

Galaxy redshift surveys: a major pillar of the cosmological model...

...but also of our understanding of how galaxies form and evolve...

SDSS: statistical distribution of galaxy properties for ~10⁶ galaxies

The clustering power spectrum: a probe of the underlying cosmology

We need to understand galaxies, to do cosmology...

Kauffman & Diaferio 1998

Cattaneo et al. 2011 – halo mass vs stellar mass; (toy model on high-resolution simulation DM halos)

The clustering power spectrum: a probe of the underlying cosmology

Baryonic Acoustic Oscillations: a standard ruler to measure H(z)

BAO detection in galaxy redshift surveys

Fourier Space

(wiggles):

Configuration Space (BAO peak):

Growth produces motions: galaxy peculiar velocities

Peculiar velocities manifest themselves in galaxy redshift surveys as <u>redshift-space</u> <u>distortions</u> (Kaiser 1987)

Peculiar velocities manifest themselves in galaxy redshift surveys as <u>redshift-space</u> <u>distortions</u> (Kaiser 1987)

redshift space

Redshift-Space Distortions: an old way to look at a new thing...

Nature 410, 169 (2001)

A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey

John A. Peacock¹, Shaun Cole², Peder Norberg², Carlton M. Baugh², Joss Bland-Hawthorn³, Terry Bridges³, Russell D. Cannon³, Matthew Colless⁴, Chris Collins⁵, Warrick Couch⁶, Gavin Dalton⁷, Kathryn Deeley⁶, Roberto De Propris⁶, Simon P. Driver⁸, George Efstathiou⁹, Richard S. Ellis^{9,10}, Carlos S. Frenk², Karl Glazebrook¹¹, Carole Jackson⁴, Ofer Lahav⁹, Ian Lewis³, Stuart Lumsden¹², Steve Maddox¹³, Will J. Percival¹, Bruce A. Peterson⁴, Ian Price⁴, Will Sutherland^{1,7} & Keith Taylor^{3,10}

Vol 451|31 January 2008 doi:10.1038/nature06555

Nature 451, 541 (2008)

LETTERS

nature

A test of the nature of cosmic acceleration using galaxy redshift distortions

L. Guzzo^{1,2,3,4}, M. Pierleoni³, B. Meneux⁵, E. Branchini⁶, O. Le Fèvre⁷, C. Marinoni⁸, B. Garilli⁵, J. Blaizot³, G. De Lucia³, A. Pollo^{7,9}, H. J. McCracken^{10,11}, D. Bottini⁵, V. Le Brun⁷, D. Maccagni⁵, J. P. Picat¹², R. Scaramella^{13,14}, M. Scodeggio⁵, L. Tresse⁷, G. Vettolani¹³, A. Zanichelli¹³, C. Adami⁷, S. Arnouts⁷, S. Bardelli¹⁵, M. Bolzonella¹⁵, A. Bongiorno¹⁶, A. Cappi¹⁵, S. Charlot¹⁰, P. Ciliegi¹⁵, T. Contini¹², O. Cucciati^{1,17}, S. de la Torre⁷, K. Dolag³, S. Foucaud¹⁸, P. Franzetti⁵, I. Gavignaud¹⁹, O. Ilbert²⁰, A. Iovino¹, F. Lamareille¹⁵, B. Marano¹⁶, A. Mazure⁷, P. Memeo⁵, R. Merighi¹⁵, L. Moscardini^{16,21}, S. Paltani^{22,23}, R. Pellò¹², E. Perez-Montero¹², L. Pozzetti¹⁵, M. Radovich²⁴, D. Vergani⁵, G. Zamorani¹⁵ & E. Zucca¹⁵

Redshift-space distortions as a dark energy test

Galaxy clustering: a primary probe to answer the high-level questions...

- Nature of Dark Matter ?
- Nature of Dark Energy ?
- Behaviour of gravity at the largest scales (did Einstein have final word)?
- Physics of the initial conditions (inflation) ?

Implications for physics

- → the Standard Model of cosmology (ACDM)
- the Standard Model of particle physics

... if a galaxy redshift survey is properly designed

STATISTICAL ERRORS (not an issue nowadays?):

- Sample bigger volumes to push down sample variance, but being sufficiently dense to stay away from shot noise regime on the scales of interest
- Use multiple populations? (seemed more promising) \rightarrow survey design

SYSTEMATIC ERRORS:

- How do my galaxy tracers sample dark-matter distribution? DM-baryon connection (bias) → survey design (type of tracers, ...)
- Minimize impact of non-linear clustering → survey design (largest possible volume)
- Accuracy of modelling (e.g. RSD), to match requirements of precision cosmology → technical advances, but also <u>survey design</u> (some tracers may be less affected than others)
- Use multiple populations, as a cross-check of systematic effects \rightarrow survey design

SEE THE WHOLE MOVIE, NOT JUST THE FINAL PICTURE...

Push deeper using a sparse "special" galaxy population...

E.g. SDSS-LRG, and **BOSS** (see also **Wigglez** – Blake et al.):

- BOSS: "CMASS" LRG-like col-col selection, "loosely selecting constant mass galaxies", z<0.7
- Area=8500 deg², Volume~6 h⁻³ Gpc, Ngal = 690,000 \rightarrow <n>~10⁻⁴ h³ Mpc⁻³
- Optimized for BAO measurement, excellent (a posteriori) for Redshift Space Distortions
- See e.g. Samushia et al. (2014) and references therein

...or push to higher redshift, but aiming at a volume **and density** comparable to 2dFGRS and SDSS, with similarly broad selection function

VIPERS headline science goals

- Galaxy clustering at z~1 with comparable precision to z~0:
 - Evolution of $\xi(\mathbf{r})$ and P(k) ($\Omega_{\rm m}$, $\Omega_{\rm b}$ at z~1)
 - Dependence on galaxy properties
 - Galaxy-DM relations (HOD modeling)
- Growth rate from redshift-space distortions at z~1
- Evolution and non-linearity of galaxy biasing
- Evolution of galaxy colors and environmental effects
- Bright/massive/rare galaxies at z~1 and evolution of the galaxy luminosity and stellar mass functions
- Combined clustering / weak-lensing analysis (photo-z calibr., CFHTLenS match)
- Multi-wavelength studies (SWIRE, XMM-XXL, UDS, VIDEO,...)

VIMOS @ VLT fills unique niche in density-area space

VLT-VIMOS: 325 spectra at once 25/09/02 At VIPERS depth: ~100 gal/quadrant \rightarrow 400/224 gal/arcmin² ~ 6500 gal/deg²

VIPERS strategy

- Want volume and density comparable to a survey like 2dFGRS, but at z=[0.5-1]: cosmology driven, but with broader legacy return
- Means Vol~5 x 10⁷ h⁻³ Mpc³, ~100,000 redshifts, close to full sampling
- Implies I_{AB}<22.5, ~24 deg²
- Improve sampling within redshift range of interest through z>0.5 robust color-color pre-selection (+star-galaxy separation), with also better match to VIMOS multiplexing: >40% sampling
- CFHTLS Wide (W1 and W4 fields, ~16 + 8 deg²) provides accurate multi-band photometry to support this
- VIMOS LR Red grism, 45 min exposure
- 288 pointings, 440.5 VLT hours (~55 night-equivalent)

VIPERS Team

(see http://vipers.inaf.it)

- 1. Automatic spectral extraction/calibration + redshift measurement: *EasyLife* pipeline running at INAF- IASF Milano (Garilli et al. 2012, PASP, 124)
- Redshift review and validation: *VIPGI* (Scodeggio et al. 2005, PASP, 117) & *EZ* (Garilli et al. 2010, PASP, 122)

Sky coverage today: VIPERS is finished!

W1

W4

VIPERS Status

 Survey completed in January 2015; all data now reduced and validated: internal final (V6.0) catalogue available to team:

SURVEY STATUS AS OF 14/05/2015

EFFECTIVE	MEASURED	STELLAR	COVERED
TARGETS	REDSHIFTS	CONTAMINATION	AREA
93252	88901	2265 (2.5 %)	100.0%

EFFECTIVE TARGETS (ET) are all the primary targeted objects with the exclusion of the ones flagged as -10 (undetected). MEASURED REDSHIFTS (MR) are the fraction of ET for which a redshift has been measured. STELLAR CONTAMINATION are the MR objects which have been identified as stars.

Summer 2016: public release of full data set

PDR-1 redshift distribution

(Guzzo et al. 2014)

Redshift-space clustering and growth rate of structure from the PDR-1

Very careful treatment of window function

(Rota, Bel, Granett, LG & VIPERS Team, to be submitted)

• 4 independent estimates: 2 z bins in 2 independent fields (W1 and W4)

(Rota, Bel, Granett, LG & VIPERS Team, to be submitted)

• 4 independent estimates: 2 z bins in 2 independent fields (W1 and W4)

Comparison to z~0, 2dFGRS

Comparison to z~0, 2dFGRS vs SDSS

Comparison to z~0, VIPERS vs 2dFGRS

(Rota, Bel, Granett, LG & VIPERS Team, to be submitted)

Relevance of systematic effects: dependence on k_{max} in the fit

(Higher-z \rightarrow less non-linearity \rightarrow push to higher k_{max})

Non-linearity of galaxy bias and its evolution

Using Sigad, Branchini & Dekel (2000) inversion technique

(Di Porto, Branchini & VIPERS Team 2014)

Is there a real tension of current constraints on $f\sigma_8$ with GR+Planck predictions?

(Macaulay et al. 2013)

(de la Torre & VIPERS 2013)

(see also Salvatelli et al. 2014)

Measuring RSD: how this is done in detail

A. **Fit the full 2D correlation function**, expressed as combination of spherical armonics (moments)

B. Fit single multipoles

Pros: highly non-linear scales where FoG dominates more cleanly removed **Cons:** lots of d.o.f. \rightarrow covariance matrix estimation more difficult Pros: compress the information → easier to estimate covariance matrix
 Cons: uncertainties in modelling smallscale non-linearity (FoG) affect all scales

Kaiser/Hamilton linear redshift-distortion model + correction

$$P(k_{\parallel},k_{\perp}) = P(k) \left(1 + \beta \mu^{2}\right)^{2} D(k\mu\sigma_{p}).$$

Systematic effects on Redshift-Space Distortions...

Need to improve modelling to enter "precision RSD era"

 \rightarrow e.g. EUCLID: 1-3% precision on $f\sigma_8$

(also Okumura & Jing, 2011)

→ A lot of modelling work ongoing (Scoccimarro, Taruya+, Kwan+, Reid+, Samushia+, Seljak+, Bianchi+, Kopp+, ...

Reducing systematics: better RSD models?

Better RSD models: understand pairwise f(v)

- D. Bianchi (now @ICG Portsmouth) PhD work – Bianchi, Chiesa & LG, 2014, MNRA 446, 75
- Goal: reduce degrees of freedom on description of the pairwise velocity PDF in the context of the *streaming model*

$$1+\xi_S(s_\perp,s_\parallel)=\int dr_\parallel \; [1+\xi_R(r)] \; \mathcal{P}(r_\parallel-s_\parallel|\mathbf{r})$$

 PDF described as weighted sum of Gaussians, whose mean and dispersion are described in turn by bivariate Gaussian

$$\mathcal{P}(v_{\parallel}) = \int d\mu d\sigma \; \mathcal{P}_L(v_{\parallel}|\mu,\sigma) \; \mathcal{F}(\mu,\sigma)$$

- Works extremely well: naturally provides exponential/Gaussian/skewed PDFs, depending on separation
- Uhlemann et al. (2015): development using Edgeworth expansion

Improving RSD measurements: better tracers of LSS and v

F. Mohammad PhD project: **RSD from the group-galaxy cross-correlation** (Mohammad, et al., submitted), plus define **customized multipole expansion** ("truncated multipoles") to reduce weight of nonlinear scales

(3) "Optimized" statistics: the "clustering ratio" from counts in cells (Bel et al.), an implicit probe of P(k) shape

The clustering ratio:
$$\eta_R(r) \equiv \frac{\xi_R(r)}{\sigma^2}$$

 σ_{R}^{2}

where:

- R=smoothing radius of galaxy field •
- r=nR (n=3,4,5) i.e. correlated on larger scales
- Ratio has favourable propertites wrt to quasi-linear/mildly nonlinear effects on the P(k): most of these factor out
- Essentially a ratio of power in two • different k bands

 \rightarrow Reduce the effect on P(k) shape of the "Big Three", i.e. nonlinearity, bias and RSD

Bel et al. 2014, A&A, 563, 37

Identify new cosmological probes: cosmic voids at z~1

Micheletti, Iovino, Hawken, Granett & VIPERS team, 2014

^{erc}dark‱<mark>IIGHT</mark>

Identify new cosmological probes: cosmic voids at z~1

The void-galaxy cross correlation function

^{erc}DARK煭[IGHT

Modelling the cross-correlation function: A. Hawken et al., in preparation

- \rightarrow How precise and accurate can this method be?
- \rightarrow Needs highly-samples surveys like GAMA and VIPERS

Minimize observational effects (not obvious at 1% level!)

E.g. detailed correction of masking effects in the VIPERS data on the estimate of twopoint correlations (A. Pezzotta PhD work)

 \rightarrow This will be very relevant for Euclid slitless spectroscopic mode

Account for all existing components: neutrinos!

Carbone et al., DEMNUni simulations

erc DARK **UIGHT**

Improve understanding relation between DM and baryons

(De la Torre & VIPERS team 2015, in preparation)

VIPERS provides detailed structure AND galaxy properties

Color-density relation: Cucciati et al., in prep.

Galaxy Stellar Mass Function

MOST PRECISE MEASUREMENT EVER OF THE NUMBER DENSITY OF MASSIVE GALAXIES AT Z ${\sim}1$

- I. Davidzon, Bolzonella et al. 2013, A&A, 558, 23
- II. Fritz et al. (CM diagram + LF), 2014, A&A, 563, 92

De la Torre, Julio & VIPERS Team, in preparation

Euclid

- ESA mission + extra contribution
 by national agencies (legacy of parent DUNE+SPACE projects)
- Euclid Consortium Lead: Yannick Mellier (IAP)
 - 1.2 m telescope
- Visible imaging (1 band)
- Infrared imaging (Y,J,H)
- Infrared slitless spectroscopy
- Launch 2020
 - 15,000 deg² survey
- Images for 2x10⁹ galaxies
- Spectra for $\sim 5 \times 10^7$ galaxies (0.9<z<1.8)

OBJECTIVES:

- Build a map of dark and luminous matter over 1/3 of the sky and to z~2
- Unveil the nature of dark matter
- Solve the mystery of dark energy (cosmic acceleration)
- Use multiple probes → max control over systematic errors

The Euclid "Red Book"

http://sci.esa.int/science-e/www/object/ index.cfm?fobjectid=48983#

Summary

- An exciting future for cosmology from galaxy clustering: galaxy redshift surveys can measure both w(z) and f(z) using BAOs/P(k) and z-distortions → test dark energy vs modified gravity
- A renaissance for redshift-space distortions: not considered in this context before 2008, now a key "dark energy probe" (EUCLID)

More and more data will push statistical errors into 1% regime:

- Over the past 3 years new RSD results from WiggleZ, BOSS, VIPERS
- VIPERS fills a specific niche, thanks to its high sampling, allowing complementary approaches (multi-population still atractive?)
- EUCLID will couple a ~30 million galaxy (slitless) redshift survey with a high-resolution imaging survey, to combine galaxy clustering and weak lensing (launch 2020)
- Other ground-based surveys, like DESI, are planned in the 10-million z regime

Need to increase control over systematic effects:

- Improve modelling of RSD: rapid and promising development after 2008 renaissance (e.g. building upon Scoccimarro 2004)
- Streaming model approach yields promising results (Reid+, Bianchi+, Uhllemann+)
- Use different tracers of RSD, possibly with reduced weight of nonlinear effects (e.g. Mohammad et al., group-galaxy correlations)
- New probes (e.g. voids) / new statistics / improved corrections of observational biases
- All existing components need to be accounted for (e.g. neutrinos cannot be neglected...)

EXTRA MATERIAL

Models: improved dispersion approach

$$\begin{bmatrix} 1+\delta^{s}(s) \end{bmatrix} d^{3}s = \begin{bmatrix} 1+\delta(r) \end{bmatrix} d^{3}r$$

$$P_{g}^{s}(k,\mu) = D(k\mu\sigma_{v})P_{K}(k,\mu,b)$$

$$\delta^{s}(s) = (\delta(r) + f\partial_{\parallel}^{2}\Delta^{-1}\theta(r)) (1 - f\partial_{\parallel}^{2}\Delta^{-1}\theta(r))^{-1}$$

$$D(k\mu\sigma_{v}) = \begin{cases} \exp(-(k\mu\sigma_{v})^{2}) \\ 1/(1 + (k\mu\sigma_{v})^{2}) \end{cases}$$

$$P_{s}^{s}(k,\mu) = \int \frac{d^{3}r}{(2\pi)^{3}}e^{-ik\cdot r} \left\langle e^{-ikf\mu\Delta u_{\parallel}} \times \right| \\ [\delta(x) + \mu^{2}f\theta(x)][\delta(x') + \mu^{2}f\theta(x')] \right\rangle$$

$$P_{K}(k,\mu,b) = \begin{cases} A: b^{2}(k)P_{\delta\delta}(k) + 2\mu^{2}fb(k)P_{\delta\delta}(k) \\ +\mu^{4}f^{2}P_{\delta\delta}(k) & \text{"NU" Kaiser 1987} \end{cases}$$

$$B: b^{2}(k)P_{\delta\delta}(k) + 2\mu^{2}fb(k)P_{\delta\theta}(k) \\ +\mu^{4}f^{2}P_{\theta\theta}(k) & \text{Scocimaro 2004} \end{cases}$$

$$P_{K}(k,\mu,b) = \begin{cases} B: b^{2}(k)P_{\delta\delta}(k) + 2\mu^{2}fb(k)P_{\delta\theta}(k) \\ +\mu^{4}f^{2}P_{\theta\theta}(k) & \text{Scocimaro 2004} \end{cases}$$

$$C: b^{2}(k)P_{\delta\delta}(k) + 2\mu^{2}fb(k)P_{\delta\theta}(k) \\ +\mu^{4}f^{2}P_{\theta\theta}(k) & \text{Scocimaro 2004} \end{cases}$$

(de la Torre & Guzzo 2012)

Improved dispersion approach

Taruya et al. 2010 model allows recovering *f* at the 5% percent level, Scoccimarro 2004 and dispersion models performing worst (3-10%)

(de la Torre & Guzzo 2012)

Models: streaming approach

• Gaussian (scale-dependent) streaming model:

$$1 + \xi_{g}^{s}(r_{\sigma}, r_{\pi}) = \int \left[1 + \xi_{g}^{r}(r)\right] e^{-[r_{\pi} - y - \mu v_{12}(r)]^{2}/2\sigma_{12}^{2}(r,\mu)} \frac{dy}{\sqrt{2\pi\sigma_{12}^{2}(r,\mu)}} \\ \begin{cases} \xi^{r}(r) \\ v_{12}(r)\hat{r} = \frac{\langle [1 + b\delta(\mathbf{x})][1 + b\delta(\mathbf{x} + \mathbf{r})][\mathbf{v}(\mathbf{x} + \mathbf{r}) - \mathbf{v}(\mathbf{x})] \rangle}{\langle [1 + b\delta(\mathbf{x})][1 + b\delta(\mathbf{x} + \mathbf{r})] \rangle} \\ \langle [1 + b\delta(\mathbf{x})][1 + b\delta(\mathbf{x} + \mathbf{r})] \rangle \end{cases} \\ \end{cases}$$
Approximation from SPT or CLPT

(Reid & White 2011; Wang, Reid & White 2013)

Models summary

Model	Type	Parameters	Input	Rel. accuracy
Dispersion	Linear theory + damping	f, σ _v , b	$P_{\delta \delta}(k)$	10% for galaxies
Scoccimarro 2004	Standard approach	f, σ _v , b	$\begin{array}{c} P_{\delta \delta}(k), P_{\delta \theta}(k), \\ P_{\theta \theta}(k) \end{array}$	5-8% for galaxies
Taruya et al. 2010	Standard approach + PT	f, σ _v , b	$\begin{array}{c} P_{\delta \ \delta}(k), P_{\delta \ \theta}(k), \\ P_{\theta \ \theta}(k), C_A(k), C_B(k) \end{array}$	5% for galaxies
Seljak & McDonald 2011	Distribution function + PT	f, σ _v , b	T _{ij,}	?
Reid & White 2011, Wang et al. 2013	Gaussian streaming model + PT	f, b	P _{gg} (k)	Few percent for LRG ? for other galaxies
Kwan, Lewis & Linder 2012	Empirical	f, B, b	Ρ _{δδ,} A(k), (B(k)), C(k)	5% for haloes ? for galaxies
Linder & Samsing 2013	Empirical	f, A(k), B(k), C(k), b	Ρ _{δδ}	Few percent for DM ? for galaxies
Zhang et al. 2013	Standard approach	f, b	$ \begin{array}{c} W^{2}(k) = P_{\theta \ \theta}(k) / \\ P_{\delta \ \theta}(k) \end{array} $?