European Research Council
Adv. Grant no. 226455
Nicosia, September 29th 2012
Kounnas Fest

Supergravity, black holes and E_{7}

Sergio Ferrara
 (CERN, Geneva)

Many publications with Costas

E. Cremmer, S. Ferrara, C. Kounnas and D.V. Nanopoulos,Naturally Vanishing Cosmological Constant in N=1 Supergravity532
Phys. Lett. B133 (1983) 61J.P. Derendinger, S. Ferrara, C. Kounnas and F. Zwirner,On loop corrections to string effective field theories: Field dependent gauge couplings and sigma model anomalies309Nucl. Phys. B372 (1992) 145
E. Cremmer, C. Kounnas, A. Van Proeyen, J.P. Derendinger, S. Ferrara, B. de Wit and L. Girardello, Vector Multiplets Coupled to N=2 Supergravity: SuperHiggs Effect, Flat Potentials and Geometric Structure 263 Nucl. Phys. B250 (1985) 385
S. Ferrara, C. Kounnas and M. Porrati,
General Dimensional Reduction of Ten-Dimensional Supergravity and Superstring 230
Phys. Lett. B181 (1986) 263S. Ferrara, C. Kounnas, M. Porrati and F. Zwirner,Superstrings with Spontaneously Broken Supersymmetry and their Effective Theories225
Nucl. Phys. B318 (1989) 75
S. Ferrara, C. Kounnas and F. Zwirner,
Mass formulae and natural hierarchy in string effective supergravities 143
Nucl. Phys. B429 (1994) 589
J.P. Derendinger, S. Ferrara, C. Kounnas and F. Zwirner,All loop gauge couplings from anomaly cancellation in string effective theories122
Phys. Lett. B271 (1991) 307
S. Ferrara, C. Kounnas, D. Lust and F. Zwirner,Duality invariant partition functions and automorphic superpotentials for $(2,2)$ string compactifications102
Nucl. Phys. B365 (1991) 431

One paper in particular (1985):

Cremmer, Kounnas, Van Proeyen, Derendinger, Ferrara, De Wit, Girardello

Vector multiplets coupled to N=2 Supergravity : Super-BEH (Brout-Englert-Higgs) mechanism study scalar potential arising from "gauging"

Examples of spontaneous breaking of local SUSY with vanishing cosmological constant
"vanishing flat potentials"

Associated sigma model can be obtained from 5D: geometric structure given by cubic F
E. Cremmer et al./ Vector multiplets
to

$$
\begin{align*}
\phi\left(z^{A}, \bar{z}^{A}\right)= & \sum_{\alpha, \beta, \gamma=1}^{n} d_{\alpha \beta \gamma}\left(f^{\alpha}\left(z^{A}\right)+\bar{f}^{\alpha}\left(\bar{z}^{A}\right)\right) \\
& \times\left(f^{\beta}\left(z^{B}\right)+\bar{f}^{\beta}\left(\bar{z}^{B}\right)\right)\left(f^{\gamma}\left(z^{C}\right)+\bar{f}^{\gamma}\left(\bar{z}^{C}\right)\right), \tag{5.12}
\end{align*}
$$

provided that we can invert the mapping $y^{\alpha}=f^{\alpha}\left(z^{A}\right)$. For $N=2$ supergravity we are able to give a non-trivial extension for only one of the solutions (4.12) or (4.13):

$$
\begin{gather*}
F\left(X^{0}, X^{A}\right)=i d_{A B C} \frac{X^{A} X^{B} X^{C}}{X^{0}} \tag{5.13}\\
Y=-\frac{1}{4} i d_{A B C}\left(z^{A}-\bar{z}^{A}\right)\left(z^{B}-\bar{z}^{B}\right)\left(z^{C}-\bar{z}^{C}\right) \tag{5.14}
\end{gather*}
$$

where the $d_{A B C}$ are arbitrary real coefficients. With arbitrary gauge coupling con-

d-geometries

4D matter coupled supergravities originating from 5D by Kaluza-Klein dimensional reduction
$d_{I J K}$ is a constant symmetric invariant tensor of the duality group G_{5} appearing in the 5D action with Chern-Simons term:
$e^{-1} \mathcal{L}_{\text {bos }}=-\frac{1}{2} R-\frac{1}{4} \stackrel{o}{a}_{I J} F_{\mu \nu}^{I} F^{J \mid \mu \nu}+\frac{1}{2} g_{x y} \partial_{\mu} \varphi^{x} \partial^{\mu} \varphi^{y}+\frac{e^{-1}}{6 \sqrt{6}} d_{I J K} \varepsilon^{\mu \nu \rho \sigma \lambda} F_{\mu \nu}^{I} F_{\rho \sigma}^{J} A_{\lambda}^{K}$,
n scalars $\quad \varphi^{x}$
$\mathrm{n}_{\mathrm{v}}=\mathrm{n}+\mid$ vectors $A_{\mu}^{I}=\left\{A_{\mu}^{x}, A_{\mu}\right\} \quad \rightarrow \quad d_{I J K} \lambda^{I} \lambda^{J} \lambda^{K}=1$
$\mathrm{n}_{\mathrm{v}}=\mathrm{n}+\mathrm{I}$ scalars $\lambda^{I}=\lambda^{I}\left(\varphi^{x}\right)$
$\mathrm{N}=2$ scalar manifold $\sigma_{\text {-model }} \frac{G_{5}}{H_{5}}$
kinetic term for scalars: $\quad d_{I J K} \lambda^{I} \partial_{\mu} \lambda^{J} \partial^{\mu} \lambda^{K}$
kinetic matrix for vectors: $\quad \stackrel{\circ}{a}_{I J}\left(\varphi^{x}\right)$

5D/4D Reduction : N=2 SG + Vector Multiplets
DE WIT, VAN PROEYEN 1984

$$
\begin{aligned}
& e^{-1} h_{\text {os }}=-\frac{1}{2} R+\operatorname{Im} \mathcal{N}_{\Lambda z} F_{\mu \nu}^{\wedge} F^{\Sigma \mu \nu}+\frac{e^{-1}}{2} R_{\nu} \mathcal{N}_{\wedge \Sigma} F_{\mu \nu}^{\wedge} F_{p \sigma}^{\Sigma} \epsilon^{\mu \nu \rho \sigma} \\
& +\frac{1}{2} \delta_{r s} \partial_{\mu} \phi^{r} \partial^{\mu} \phi^{s} \\
& n_{v+1} \text { vectors } A_{\mu}^{\wedge} \begin{cases}A_{\mu}^{I} & n_{v} \\
g_{\mu_{5}} & 1\end{cases} \\
& m \underset{(R E A L)}{\operatorname{scaLARS}} \quad \phi^{s}\left\{\begin{array}{l}
\lambda^{\prime} m_{V-1} \\
g_{5 S} \\
1
\end{array}\right. \\
& A_{5}^{F}=a^{\mp}
\end{aligned}
$$

in $N=2$ you com form COMPLEX SCALARS

$$
z^{I}=a^{I}-i \lambda^{I} M_{v}
$$

the reduced theory is determined by

$$
F(x)=\frac{1}{3!} d_{I J k} \frac{x^{\mp} x^{J} x^{k}}{x^{0}}
$$

$X^{\wedge}(z)$ parametrize special manifold

$$
d \text {-spaces for } N=2
$$

QClassification of homogeneous special manifolds as cosets G/H

DE WIT VAN PROEYEN 1992

DE WIT, VANDERSEYPEN, VAN PROEYEN 1993

cubic geometries

G/H

Special Geometries

Various kinds of d-spaces

SYMMETRY CASE: $\quad d_{I(J K} d_{P Q) R} d^{I R L}=\frac{4}{3} \delta_{(J}^{L} d_{K P R)}$

JORDAN ALGEBRAS: COMMUTATIVE BUT NOT ASSOCIATIVE

Counting in 5D/4D reduction for any $N>I$

 $\# 4 D$ vectors $=\# 5 \mathrm{D} \underset{\text { axions }}{\text { vectors }}+1$ \#4D scalars = \#5D scalars $+\#$ 5D vectors $+\quad \mid$$\varphi^{x} \quad a^{I}=A_{5}^{I} \quad \phi=g_{55}$
only in $N=2$ you have complex scalars

$$
N=8: \quad 28=27+1 \quad \text { vectors }
$$

$$
70=42+27+1 \text { scalars }
$$

Aim:

Q Consider generalized d-geometry structure for $\quad N \geq 2$
Q Provide universal parametrization of scalar manifold reflecting 5D origin and display corresponding symplectic structure in axion frame

- Applications to BH

Q Hope: useful to understand the structure of quantum corrections
$N=8,4$

Symmetric Spaces G/H in Sugra

期Scalars live on G / H, charges are in fundamental representation of G
G global symmetry, H local symmetry: "classical" e-m duality, limit of large charges; in full quantum theory the duality is broken to discrete subgroup $G(Z)=U-d u a l i t y$
$\mathrm{N}=8: \quad \mathrm{d}=4 \quad \frac{E_{7(7)}}{S U(8)}$

$$
\mathrm{d}=5 \quad \frac{E_{6(6)}}{\operatorname{USp}(8)}
$$

$\mathrm{N}=4: \quad \mathrm{d}=4 \frac{S U(1,1)}{U(1)} \times \frac{S O(6, n)}{S O(6) \times S O(n)} \quad \mathrm{d}=5 S O(1,1) \times \frac{S O(5, n)}{S O(5) \times S O(n)}$
$\mathrm{N}=2$: Special geometry (Very special in $\mathrm{d}=5$) defined by cubic $F(X)$

$$
F(X)=\frac{1}{3!} d_{i j k} \frac{X^{i} X^{j} X^{k}}{X^{0}}
$$

can be lifted to 5d

Two way to use the $5 \mathrm{D} / 4 \mathrm{D}$ relation in SG

A) Bottom Up:
take specific geometry of spacetime and solve equations of motion to construct solutions
I) trivial reduction
2) Taub-NUT
B) Top Down:
use symmetry of the theory (geometry, group theory) and extract general features

$$
G_{5} \Longleftrightarrow G_{4} \quad E_{7} \rightarrow E_{6} \times O(1,1)
$$

for symmetric spaces, use invariants, compare attractor solutions and their susy features

$$
\left.\begin{array}{l}
I_{3}(p)=\frac{1}{3!} d_{i j k} p^{i} p^{j} p^{k} \\
I_{4}=-\left(p^{0} q_{0}+p^{i} q_{i}\right)^{2}+4\left[q_{0} I_{3}(p)-p^{0} I_{3}(q)+\frac{1}{3!} d^{i j k} q^{i} q^{j} q^{k}\right. \\
\partial p
\end{array} \frac{\partial I_{3}(p)}{\partial I_{3}(q)} \partial\right]
$$

$$
I_{3} \Longleftrightarrow I_{4}
$$

Мепи

Q Review Generalized Special Geometry in Symplectic language
Q Determine universal representation of coset representative in the axion frame by 5D/4D relation

- Applications to BH

$$
z^{i}=X^{i} / X^{0}=a^{i}-i \lambda^{i}
$$

$$
R_{i \bar{\jmath} k \bar{l}}=g_{i \bar{\jmath}} g_{k \bar{l}}+g_{i \bar{l}} g_{k \bar{\jmath}}-C_{i k p} \bar{C}_{\bar{\jmath} \bar{l} \bar{p}} g^{p \bar{p}} \quad C_{i j k}=e^{K(z, \bar{z})} d_{i j k}
$$

$$
F(X) \equiv \frac{1}{3!} d_{i j k} \frac{X^{i} X^{j} X^{k}}{X^{0}} \quad\left(i=1, \ldots, n_{V}\right)
$$

Large volume limit of Calabi-Yau compactifications, $\quad d_{i j k}=\partial_{i} \partial_{j} \partial_{k} F$ give Yukawa couplings

$$
\left(X^{\Lambda}(z), F_{\Lambda}(z)\right) \quad F_{\Lambda}=\partial_{\Lambda} F(X)
$$

Simplectic Sections

$$
S p\left(2 n_{V}+2, R\right)
$$

$e^{K / 2}\left(X^{\Lambda}(z), F_{\Lambda}(z)\right)=\left(L^{\Lambda}, M_{\Lambda}\right)=V$

$$
D_{\bar{\imath}} V=\left(\partial_{\bar{\imath}}-\frac{1}{2} \partial_{\bar{\imath}} K\right) V=0
$$

Covariantly holomorphic sections of a flat bundle

Tool: Generalised Special Geometry

use $2 n \times 2 n$ complex square matrices for $S p(2 n, R)$, with one vector index and one flat scalar index

$$
N=2 \begin{array}{r}
\quad\left(L^{\Lambda}, \bar{D}_{\bar{a}} \bar{L}^{\Lambda} ; M_{\Lambda}, \bar{D}_{\bar{a}} \bar{M}_{\Lambda}\right) \quad g_{i \bar{\jmath}} e_{i}^{a} e_{\bar{\jmath}}^{\bar{b}} \delta_{a \bar{b}} \\
A=(0, a) ; \Lambda=\left(0, n_{V}\right)
\end{array}
$$

$N \geq 2 \quad V_{A}=\left(f_{A}^{\Lambda}, h_{\Lambda A}\right) \quad$ generalised symplectic sections
related to the vector kinetic matrix: $\quad h_{\Lambda A}=\mathcal{N}_{\Lambda \Sigma} f^{\Sigma}{ }_{A}$
$i\left(f^{\dagger} h-h^{\dagger} f\right)=1, \quad f^{t} h-h^{t} f=0$
symplectic conditions on the sub blocks

Extremal Black Holes $\boldsymbol{*}$ Attractors

- N- extended susy algebra:

$$
\left\{\mathcal{Q}_{\alpha A}, \mathcal{Q}_{\beta B}\right\}=\epsilon_{\alpha \beta} Z_{A B}(p, q ; \phi)
$$

$$
V_{B H}=-\frac{1}{2} Q^{T} \mathcal{M}(\mathcal{N}) Q=\frac{1}{2} Z_{A B} \bar{Z}^{A B}+Z_{I} Z^{I} \quad \partial_{\phi} V_{B H}=0
$$

$$
\begin{cases}Z_{A B}=-Z_{B A} & \text { central charges } \\ Z_{I} & \text { matter charges }\end{cases}
$$

A, B in $\mathrm{SU}(\mathrm{N})$
I: fundam of matter
group when present

$$
\left(N=2: Z_{A B}=\epsilon_{A B} Z, \quad Z_{I}=D_{i} Z\right) \quad Z_{A B}=f_{A B}^{\Lambda} q_{\Lambda}-h_{A B \Lambda} p^{\Lambda}
$$

$$
\left\{\begin{array}{l}
Q=\left(p^{\Lambda}, q_{\Lambda}\right) \quad \mathcal{N}(\phi) \text { kinetic matrix for vector fields } \quad \Omega=\left(\begin{array}{l}
0 \\
\mathbb{I}
\end{array}\right. \\
Z_{A}=<Q, V_{A}>=Q^{T} \Omega V_{A}=f^{\Lambda}{ }_{A} q_{\Lambda}-h_{\Lambda}{ }_{A} p^{\Lambda} \quad S p(2 n, \mathbb{R})
\end{array}\right.
$$

- BPS bound: $M_{A D M}(\phi, Q) \geq\left|z_{1}(\phi, Q)\right| \geq \ldots \geq\left|z_{[N / 2]}(\phi, Q)\right|$

BPS states: M=highest eigenvalue of central charge

Goal:

$$
\begin{gathered}
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \Rightarrow\binom{f}{h}=\frac{1}{\sqrt{2}}\binom{A-i B}{C-i D} \\
\mathbf{L} \equiv\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\sqrt{2}\binom{\operatorname{Re} f-\operatorname{Im} f}{\operatorname{Re} h-\operatorname{Im} h} \\
\mathbf{L}^{T} \Omega \mathbf{L}=\Omega
\end{gathered}
$$

Compute the generic symplectic representative using the 5D/ 4D relation, in the axion bases

5D/4D relation-Lesson 1: $\mathbf{N = 2}$ Black Holes

Q Express the 4D N=2 extremal BH potential for cubic geometries in terms of 5D real special geometry data

Q $\mathrm{V}_{B H}$ is a polynomial of degree 6 in the axions whose coefficients depend on $d_{I J K}$ and on λ^{I}

Study generic attractors for various charge configurations and non trivial axions

Q Connect 5D and 4D attractors and their entropies, compare their susy features (BPS and non-BPS orbit stratification)

5D/4D relation - Lesson 2: $\mathrm{N}=8$ Black Holes

Q Decompose $E_{7} \rightarrow E_{6} \times O(1,1) \quad 28=27+1$

$$
\begin{gathered}
\operatorname{Re} \mathcal{N}=\left(\begin{array}{cc}
\frac{d}{3} & -\frac{d_{I}}{2} \\
-\frac{d_{J}}{2} & d_{I J}
\end{array}\right), \quad \operatorname{Im} \mathcal{N}=\left(\begin{array}{cc}
-e^{6 \phi}-e^{2 \phi} a^{I} a^{J} a_{I J} & a_{I J} a^{J} \\
a_{I J} a^{I} & -e^{2 \phi} a_{I J}
\end{array}\right) \\
d \equiv d_{I J K} a^{I} a^{J} a^{k}, \quad d_{I} \equiv d_{I J K} a^{J} a^{k}, \quad d_{I J} \equiv d_{I J K} a^{K}
\end{gathered}
$$

Q Relate the 5D kinetic vector matrix to the 4D one
Q ReN does not depend on 5D scalars
Q ImN does not depend on the d-tensor

5D/4D relation-Lesson 2: N=8 Black Holes

(9) Compute the 28×28 symplectic sections from N in terms of 5D fields:

$$
\begin{aligned}
& f_{A}^{\Lambda}=\frac{1}{\sqrt{2}}\left(\begin{array}{c|c}
e^{-3 \phi} & 0 \\
\hline e^{-3 \phi} a^{I} & e^{-\phi}\left(a^{-1 / 2}\right)^{I}{ }_{a}
\end{array}\right), \\
& h_{\Lambda A}=\frac{1}{\sqrt{2}}\left(\begin{array}{c|c}
-e^{-3 \phi} \frac{d}{6}-i e^{3 \phi} & -\frac{1}{2} e^{-\phi} d_{K}\left(a^{-1 / 2}\right)^{K}{ }_{a}+i e^{\phi} a^{K}\left(a^{1 / 2}\right)_{K}{ }^{a} \\
\hline \frac{1}{2} e^{-3 \phi} d_{I} & e^{-\phi} d_{I J}\left(a^{-1 / 2}\right)^{J}{ }_{a}-i e^{\phi}\left(a^{1 / 2}\right)_{I}^{a}
\end{array}\right)
\end{aligned}
$$

$$
E(\lambda) \equiv\left(a^{-1 / 2}\right)_{a}{ }^{J}=E_{a}{ }^{J} \quad \text { square root of 5D vector kinetic matrix }
$$

coset representative of 5D scalar manifold

Q Interpret this for any d-geometry, $\mathrm{N}=0,2,4,6,8$ by taking appropriate representations!

Note: Freedom on the symplectic sections

Q Given
a) $\mathcal{N}_{\Lambda \Sigma}=h_{\Lambda A}\left(f^{-1}\right)^{A}{ }_{\Sigma}$,
b) $i\left(\mathbf{f}^{\dagger} \mathbf{h}-\mathbf{h}^{\dagger} \mathbf{f}\right)=\mathbf{I d}$,
c) $\mathbf{f}^{T} \mathbf{h}-\mathbf{h}^{T} \mathbf{f}=0$.
can still perform any unitary $h \rightarrow h M$,

$$
M M^{\dagger}=1
$$ transformation:

$$
f \rightarrow f M,
$$

BH potential is invariant:

$$
V_{B H} \equiv Z Z^{\dagger}
$$

Important to connect central charges in $\mathrm{N}=2$ and $\mathrm{N}=8$

$$
V_{B H}=\frac{1}{2}\left(Z_{0}^{e}\right)^{2}+\frac{1}{2}\left(Z_{m}^{0}\right)^{2}+\frac{1}{2} Z_{I}^{e} a^{I J} Z_{J}^{e}+\frac{1}{2} Z_{m}^{I} a_{I J} Z_{m}^{J}
$$

Note: Freedom on the symplectic sections

Q In $N=2$, this unitary M transform the axion basis into the usual symplectic basis of Special Geometry:

$$
\begin{gathered}
M=A^{1 / 2} \hat{M} G^{-1 / 2} \quad A=\left(\begin{array}{c|c}
1 & 0 \ldots 0 \\
\hline 0 & \\
\cdot & a_{I J} \\
0 &
\end{array}\right), \quad G=\left(\begin{array}{c|c}
1 & 0 \ldots 0 \\
\hline 0 & \\
\cdot & g_{I J} \\
0 &
\end{array}\right), \quad g_{I J}=\frac{1}{4} e^{-4 \phi} a_{I .} \\
\hat{M}=\frac{1}{2}\binom{1}{-i \lambda^{I} e^{-2 \phi} \quad e^{-2 \phi} \delta_{\bar{J}}^{I}+i e^{-2 \phi} \lambda^{I} \partial_{\bar{J}} K} \\
Z_{0}=\frac{1}{\sqrt{2}}\left(Z_{0}^{e}+i Z_{m}^{0}\right), \\
Z_{I}=\frac{1}{\sqrt{2}}\left(Z_{I}^{e}+i a_{I J} Z_{m}^{J}\right)
\end{gathered}
$$

Main Message:

The 5D and 4D U-duality groups are always related by:

$$
G_{5} \times S O(1,1) \subset G_{4} \subset S p\left(2 n_{V}+2, \mathbb{R}\right)
$$

Because of the 5D origin, there is a natural splitting of the 4D scalars, covariant with respect to G_{5} :

$$
\Phi=\left\{a^{I}, \phi, \quad \lambda^{x}\right\}
$$

This suggests to look for a symplectic representative of the type:

$$
\mathbf{L}\left(a^{I}, \phi, \lambda^{x}\right)=\mathcal{A}\left(a^{I}\right) \mathcal{D}(\phi) G(\lambda)
$$

partial Iwasawa decomposition into a translation along axions, a dilatation and a G_{5}-dependent transformation

The axionic translations

$$
\mathcal{A}(a) \equiv e^{T(a)}
$$

Computed by andrianopoli d’auria sf lledo 1998 in the context of gaugings of 4D supergravity and Scherk-Shwarz mechanism

$$
T(a)=\left(\begin{array}{cc|cc}
0 & 0 & 0 & 0 \\
a^{J} & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & -a^{I} \\
0 & d_{I J} & 0 & 0
\end{array}\right)
$$

nilpotent of order 3 (relation with nilpotent part of flat connections in Special Geometry):

$$
\begin{aligned}
T^{4}(a)=0 & \Rightarrow \mathcal{A}(a)=\mathbf{I d}+T(a)+\frac{1}{2} T^{2}(a)+\frac{1}{3!} T^{3}(a) \\
\mathcal{A}(a) & =\left(\begin{array}{cc|cc}
1 & 0 & 0 & 0 \\
a^{J} & 1 & 0 & 0 \\
\hline-\frac{1}{6} d & -\frac{1}{2} d_{I} & 1 & -a^{I} \\
\frac{1}{2} d_{J} & d_{I J} & 0 & 1
\end{array}\right)
\end{aligned}
$$

Dilatation and G5 transformation

I-dimensional abelian SO(I,I) factor:

$$
\mathcal{D}(\phi)=\left(\begin{array}{cc|cc}
e^{-3 \phi} & 0 & 0 & 0 \\
0 & e^{-\phi} & 0 & 0 \\
\hline 0 & 0 & e^{3 \phi} & 0 \\
0 & 0 & 0 & e^{\phi}
\end{array}\right)
$$

block diagonal transformation depending only on 5D scalars

$$
G(\lambda)=\left(\begin{array}{cc|cc}
1 & 0 & 0 & 0 \\
0 & E & 0 & 0 \\
\hline 0 & 0 & 1 & 0 \\
0 & 0 & 0 & E^{-1}
\end{array}\right)
$$

$E(\lambda) \equiv\left(a^{-1 / 2}\right)_{a}{ }^{J}=E_{a}{ }^{J}$ coset representative for $\mathrm{G} 5 / \mathrm{H} 5$

Symplectic representative in the axion basis

$$
\mathbf{L}\left(a^{I}, \phi, E(\lambda)\right)=\left(\begin{array}{cc|cc}
e^{-3 \phi} & 0 & 0 & 0 \\
a^{I} e^{-3 \phi} & e^{-\phi} E_{a}{ }^{I} & 0 & 0 \\
\hline-\frac{1}{6} d e^{-3 \phi} & -\frac{1}{2} d_{K} E_{a}{ }^{K} e^{-\phi} & e^{3 \phi}-a^{K}\left(E^{-1}\right)^{a} K^{\prime} e^{\phi} \\
\frac{1}{2} d_{I} e^{-3 \phi} & d_{I K} E_{a}{ }^{K} e^{-\phi} & 0 & e^{\phi}\left(E^{-1}\right){ }_{I}{ }_{I}
\end{array}\right)=\sqrt{2}\binom{\operatorname{Re} f-\operatorname{Im} f}{\operatorname{Re} h-\operatorname{Im} h}
$$

In this bases L is lower triangular, $\operatorname{Im} f=0$ (different from the usual basis of $\mathrm{N}=2$:)

$$
(f, h)=\left(L^{\Lambda}, \bar{D}_{\bar{a}} \bar{L}^{\Lambda} ; M_{\Lambda}, \bar{D}_{\bar{a}} \bar{M}_{\Lambda}\right)
$$

Dependence on $d_{I J K}$ only in lower left block
Can use it to compute vielbeins, connections on coset spaces

Some Properties

$$
\mathcal{M}=\left(\begin{array}{cc}
\mathbb{1} & -\operatorname{Re} \mathcal{N} \\
0 & \mathbb{1}
\end{array}\right)\left(\begin{array}{cc}
\operatorname{Im} \mathcal{N} & 0 \\
0 & (\operatorname{Im} \mathcal{N})^{-1}
\end{array}\right)\left(\begin{array}{cc}
\mathbb{1} & 0 \\
-\operatorname{Re} \mathcal{N} & \mathbb{1}
\end{array}\right) \equiv \mathcal{R}^{T} \mathcal{M}_{D} \mathcal{R}
$$

$$
\mathcal{M}=-\left(\mathbf{L} \mathbf{L}^{T}\right)^{-1}
$$

$$
\begin{aligned}
& Z_{A}=<Q, V_{A}>=Q^{T} \Omega V_{A}=f_{A}^{\Lambda} q_{\Lambda}-h_{\Lambda}{ }_{A} p^{\Lambda} \\
& V_{B H}=-\frac{1}{2} Q^{t} \mathcal{M}(\mathcal{N}) Q=<Q, V_{A}><Q, \bar{V}^{A}>
\end{aligned}
$$

$$
Z_{A}=\mathbf{L}^{-1} Q
$$

Example: $\mathbf{N}=\boldsymbol{8}$

Jordan Triple Sistem is the euclidean Jordan algebra $\quad J_{3}^{\mathbb{O}_{s}}$
Scalar manifold $\quad \frac{G_{5}}{H_{5}}=\frac{E_{6(6)}}{U S p(8)}, \operatorname{dim}_{\mathbb{R}}=42 \quad\left(a^{-1}\right)_{I}^{J}$
$d_{I J K}$ invariant tensor of 27 fundamental irrep of $E_{6(6)}$
$\operatorname{Sp}(56, \mathbb{R})$ matrix $\quad \mathbf{L}\left(a^{I}, \phi, E(\lambda)\right) \quad$ is coset representative of

$$
\begin{aligned}
& \frac{G_{4}}{H_{4}}=\frac{E_{7(7)}}{S U(8)}, \operatorname{dim}_{\mathbb{R}}=70 \\
& S U(8) \supset U S p(8) ; \\
& \quad \mathbf{7 0}=\underset{\lambda^{x}}{\mathbf{4 2}}+\underset{a^{I}}{\mathbf{2}}+\underset{\phi}{\mathbf{1}}
\end{aligned}
$$

$28 \quad Z_{A B} \longrightarrow Z_{A} \quad 27+1$

Application to BH: STU model

Q Simple example of cubic special geometry, with prepotential F=STU
Q 3 complex scalar $\mathrm{S}, \mathrm{T}, \mathrm{U}$ each parametrizing $\mathrm{SU}(\mathrm{I}, \mathrm{I}) / \mathrm{U}(\mathrm{I})$
Q Can be viewed as a truncation of $\mathrm{N}=8$

Q It yields a non trivial test of the use of the axion frame

$d s^{2}=-\mathrm{e}^{2 U(r)} d t^{2}+\mathrm{e}^{-2 U(r)}\left(c^{4} \frac{d r^{2}}{\sinh ^{4}(c r)}+\frac{c^{2}}{\sinh ^{2}(c r)} d \Omega_{S^{2}}^{2}\right)$
Q Defining a real $W(\phi, \bar{\phi})$, extremal black holes are described by

$$
\begin{aligned}
& \left\{\begin{aligned}
U^{\prime} & =-\mathrm{e}^{U} W \\
\phi^{\prime i} & =-2 \mathrm{e}^{U} g^{i \bar{\jmath}} \partial_{\bar{\jmath}} W
\end{aligned}\right. \\
& V_{B H}(\phi, q, p)=W^{2}+4 g^{i \bar{\jmath}} \partial_{i} W \partial_{\bar{\jmath}} W
\end{aligned}
$$

\bullet BPS BH's are a special case with $\mathrm{W}=|Z|$
${ }^{9}$ But other possible solutions are the non-BPS BH's !

- $\partial_{i} W(\phi, \bar{\phi})=0$ gives non-BPS critical points!
$W(\phi, \bar{\phi})$ "fake" superpotential $\left.e^{U} W\right|_{\infty} \sim M_{A D M}$

W was found for STU model in generic charge configuration using duality invariance:
I. Take W for STU model in $\mathrm{S}=\mathrm{T}=\mathrm{U}$ limit
2. Compute it in simple charge configuration and then boost it to generic charges by a duality transformation

$$
\begin{aligned}
W^{2}= & \frac{i_{1}+i_{2}}{4}+\frac{3}{8}\left[\left(4 i_{3} \sqrt{-I_{4}}-\left(i_{1}+i_{2}\right) I_{4}+\left(i_{1}-\frac{i_{2}}{3}\right)^{3}\right)^{1 / 3}+\right. \\
& \left.+\left(-4 i_{3} \sqrt{-I_{4}}-\left(i_{1}+i_{2}\right) I_{4}+\left(i_{1}-\frac{i_{2}}{3}\right)^{3}\right)^{1 / 3}\right]
\end{aligned}
$$

\Longrightarrow non polynomial expression, but at non-BPS attractor point:

$$
i_{2}=3 i_{1}=\frac{3}{4} \sqrt{-I_{4}}, i_{3}=0 \Longrightarrow S_{B H}=W^{2}=\sqrt{-\left|I_{4}\right|}
$$

Q Give W in terms of a complete set of duality invariants for $\mathrm{N}=2$
Q respect the $S p(2 n+2, R)$ structure

$$
\begin{aligned}
& i_{1}=Z \bar{Z} \\
& i_{2}=g^{i \bar{J}} Z_{i} \bar{Z}_{\bar{\jmath}} \\
& i_{3}=\frac{1}{6}\left[Z N_{3}(\bar{Z})+\overline{Z N}_{3}\left(Z_{i}\right)\right], \\
& i_{5}=g^{i \bar{i}} C_{i j k} C_{\bar{Z} \bar{k}} \bar{Z}^{j} \bar{Z}^{k} Z^{\bar{J}} Z^{\bar{k}},
\end{aligned}
$$

$$
\left(Z_{i}=D_{i} Z, \bar{Z}_{\bar{\imath}}=\bar{D}_{\bar{\imath}} \bar{Z}\right)
$$

$$
i_{4}=\frac{i}{6}\left[Z N_{3}(\bar{Z})-\overline{Z N}_{3}(Z)\right],
$$

cubic norms:

$$
N_{3}(\bar{Z})=C_{i j k} \bar{Z}^{i} \bar{Z}^{j} \bar{Z}^{k}, \quad \bar{N}_{3}(Z)=C_{\bar{i} \bar{k}} Z^{\bar{\imath}} Z^{\bar{j}} Z^{\bar{k}}
$$

Ansatz: $\quad W(\phi, \bar{\phi})=W\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\right)$

CERESOLE, DALL'AGATA, SF, YERANYAN 2009

$$
I_{4}=\left(i_{1}-i_{2}\right)^{2}+4 i_{4}-i_{5} \quad \partial_{i} I_{4}=0
$$

$$
T^{3}, S T^{2}, S T U
$$

Bossard, Michel, Pioline arXiv:0908. 1742 compute W by "reduction over time"
W^{2} given implicitly as a "non standard diagonalization problem": solution of a sextic polynomial in whose coefficients are $S U(8)$ invariants

CERESOLE, GNECCHI, SF,
MARRANI 2012
CHECK: using the axion basis for the central charges, after a unitary rotation, find the fake superpotential for p0 q0 charge configuration of T^3 model

Summary

d -geometry is relevant for extended (even N) supergravities
Q Interesting to use universal parametrization of scalar manifold reflecting 5D origin (axion frame)

Q Coset representative has lower triangular form, f section is real
Q Application to black hole flows, explain stratification of charge orbits, computation of fake superpotential

Q Hope: useful to understand the structure of quantum corrections in extended SG, in particular $\mathrm{N}=8$

