

T-duality and new string geometries

Dieter Lüst, LMU and MPI München

KOUNNAS-FEST: Nicosia, September 28-30, 2012

Costas made several very profound and important contributions to theoretical physics!

Often I was working also on related subjects (construction of 4-dimensional strings, effective supergravity actions, supersymmetry breaking, fluxes, ..)
and I enjoyed various very nice collaborations with Costas:

DUALITY-INVARIANT PARTITION FUNCTIONS AND AUTOMORPHIC SUPERPOTENTIALS FOR (2,2) STRING COMPACTIFICATIONS*

S. FERRARA, C. KOUNNAS**, D. LÜST and F. ZWIRNER***
CERN, CH-1211 Geneva 23, Switzerland

Received 17 June 1991

We define the topological free energy for string compactifications, which is relevant for the discussion of perturbative as well as non-perturbative effects in string theory. This modulidependent functional, originating from the integration over massive string modes, is determined by automorphic functions of the target-space duality group. We explicitly construct these automorphic functions for symmetric orbifold and Calabi-Yau compactifications.

1. Introduction

Cosmological String Backgrounds from Gauged WZW Models

Costas Kounnas
Ecole Normale Supérieure, Paris, France

and

Dieter Lüst ${ }^{\star}$
CERN, Geneva, Switzerland

Abstract

We discuss the four-dimensional target-space interpretation of bosonic strings based on gauged WZW models, in particular of those based on the non-compact coset space $S L(2, \mathbf{R}) \times S O(1,1)^{2} / S O(1,1)$. We show that these theories lead, apart from the recently broadly discussed blackhole type of backgrounds, to cosmological string backgrounds, such as an expanding Universe. Which of the two cases is realized depends on the sign of the level of the corresponding Kac-Moody algebra. We discuss various aspects of these new cosmological string backgrounds.

A Large Class of New Gravitational and Axionic Backgrounds for Four-dimensional Superstrings

E. Kiritsis, C. Kounnas*
CERN, Geneva, SWITZERLAND
and
D. Lüst
Humboldt Universität zu Berlin
Fachbereich Physik
D-10099 Berlin, GERMANY

Abstract

A large class of new 4-D superstring vacua with non-trivial/singular geometries, spacetime supersymmetry and other background fields (axion, dilaton) are found. Killing symmetries are generic and are associated with non-trivial dilaton and antisymmetric tensor fields. Duality symmetries preserving $\mathrm{N}=2$ superconformal invariance are employed to generate a large class of explicit metrics for non-compact 4-D Calabi-Yau manifolds with Killing symmetries. We comment on some of our solutions which have interesting singularity properties and cosmological interpretation.

AdS $_{4}$ flux vacua in type II superstrings and their domain-wall solutions

Costas Kounnas», Dieter Lüst* ${ }^{\text {/ }}$, P. Marios Petropoulos^ and Dimitrios Tsimpis*

\diamond Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, CNRS - UMR 8549 24 rue Lhomond, 75231 Paris Cedex 05, France

* Arnold-Sommerfeld-Center for Theoretical Physics Department für Physik, Ludwig-Maximilians-Universität München Teresienstraße 37, 80333 München, Germany
\bigcirc Max-Planck-Institut für Physik
Föhringer Ring 6, 80805 München, Germany
* Centre de Physique Théorique, Ecole Polytechnique, CNRS - UMR 7644 91128 Palaiseau, France

E-mail: kounnas@lpt.ens.fr, luest@theorie.physik.uni-muenchen.de, marios@cpht.polytechnique.fr, tsimpis@theorie.physik.uni-muenchen.de

AbSTRACT: We investigate the emergence of supersymmetric negative-vacuum-energy ground states in four dimensions. First, we rely on the analysis of the effective superpotential, which depends on the background fluxes of the internal manifold, or equivalently has its origin in the underlying gauged supergravity. Four-dimensional, supersymmetric anti-de Sitter vacua with all moduli stabilized appear when appropriate Ramond and Neveu-Schwarz fluxes are introduced in IIA. Geometric fluxes are not necessary. Then the whole setup is analyzed from the perspective of the sources, namely D/NS-branes or Kaluza-Klein monopoles. Orientifold planes are also required for tadpole cancellation. The solutions found in four dimensions correspond to domain walls interpolating between AdS_{4} and flat spacetime. The various consistency conditions (equations of motion, Bianchi identities and tadpole cancellation conditions) are always satisfied, albeit with source terms. We also speculate on the possibility of assigning (formal) entropies to AdS_{4} flux vacua via the corresponding dual brane systems.

KEyWOrds: anti-de Sitter vacua, fluxes, branes.

T-duality has always played an

important role in our common work.

- Relates different string geometries: large and small backgrounds (low and high temperature).
- Relates different string topologies: mirror symmetry.
- It is a stringy symmetry: needs momentum and winding (dual momentum) modes.
- Suggests a doubling of space coordinates: Doubled geometry.
- Relates conventional (Riemannian) geometries to new stringy geometries (non-commutative \& non-associative)

T-duality:

$T: \quad R$
$\longleftrightarrow \frac{\alpha^{\prime}}{R}$, $M \longleftrightarrow N$
$T: \quad p \longleftrightarrow \tilde{p}, \quad p_{L} \longleftrightarrow p_{L}, \quad p_{R} \longleftrightarrow-p_{R}$.

- Dual space coordinates: $\tilde{X}(\tau, \sigma)=X_{L}-X_{R}$

$$
T: \quad X \longleftrightarrow \tilde{X}, \quad X_{L} \longleftrightarrow X_{L}, \quad X_{R} \longleftrightarrow-X_{R}
$$

T-duality is part of stringy diffeomorphism group.

T-duality:
$T: \quad R$
$\longleftrightarrow \frac{\alpha^{\prime}}{R}, \quad M$

$$
\longleftrightarrow N
$$

$T: \quad p \longleftrightarrow \tilde{p}, \quad p_{L} \longleftrightarrow p_{L}, \quad p_{R} \longleftrightarrow-p_{R}$.

- Dual space coordinates: $\tilde{X}(\tau, \sigma)=X_{L}-X_{R}$
$T: X \longleftrightarrow \tilde{X}, \quad X_{L} \longleftrightarrow X_{L}, \quad X_{R} \longleftrightarrow-X_{R}$
T-duality is part of stringy diffeomorphism group.
Doubled field theory:
(O. Hohm, C. Hull, B. Zwiebach (2009/I0))
- Manifestly $O(D, D)$ invariant string action.
- Coordinates: use $\mathrm{O}(\mathrm{D}, \mathrm{D})$ vector $X^{M}=\left(\tilde{X}_{i}, X^{i}\right)$

Outline:

II) Non-geometric flux compactifications

III) Non-commutative/non-associative geometries from non-geometric string backgrounds
D. Lüst, JEHP IOI2 (20II) 063, arXiv:IOIO.136I; arXiv:I205.0I00
R. Blumenhagen, A. Deser, D.Lüst, E. Plauschinn, F. Rennecke, J. Phys A44 (20II), 38540I, arXiv:I I06.03I6
C. Condeescu, I. Florakis, D. Lüst, JHEP I204 (20I2) I2I, arXiv:I 202.6366
D. Andriot, M. Larfors, D. Lüst, P. Patalong, to appear
IV) Outlook \& open problems
II) Non-geometric flux compactifications

Non-geometric backgrounds: Asymmetric orbifolds Covariant lattices

Fermionic constructions
T-folds

We will encounter two different interesting situations:

- Non-geometric Q-fluxes: spaces that are locally still Riemannian manifolds but not anymore globally.

Transition functions between two coordinate patches are not only diffeomorphisms but also T-duality transformations:

$$
\operatorname{Diff}(M) \quad \rightarrow \quad \operatorname{Diff}(M) \times S O(d, d)
$$

Q-space will become non-commutative: $\left[X_{i}, X_{j}\right] \neq 0$

- Non-geometric Q-fluxes: spaces that are locally still Riemannian manifolds but not anymore globally.

Transition functions between two coordinate patches are not only diffeomorphisms but also T-duality transformations:

$$
\operatorname{Diff}(M) \quad \rightarrow \quad \operatorname{Diff}(M) \times S O(d, d)
$$

Q-space will become non-commutative: $\left[X_{i}, X_{j}\right] \neq 0$

- Non-geometric R-fluxes: spaces that are even locally not anymore manifolds.
R-space will become non-associative:

$$
\left[\left[X_{i}, X_{j}\right], X_{k}\right]+\text { perm. } \neq 0
$$

- Non-geometric Q-fluxes: spaces that are locally still Riemannian manifolds but not anymore globally.

Transition functions between two coordinate patches are not only diffeomorphisms but also T-duality transformations:

$$
\operatorname{Diff}(M) \quad \rightarrow \quad \operatorname{Diff}(M) \times S O(d, d)
$$

Q-space will become non-commutative: $\left[X_{i}, X_{j}\right] \neq 0$

- Non-geometric R-fluxes: spaces that are even locally not anymore manifolds.
R-space will become non-associative:

$$
\left[\left[X_{i}, X_{j}\right], X_{k}\right]+\text { perm. } \neq 0
$$

Physics is nevertheless smooth and well-defined!

Q-space T-fold: Patching uses T-duality. e.g. torus fibrations

Geometric background: $\mathcal{E}^{\prime}=a \mathcal{E} a^{t}$ in $U \cap U^{\prime}, a \in G L(d, Z)$
Non-geometric background:

$$
\mathcal{E}^{\prime}=\frac{a \mathcal{E}+b}{c \mathcal{E}+d} \quad \text { in } \quad U \cap U^{\prime}
$$

III) Non-commutative/non-associative geometries

 from non-geometric string backgroundsNow we want to derive the stringy quantum geometry of non-geometric backgrounds .
\Rightarrow Deformed (NC/NA) string geometry with Q- reps. R-flux as deformation parameters.
i) Elliptic monodromy: symmetric \leftrightarrow asymmetric orbifold
D. Lüst, JEHP IOI2 (20II) 063, arXiv:IOIO.I36I; arXiv:I205.0I00
C. Condeescu, I. Florakis, D. Lüst, JHEP I204 (20I2) I2 I, arXiv:I202.6366.
ii) Parabolic monodromy:T-duality as canonical transformation
A. Andriot, M. Larfors, D. Lüst, P. Patalong, to appear; I. Bakas, D. Lüst, work in progress
iii) CFT amplitude computation
R. Blumenhagen, A. Deser, D.Lüst, E. Plauschinn, F. Rennecke, J. Phys A44 (20II), 38540 I, arXiv:I I06.03I6
i) Elliptic = finite order monodromy
ω - background, geometric space
Symmetric (freely acting orbifold): commutative

$$
\downarrow \quad \text { T-duality }
$$

Q-background, non-geometric space
Asymmetric (freely acting orbifold): non-commutative

- The model is an exactly solvable CFT
- Partition function:

$$
Z=\frac{1}{\eta^{12} \bar{\eta}^{12}} R \sum_{\tilde{m}, n \in \mathbb{Z}} e^{-\frac{\pi R^{2}}{\tau_{2}}|\tilde{m}+\tau n|^{2}} Z_{L}\left[\begin{array}{l}
h
\end{array}\right](\tau) \tilde{Z}_{R}(\bar{\tau}) \Gamma_{(5,5)}\left[\begin{array}{l}
h \\
g
\end{array}\right](\tau, \bar{\tau})
$$

ii) Parabolic = infinite order monodromy

Four different 3-dimensional closed string flux backgrounds, which are related by T-duality: (Shelton, Raylor, Wecht, 2005; Dabholkar, Hull, 2005)

Chain of 3 T-dualities:

$$
F^{(3)}: \quad H \underset{T_{x_{1}}}{\overleftrightarrow{\leftrightarrow}} \omega \underset{T_{x_{2}}}{\overleftrightarrow{\leftrightarrow}} Q \underset{T_{x_{3}} \text { (not isometry) }}{\overleftrightarrow{\leftrightarrow}} R
$$

ii) Parabolic = infinite order monodromy

Four different 3-dimensional closed string flux backgrounds, which are related by T-duality: (Shelton, Raylor, Wech, 2005; Dabholkar, Hull, 2005)

ii) Parabolic = infinite order monodromy

Four different 3-dimensional closed string flux backgrounds, which are related by T-duality: (Shelton, Raylor, Wecht, 2005; Dabholkar, Hull, 2005)

ii) Parabolic = infinite order monodromy

Four different 3-dimensional closed string flux backgrounds, which are related by T-duality: (Shelton, Raylor, Wecht, 2005;

(

Chain of 3 T-dualities. NS H-fll geomet

$$
F^{(3)}:
$$

$$
H \underset{T_{x_{1}}}{\overleftrightarrow{\leftrightarrow}} \omega \underset{T_{x_{2}}}{\overleftrightarrow{\leftrightarrow}} Q \underset{T_{x_{3}} \text { (not isometry) }}{ } \quad R
$$

ii) Parabolic = infinite order monodromy

Four different 3-dimensional closed string flux backgrounds, which are related by T-duality: (Shelton, Raylor, Wecht, 2005; Dabholkar, Hull, 2005)

ii) Parabolic = infinite order monodromy

Four different 3-dimensional closed string flux backgrounds, which are related by T-duality: (Shelton, Raylor, Wecht, 2005; Dabhokar, Hull, 2005)

Chain of 3 T-dualities. NS H-flı geomet geom. non- non$F^{(3)}:$

Flat 3-torus with
constant H-flux
ii) Parabolic = infinite order monodromy

Four different 3-dimensional closed string flux backgrounds, which are related by T-duality: (Shelton, Raylor, Wecht, 2005; Dabholkar, Hull, 2005)

Chain of 3 T-dualities. NS H-fil geomet geom- non$F^{(3)}:$

Flat 3-torus with constant H-flux

Twisted (curved)
Riemannian 3-torus

ii) Parabolic = infinite order monodromy

Four different 3-dimensional closed string flux backgrounds, which are related by T-duality: (Shelton, Raylor, Wecht, 2005; Dabholkar, Hull, 2005)

Chain of 3 T-dualities. NS H-fll geomet geom- non-
 1
Flat 3-torus with constant H-flux

Twisted (curved)
Riemannian 3-torus commutative
ii) Parabolic = infinite order monodromy

Four different 3-dimensional closed string flux backgrounds, which are related by T-duality: (Shelton, Raylor, Wecht, 2005; Dabholkar, Hull, 2005)

Chain of 3 T-dualities. NS H-fll geomet non- non-

Flat 3-torus with constant H -flux

$$
\left[X_{i}, X_{j}\right] \neq 0
$$

ii) Parabolic = infinite order monodromy

Four different 3-dimensional closed string flux backgrounds, which are related by T-duality: (Shelton, Raylor, Wecht, 2005; Dabholkar, Hull, 2005)

Chain of 3 T-dualities. NS H-fll geomet non- non-

Flat 3-torus with constant H -flux

$$
\left[X_{i}, X_{j}\right] \neq 0
$$

Twisted (curved)
Riemannian 3-torus commutative

Non-associative
„Space" with R-flux
$\left[\left[X_{i}, X_{j}\right], X_{k}\right] \neq 0$

Procedure for the quantization of these backgrounds:

I. step: Standard canonical quantization of H and ω-backgrounds

$$
\begin{gathered}
{\left[\mathcal{X}^{\mu}(\tau, \sigma), \mathcal{X}^{\nu}\left(\tau, \sigma^{\prime}\right)\right]=0} \\
{\left[\mathcal{P}_{\mu}(\tau, \sigma), \mathcal{P}_{\nu}\left(\tau, \sigma^{\prime}\right)\right]=0} \\
{\left[\mathcal{X}^{\mu}(\tau, \sigma), \mathcal{P}_{\nu}\left(\tau, \sigma^{\prime}\right)\right]=i \delta_{\nu}^{\mu} \delta\left(\sigma-\sigma^{\prime}\right)}
\end{gathered}
$$

Procedure for the quantization of these backgrounds:

I. step: Standard canonical quantization of H and ω-backgrounds

$$
\begin{gathered}
{\left[\mathcal{X}^{\mu}(\tau, \sigma), \mathcal{X}^{\nu}\left(\tau, \sigma^{\prime}\right)\right]=0} \\
{\left[\mathcal{P}_{\mu}(\tau, \sigma), \mathcal{P}_{\nu}\left(\tau, \sigma^{\prime}\right)\right]=0} \\
{\left[\mathcal{X}^{\mu}(\tau, \sigma), \mathcal{P}_{\nu}\left(\tau, \sigma^{\prime}\right)\right]=i \delta_{\nu}^{\mu} \delta\left(\sigma-\sigma^{\prime}\right)}
\end{gathered}
$$

- Obeying the following closed string boundary (SO $(2,2)$-monodromy) conditions:

$$
\begin{aligned}
Y^{1}(\tau, \sigma+2 \pi) & =Y^{1}(\tau, \sigma)+2 \pi N_{Y}^{3} H Y^{2}(\tau, \sigma) \\
Y^{2}(\tau, \sigma+2 \pi) & =Y^{2}(\tau, \sigma) \\
\tilde{Y}^{1}(\tau, \sigma+2 \pi) & =\tilde{Y}^{1}(\tau, \sigma) \\
\tilde{Y}^{2}(\tau, \sigma+2 \pi) & =\tilde{Y}^{2}(\tau, \sigma)+H N_{Y}^{3} \tilde{Y}^{1}(\tau, \sigma) \\
Y^{3}(\tau, \sigma+2 \pi) & =Y^{3}(\tau, \sigma)+2 \pi N_{Y}^{3}
\end{aligned}
$$

2. step: T-duality as canonical (Buscher) transformation:

(E.Alvarez, L. Alvarez-Gaume, Y. Lozano, I994;
I. Bakas, K. Sfetsos, I995)

$H \longleftrightarrow \omega: \quad$ T-d. along $\iota=1$

$$
\left.\left.\begin{array}{r}
\partial_{\tau} X^{1}=\partial_{\sigma} Y^{1}-H Y^{3} \partial_{\sigma} Y^{2} \\
\partial_{\sigma} X^{1}=\partial_{\tau} Y^{1}-H Y^{3} \partial_{\tau} Y^{2} \\
\partial_{\tau} X^{2,3}=\partial_{\tau} Y^{2,3} \\
\partial_{\sigma} X^{2,3}=\partial_{\sigma} Y^{2,3}
\end{array} \right\rvert\, \quad(\text { all orders }) ~ \right\rvert\, \begin{aligned}
& \partial_{\tau} Y^{1}=\partial_{\sigma} X^{1}+H X^{3} \partial_{\tau} X^{2} \\
& \partial_{\sigma} Y^{1}=\partial_{\tau} X^{1}+H X^{3} \partial_{\sigma} X^{2} \\
& \partial_{\tau} Y^{2,3}=\partial_{\tau} X^{2,3} \\
& \partial_{\sigma} Y^{2,3}=\partial_{\sigma} X^{2,3}
\end{aligned}
$$

$$
\left.\left.\begin{array}{r}
\partial_{\tau} Y^{2}=\partial_{\sigma} Z^{2}+H Z^{3} \partial_{\tau} Z^{1} \\
\partial_{\sigma} Y^{2}=\partial_{\tau} Z^{2}+H Z^{3} \partial_{\sigma} Z^{1} \\
\partial_{\tau} Y^{1,3}=\partial_{\tau} Z^{1,3} \\
\partial_{\sigma} Y^{1,3}=\partial_{\sigma} Z^{1,3}
\end{array} \right\rvert\, \quad\left(\text { up to } O\left(H^{2}\right)\right) \right\rvert\, \begin{aligned}
& \partial_{\tau} Z^{2}=\partial_{\sigma} Y^{2}-H Y^{3} \partial_{\sigma} Y^{1} \\
& \partial_{\sigma} Z^{2}=\partial_{\tau} Y^{2}-H Y^{3} \partial_{\tau} Y^{1} \\
& \partial_{\tau} Z^{1,3}=\partial_{\tau} Y^{1,3} \\
& \partial_{\sigma} Z^{1,3}=\partial_{\sigma} Y^{1,3}
\end{aligned}
$$

2. step: T-duality as canonical (Buscher) transformation:
(E.Alvarez, L. Alvarez-Gaume, Y. Lozano, I994;
I. Bakas, K. Sfetsos, I995)
$H \longleftrightarrow \omega: \quad$ T-d. along $\iota=1$

$$
\left.\left.\begin{array}{r}
\partial_{\tau} X^{1}=\partial_{\sigma} Y^{1}-H Y^{3} \partial_{\sigma} Y^{2} \\
\partial_{\sigma} X^{1}=\partial_{\tau} Y^{1}-H Y^{3} \partial_{\tau} Y^{2} \\
\partial_{\tau} X^{2,3}=\partial_{\tau} Y^{2,3} \\
\partial_{\sigma} X^{2,3}=\partial_{\sigma} Y^{2,3}
\end{array} \right\rvert\,(\text { all orders }) \right\rvert\, \begin{aligned}
& \partial_{\tau} Y^{1}=\partial_{\sigma} X^{1}+H X^{3} \partial_{\tau} X^{2} \\
& \partial_{\sigma} Y^{1}=\partial_{\tau} X^{1}+H X^{3} \partial_{\sigma} X^{2} \\
& \partial_{\tau} Y^{2,3}=\partial_{\tau} X^{2,3} \\
& \partial_{\sigma} Y^{2,3}=\partial_{\sigma} X^{2,3}
\end{aligned}
$$

$$
\left.\left.\begin{array}{r}
\partial_{\tau} Y^{2}=\partial_{\sigma} Z^{2}+H Z^{3} \partial_{\tau} Z^{1} \\
\partial_{\sigma} Y^{2}=\partial_{\tau} Z^{2}+H Z^{3} \partial_{\sigma} Z^{1} \\
\partial_{\tau} Y^{1,3}=\partial_{\tau} Z^{1,3} \\
\partial_{\sigma} Y^{1,3}=\partial_{\sigma} Z^{1,3}
\end{array} \right\rvert\, \quad\left(\text { up to } O\left(H^{2}\right)\right) \right\rvert\, \begin{aligned}
& \partial_{\tau} Z^{2}=\partial_{\sigma} Y^{2}-H Y^{3} \partial_{\sigma} Y^{1} \\
& \partial_{\sigma} Z^{2}=\partial_{\tau} Y^{2}-H Y^{3} \partial_{\tau} Y^{1} \\
& \partial_{\tau} Z^{1,3}=\partial_{\tau} Y^{1,3} \\
& \partial_{\sigma} Z^{1,3}=\partial_{\sigma} Y^{1,3}
\end{aligned}
$$

T-dual SO(2,2)-monodromy conditions:

$\begin{array}{ll}Z^{1}(\tau, \sigma+2 \pi) & =Z^{1}(\tau, \sigma)-2 \pi N_{Z}^{3} H \tilde{Z}^{2}(\tau, \sigma), \\ \text { Mix coordinates with } \\ Z^{2}(\tau, \sigma+2 \pi) & =Z^{2}(\tau, \sigma)+2 \pi N_{Z}^{3} H \tilde{Z}^{1}(\tau, \sigma), \\ \text { dual coordinates. } \\ \tilde{Z}^{1}(\tau, \sigma+2 \pi) & =\tilde{Z}^{1}(\tau, \sigma), \\ \tilde{Z}^{2}(\tau, \sigma+2 \pi) & =\tilde{Z}^{2}(\tau, \sigma) ; \\ Z^{3}(\tau, \sigma+2 \pi) & =Z^{3}(\tau, \sigma)+2 \pi N_{Z}^{3} . \\ & \text { Non-geometric background. }\end{array}$
3. step: Derive (non-canonical) quantization for Qbackground:
(consistent with the non-geometrical monodromy conditions)

$$
\left[Z^{1}(\tau, \sigma), Z^{2}(\tau, \sigma)\right]=-\frac{1}{2} \frac{\pi^{2}}{3} H \tilde{p}^{3}
$$

T-duality does not preserve the canonical commutation relations!
Corresponding uncertainty relation:

$$
\left(\Delta Z^{1}\right)^{2}\left(\Delta Z^{2}\right)^{2} \geq L_{s}^{6} H^{2}\left\langle\tilde{p}^{3}\right\rangle^{2}
$$

The spatial uncertainty in the X_{1}, X_{2} directions grows with the dual momentum in the third direction: non-local strings with winding in third direction.
4. step: T-duality in x^{3}-direction $\Rightarrow \mathrm{R}$-flux

$$
\tilde{p}^{3} \quad \longrightarrow \quad p^{3}
$$

\Rightarrow For the case of non-geometric R-fluxes one gets:

$$
\begin{gathered}
{\left[Z^{1}(\tau, \sigma), Z^{2}(\tau, \sigma)\right]=-\frac{1}{2} \frac{\pi^{2}}{3} H p^{3}} \\
\text { Use }\left[p^{3}, X^{3}\right]=-i \\
\Rightarrow \quad\left[\left[Z^{1}, Z^{2}\right], Z^{3}\right]+\text { perm. } \simeq H \\
\text { Non-associative algebra! }
\end{gathered}
$$

This nicely agrees with the non-associative closed string structure found by Blumenhagen, Plauschinn in the $\mathrm{SU}(2) \mathrm{WZW}$ model: arXiv:IOIO.I263
Twisted Poisson structure (same as for point particle in the field of a magnetic monopole, being related to co-cycles)

IV) Outlook \& open questions

- Mixed closed string bound conditions (in analogy to mixed D-N boundary conditions for D-branes) lead to closed string non-commutativity. This is a stringy, nonlocal effect - Wilson loop operator.

IV) Outlook \& open questions

- Mixed closed string bound conditions (in analogy to mixed D-N boundary conditions for D-branes) lead to closed string non-commutativity. This is a stringy, nonlocal effect - Wilson loop operator.
- Non-associative \triangle-product for functions:

$$
\begin{aligned}
& f_{1}(y) \Delta f_{2}(y) \triangle \ldots \Delta f_{N}(y):= \\
& \left.\exp \left[\sum_{m<n<r} F^{a b c} \partial_{a}^{y_{m}} \partial_{b}^{y_{n}} \partial_{c}^{y_{r}}\right] f_{1}\left(y_{1}\right) \underset{\substack{\text { (see also. K. Savidy (2002)) }}}{f_{2}\left(y_{2}\right) \ldots f_{N}\left(y_{N}\right)}\right|_{y_{1}=\ldots=y_{N}=y}
\end{aligned}
$$

IV) Outlook \& open questions

- Mixed closed string bound conditions (in analogy to mixed D-N boundary conditions for D-branes) lead to closed string non-commutativity. This is a stringy, nonlocal effect - Wilson loop operator.
- Non-associative \triangle-product for functions:

$$
\left.\begin{gathered}
f_{1}(y) \triangle f_{2}(y) \triangle \ldots \Delta f_{N}(y):= \\
\left.\exp \left[\sum_{m<n<r} F^{a b c} \partial_{a}^{y_{m}} \partial_{b}^{y_{n}} \partial_{c}^{y_{r}}\right] f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) \ldots f_{N}\left(y_{N}\right)\right|_{\text {se }} \text { (see aso:. . Savidy (2002)) }
\end{gathered}\right|_{y_{1}=\ldots=y_{N}=y}
$$

- Investigation of the phase space of doubled geometry (I.Bakas, D. Lüst, work in progress)

IV) Outlook \& open questions

- Mixed closed string bound conditions (in analogy to mixed D-N boundary conditions for D-branes) lead to closed string non-commutativity. This is a stringy, nonlocal effect - Wilson loop operator.
- Non-associative \triangle-product for functions:

$$
\begin{gathered}
f_{1}(y) \triangle f_{2}(y) \Delta \ldots \Delta f_{N}(y):= \\
\left.\exp \left[\sum_{m<n<r} F^{a b c} \partial_{a}^{y_{m}} \partial_{b}^{y_{n}} \partial_{c}^{y_{r}}\right] \operatorname{fr}_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) \ldots f_{N}\left(y_{N}\right)\right|_{\text {(see also. . . Savidy (2002)) }} \\
y_{1}=\ldots=y_{N}=y
\end{gathered}
$$

- Investigation of the phase space of doubled geometry (I.Bakas, D. Lüst, work in progress)
- Is there are non-commutative (non-associative) theory of gravity? (Non-commutative geometry \& gravity: P.Aschieri, M. Dimitrijevic, F. Meyer, J. Wess (2005

Happy Birthday and

 all the best wishes to you and your family, Costa!