Holes

$$f^{\Lambda}{}_{A} = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{-3\phi} & 0 \\ \hline e^{-3\phi}a^{I} & e^{-\phi}(a^{-1/2})^{I}{}_{a} \end{pmatrix}$$

$$h_{\Lambda A} = \frac{1}{\sqrt{2}} \begin{pmatrix} -e^{-3\phi}\frac{d}{6} - ie^{3\phi} & -\frac{1}{2}e^{-\phi}d_{K}(a^{-1/2})^{K}{}_{a} + ie^{\phi}a^{K}(a^{1/2})_{K}{}^{a} \\ \hline \frac{1}{2}e^{-3\phi}d_{I} & e^{-\phi}d_{IJ}(a^{-1/2})^{J}{}_{a} - ie^{\phi}(a^{1/2})_{I}{}^{a} \end{pmatrix}$$

$$E(\lambda) \equiv (a^{-1/2})_a^{\ J} = E_a^{\ J}$$

square root of 5D vector kinetic matrix coset representative of 5D scalar manifold

Interpret this for any d-geometry, N=0,2,4,6,8 by taking appropriate representations!

Note: Freedom on the symplectic sections

Given

a)
$$\mathcal{N}_{\Lambda\Sigma} = h_{\Lambda A}(f^{-1})^{A}_{\Sigma}$$
,

b)
$$i(\mathbf{f}^{\dagger}\mathbf{h} - \mathbf{h}^{\dagger}\mathbf{f}) = \mathbf{Id}$$
,

c)
$$\mathbf{f}^T \mathbf{h} - \mathbf{h}^T \mathbf{f} = 0$$
.

can still perform any unitary $h \to h M$, transformation: $f \to f M$, $MM^\dagger = 1$

BH potential is invariant: $V_{BH} \equiv ZZ^{\dagger}$

Important to connect central charges in N=2 and N=8

$$V_{BH} = \frac{1}{2} (Z_0^e)^2 + \frac{1}{2} (Z_m^0)^2 + \frac{1}{2} Z_I^e a^{IJ} Z_J^e + \frac{1}{2} Z_m^I a_{IJ} Z_m^J$$

Note: Freedom on the symplectic sections

In N=2, this unitary M transform the axion basis into the usual symplectic basis of Special Geometry:

$$M = A^{1/2} \hat{M} G^{-1/2}$$

$$A = \begin{pmatrix} 1 & 0 \dots 0 \\ \hline 0 & \\ \vdots & \\ 0 & \end{pmatrix}, \quad G = \begin{pmatrix} 1 & 0 \dots 0 \\ \hline 0 & \\ \vdots & \\ 0 & \end{pmatrix}, \quad g_{IJ} = \frac{1}{4} e^{-4\phi} a_{I.}$$

$$\hat{M} = \frac{1}{2} \begin{pmatrix} 1 & \partial_{\bar{J}} K \\ -i\lambda^I e^{-2\phi} & e^{-2\phi} \delta^I_{\bar{J}} + ie^{-2\phi} \lambda^I \partial_{\bar{J}} K \end{pmatrix}$$

CERESOLE, SF, GNECCHI 2009

$$Z_{0} = \frac{1}{\sqrt{2}} (Z_{0}^{e} + iZ_{m}^{0}) ,$$

$$Z_{I} = \frac{1}{\sqrt{2}} (Z_{I}^{e} + ia_{IJ}Z_{m}^{J})$$

Main Message:

The 5D and 4D U-duality groups are always related by:

$$G_5 \times SO(1,1) \subset G_4 \subset Sp(2n_V+2,\mathbb{R})$$

Because of the 5D origin, there is a natural splitting of the 4D scalars, covariant with respect to G_5 :

$$\Phi = \left\{ a^I, \phi, \ \lambda^x \right\}$$

This suggests to look for a symplectic representative of the type:

$$\mathbf{L}\left(a^{I}, \phi, \lambda^{x}\right) = \mathcal{A}(a^{I})\mathcal{D}(\phi)G(\lambda)$$

partial lwasawa decomposition into a translation along axions, a dilatation and a $\,G_5\,$ -dependent transformation

The axionic translations

$$\mathcal{A}(a) \equiv e^{T(a)}$$

Computed by Andrianopoli D'Auria SF LLEDO 1998 in the context of gaugings of 4D supergravity and Scherk-Shwarz mechanism

$$T(a) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ a^{J} & 0 & 0 & 0 \\ \hline 0 & 0 & 0 - a^{I} \\ 0 & d_{IJ} & 0 & 0 \end{pmatrix}$$

nilpotent of order 3 (relation with nilpotent part of flat connections in Special Geometry):

$$T^{4}(a) = 0 \Rightarrow \mathcal{A}(a) = \mathbf{Id} + T(a) + \frac{1}{2}T^{2}(a) + \frac{1}{3!}T^{3}(a)$$

$$\mathcal{A}(a) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ a^J & 1 & 0 & 0 \\ \hline -\frac{1}{6}d & -\frac{1}{2}d_I & 1 & -a^I \\ \frac{1}{2}d_J & d_{IJ} & 0 & 1 \end{pmatrix}$$

Dilatation and G5 transformation.

I-dimensional abelian SO(I,I) factor:

$$\mathcal{D}(\phi) = \begin{pmatrix} e^{-3\phi} & 0 & 0 & 0\\ 0 & e^{-\phi} & 0 & 0\\ \hline 0 & 0 & e^{3\phi} & 0\\ 0 & 0 & 0 & e^{\phi} \end{pmatrix}$$

block diagonal transformation depending only on 5D scalars

$$G(\lambda) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & E & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & E^{-1} \end{pmatrix}$$

$$E\left(\lambda\right)\equiv\left(a^{-1/2}\right)_{a}^{J}=E_{a}^{J}\,\mathrm{coset}\,\,\mathrm{representative}\,\,\mathrm{for}\,\,\mathrm{G5/H5}$$

Symplectic representative in the axion basis

$$\mathbf{L}(a^{I}, \phi, E(\lambda)) = \begin{pmatrix} e^{-3\phi} & 0 & 0 & 0 \\ a^{I}e^{-3\phi} & e^{-\phi}E_{a}^{I} & 0 & 0 \\ \frac{-\frac{1}{6}de^{-3\phi} - \frac{1}{2}d_{K}E_{a}^{K}e^{-\phi}}{2d_{I}e^{-3\phi} - d_{IK}E_{a}^{K}e^{-\phi}} & e^{3\phi} - a^{K}(E^{-1})_{K}^{a}e^{\phi} \\ \frac{1}{2}d_{I}e^{-3\phi} & d_{IK}E_{a}^{K}e^{-\phi} & 0 & e^{\phi}(E^{-1})_{I}^{a} \end{pmatrix} = \sqrt{2} \begin{pmatrix} \operatorname{Re} f - \operatorname{Im} f \\ \operatorname{Re} h - \operatorname{Im} h \end{pmatrix}$$

In this bases L is lower triangular, Im f =0 (different from the usual basis of N=2:) $(f,h)=(L^{\Lambda},\bar{D}_{\bar{a}}\bar{L}^{\Lambda};M_{\Lambda},\bar{D}_{\bar{a}}\bar{M}_{\Lambda})$

Dependence on d_{IJK} only in lower left block

Can use it to compute vielbeins, connections on coset spaces

Some Properties

$$\mathcal{M} = \begin{pmatrix} \mathbb{1} & -\text{Re}\mathcal{N} \\ 0 & \mathbb{1} \end{pmatrix} \begin{pmatrix} \text{Im}\mathcal{N} & 0 \\ 0 & (\text{Im}\mathcal{N})^{-1} \end{pmatrix} \begin{pmatrix} \mathbb{1} & 0 \\ -\text{Re}\mathcal{N} & \mathbb{1} \end{pmatrix} \equiv \mathcal{R}^T \mathcal{M}_D \mathcal{R}$$

$$\mathcal{M}_{-} = -(\mathbf{L}\,\mathbf{L}^T)^{-1}$$

$$Z_A = \langle Q, V_A \rangle = Q^T \Omega V_A = f^{\Lambda}{}_A q_{\Lambda} - h_{\Lambda} {}_A p^{\Lambda}$$

$$V_{BH} = -\frac{1}{2}Q^t \mathcal{M}(\mathcal{N})Q = \langle Q, V_A \rangle \langle Q, \bar{V}^A \rangle$$

$$Z_A = \mathbf{L}^{-1}Q$$

Example: N=8

Jordan Triple Sistem is the euclidean Jordan algebra $J_3^{\omega_s}$

Scalar manifold
$$\frac{G_5}{H_5} = \frac{E_{6(6)}}{USp(8)}, \ \dim_{\mathbb{R}} = 42$$
 $(a^{-1})_I^J$

 d_{IJK} invariant tensor of 27 fundamental irrep of $E_{6(6)}$

$$Sp(56,\mathbb{R})$$
 matrix $\mathbf{L}(a^I,\phi,E(\lambda))$ is coset representative of

$$\frac{G_4}{H_4} = \frac{E_{7(7)}}{SU(8)}, \ \dim_{\mathbb{R}} = 70$$

$$SU(8) \supset USp(8);$$

$$\mathbf{70} = \mathbf{42} + \mathbf{27} + \mathbf{1}_{\phi},$$

28
$$Z_{AB} \longrightarrow Z_A$$
 27 + 1

Application to BH: STU model

- Simple example of cubic special geometry, with prepotential F=STU
- 3 complex scalar S,T, U each parametrizing SU(1,1)/U(1)
- Can be viewed as a truncation of N=8

lt yields a non trivial test of the use of the axion frame

First order black hole attractor flows G. DALL'

$$ds^{2} = -e^{2U(r)}dt^{2} + e^{-2U(r)}\left(c^{4}\frac{dr^{2}}{\sinh^{4}(cr)} + \frac{c^{2}}{\sinh^{2}(cr)}d\Omega_{S^{2}}^{2}\right)$$

 \P Defining a real $W(\phi,\overline{\phi})$, extremal black holes are described by

$$\begin{cases} U' = -e^{U}W \\ \phi'^{i} = -2e^{U}g^{i\bar{\jmath}}\partial_{\bar{\jmath}}W \end{cases}$$
$$V_{BH}(\phi, q, p) = W^{2} + 4g^{i\bar{\jmath}}\partial_{i}W\partial_{\bar{\jmath}}W$$

- \bigcirc BPS BH's are a special case with W = |Z|
- But other possible solutions are the non-BPS BH's !
- $\partial_i W(\phi, \bar{\phi}) = 0$ gives non-BPS critical points!

 $W(\phi,\overline{\phi})$ "fake" superpotential $e^UW|_{\infty}\sim M_{ADM}$

W was found for STU model in generic charge configuration using duality invariance:

BELLUCCI, SF, MARRANI, YERANYAN 2008

- . Take W for STU model in S=T=U limit
- 2. Compute it in simple charge configuration and then boost it to generic charges by a duality transformation

$$W^{2} = \frac{i_{1} + i_{2}}{4} + \frac{3}{8} \left[\left(4 i_{3} \sqrt{-I_{4}} - (i_{1} + i_{2}) I_{4} + \left(i_{1} - \frac{i_{2}}{3} \right)^{3} \right)^{1/3} + \left(-4 i_{3} \sqrt{-I_{4}} - (i_{1} + i_{2}) I_{4} + \left(i_{1} - \frac{i_{2}}{3} \right)^{3} \right)^{1/3} \right].$$

non polynomial expression, but at non-BPS attractor point:

$$i_2 = 3i_1 = \frac{3}{4}\sqrt{-I_4}, i_3 = 0 \implies S_{BH} = W^2 = \sqrt{-|I_4|}$$

Give W in terms of a complete set of duality invariants for N=2

respect the Sp(2n+2,R) structure

CERCHIAI MARRANI SF ZUMINO 2009

$$\begin{split} i_1 &= Z\overline{Z} \\ i_2 &= g^{i\overline{\jmath}}Z_i\overline{Z}_{\overline{\jmath}} \\ i_3 &= \frac{1}{6} \left[ZN_3(\overline{Z}) + \overline{Z}\overline{N}_3(Z_i) \right], \qquad i_4 = \frac{i}{6} \left[ZN_3(\overline{Z}) - \overline{Z}\overline{N}_3(Z) \right], \\ i_5 &= g^{i\overline{\imath}}C_{ijk}C_{\overline{\imath}\overline{\jmath}\overline{k}}\overline{Z}^j\overline{Z}^k \, Z^{\overline{\jmath}}Z^{\overline{k}} \,, \end{split}$$

cubic norms:

$$N_3(\overline{Z}) = C_{ijk}\overline{Z}^i \ \overline{Z}^j \ \overline{Z}^k, \qquad \overline{N}_3(Z) = C_{\overline{\imath}\overline{\jmath}\overline{k}}Z^{\overline{\imath}} \ Z^{\overline{\jmath}} \ Z^{\overline{k}}.$$

Ansatz:

$$W(\phi, \bar{\phi}) = W(i_1, i_2, i_3, i_4, i_5)$$

CERESOLE,
DALL'AGATA, SF,
YERANYAN 2009

$$I_4 = (i_1 - i_2)^2 + 4i_4 - i_5 \qquad \partial_i I_4 = 0$$

 T^3, ST^2, STU

Bossard, Michel, Pioline arxiv:0908.1742 compute W by "reduction over time"

 W^2 given implicitly as a "non standard diagonalization problem": solution of a sextic polynomial in whose coefficients are SU(8) invariants

CERESOLE, GNECCHI, SF, MARRANI 2012

CHECK: using the axion basis for the central charges, after a unitary rotation, find the fake superpotential for p0 q0 charge configuration of T^3 model

Summary

d-geometry is relevant for extended (even N) supergravities

- Interesting to use universal parametrization of scalar manifold reflecting 5D origin (axion frame)
- Coset representative has lower triangular form, f section is real
- Application to black hole flows, explain stratification of charge orbits, computation of fake superpotential
- Hope: useful to understand the structure of quantum corrections in extended SG, in particular N=8

 RENATA KALLOSH

