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o Entropy fluctuations seed an adiabatic mode even on
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M r 5

Sl ¢= L ss (11)
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Ekpyrotic o Example: topological defect formation in a phase
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- transition.
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Models for a Matter Bounce |

Bounce

Brandenberger

Introduction
Motivatior

By modifying the matter sector:

Ove,v“rew o Quintom matter: extra matter field with negative kinetic
Perturbations term in the aCtIOI‘I (Y Ca| et al, 2007)

Ve o Lee-Wick matter: higher derivative matter action with

Bounce

el an extra pole to cancel quadratic loop divergences in

icture Formation

— scattering amplitudes (Y. Cai et al, 2008).

Bounce
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Bounce
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Models for a Matter Bounce Il

Bounce

st By modifying the gravitational action:

ieducton @ Nonsingular Universe construction: Special invariant
added to the Einstein action constructed such that at

: large curvatures all solutions tend to de Sitter (R.B., V.
e Mukhanov and A. Sornborger, 1993).

;j[;ﬁ““"”s o Mirage Cosmology: Dynamics induced by the motion of
Sounce a brane in a non-singular bulk (Kehagias and Kiritsis,
SR 1999).

Sounce. o Horava-Lifshitz gravity: in the presence of spatial

String Gas curvature the extra spatial derivative terms in the

Bounce

gravitational action act as ghost radiation and ghost
anisotropic stress (R.B., 2009).
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Origin of Scale-Invariant Spectrum

Bounce

o The initial vacuum spectrum is blue:

Brandenberger

I:wwtr"c‘)c‘i‘u‘ction Pc(k) = k3’<(k)|2 ~ k2 (12)
o The curvature fluctuations grow on super-Hubble
scales in the contracting phase:
Overview
Perturbations ) 1
e Vi(n) = cim® +con (13)
Soune o For modes which exit the Hubble radius in the matter
Sree phase the resulting spectrum is scale-invariant:
Sounce.
e Pe(kn) ~ Kw(n)l?a2(n) (14)
nH(K) 2 1

~ K vi(nr(K)) P ( )"~ kTR
Conclusions 77

~ const,
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Transfer of the Spectrum through the Bounce

Bounce

Brandenberger

@ In a nonsingular background the fluctuations can be
ieducton tracked through the bounce explicitly (both numerically
in an exact manner and analytically using matching
conditions at times when the equation of state

e changes).

;j;:ﬁba“‘”‘s o Explicit computations have been performed in the case
e of quintom matter (Y. Cai et al, 2008), mirage

SrctrsFomaon cosmology (R.B. et al, 2007), Horava-Lifshitz bounce
Sounce. (X. Gang et al, 2009).

String Gas o Result: On length scales larger than the duration of the

Bounce

bounce the spectrum of v goes through the bounce
unchanged.
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Signature in the Bispectrum: formalism
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Irwtr’odLchiorw < C(t, R‘I )C(ta EZ)C(L ES) > (1 5)

t
=i dt/ < [C(tv k1 )C(t7 kZ)C(t’ k3)7 Lint(t/)] >,

Overview f
Perturbations
gﬂatter P2

< Ck)C(Re)i(ke) > = (2m)73(3 kf)l_[—;?’

Ekpyrotic - = = !

Bounce XA(k1 9 kz’ k3) ’ (1 6)
String Gas

Bounce

- = o o 10 Ak, ko, K3)

- ki ko k) = — 212280 17
Conclusions ’BlNL( 15725 3) 3 Zi kl3 ( )
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Signature in the Bispectrum: Results

Bounce If we project the resulting shape function A onto some
st popular shape masks we get

Introduction

35

o Blocal _ 2 18
777777 Bl 3 (18)

Overview for the local shape (ki <« ko = k3). This is negative and of

Perturbations Ordel’ 0(1 )

N For the equilateral form (k; = ko = k) the result is

S‘I;:I;re Formation 2

e B =~ (19)

String Gas

sounce For the folded form (k; = 2k, = 2ks) one obtains the value

ynature: 9
Conclusions |B|f01ded = —Z . (20)
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Challenges for the Matter Bounce Scenario
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Introduction
Motivatior
Inflatior

M,

o Obtaining a matter bounce in a model free of ghosts
S and other unwanted degrees of freedom.

Matter @ Instability to anisotropic stress.
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o Initial conditions for fluctuations?
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Obtaining a Phase of Ekpyrotic Contraction

Bounce

Introduce a scalar field with negative exponential potential
and AdS minimum:

Brandenberger

Introduction
M tior

— 2172 ¢
V(¢) = —Voexp(—(l_)) m_pl) 0<p<1 (21)

Overview

Motivated by potential between branes in heterotic M-theory
e In the homogeneous and isotropic limit, the cosmology is
Bounce given by

Models

Perturbations

Boonce. a(t) ~ a(t)P (22)
SringiCas and the equation of state is
p 2
w=-—=_—-1 1. 23
Conclusions p 3p >> ( )
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Solution to the flatness problem

Bounce

Brandenberger

Introduction
Motivatior

The energy density in the Ekpyrotic field scales as

M,

Overview p(a) _ pOa_3(1 +W) (24)

Perturbations

Matter and thus dominates all other forms of energy density

Boun - - - - - -

. (including anisotropic stress) as the universe shrinks —

Ek t B quasi-homogeneous bounce, no chaotic mixmaster
pyrotic

Bounce behavior.

String Gas
Bounce

Principles

Conclusions

52/106



Spectrum of Adiabatic Fluctuations

Bounce

W If a(t) ~ t* then conformal time scales as n ~ t'=P.

Introduction The solution of the mode equation for v is

Motivatior

Vk(n) = cin “ + con, (25)

SR where ¢y and ¢, are constant coefficients and o ~ p for
Matter p < 1.

Bounce
Models

Overview

Hence, the power spectrum in not scale invariant:

Ekpyrotic
s Gas Pty = (=20 28y, (k)P
SR v(ty(k))
~ K3kT1k2P ~ K2(-P) (26)

Conclusions
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Spectrum of Entropy Fluctuations |

Bounce

Brandenberger

. Consider a second scalar field x with the same negative
ntroauction . .
exponential potential

Sxk + (K2 +V")oxk = 0. (27)

Overview
Perturbations

fatter - 2
gﬂotltnce 5Xk aF (k2 — t_2)6Xk =0. (28)

Models

Vacuum initial conditions

Ekpyrotic
Bounce

String Gas

1
Bouncf oxk — ﬁelkt as k(—t) — oo (29)
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Spectrum of Entropy Fluctuations |l
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Brandenberger

Solution:

Introduction
Motivatior

Oxk ~ Hy)(—kt) ~ k372 (30)

Overview

in the super-Hubble limit.

Perturbations

Matter
Bounce
Models

Hence

Ekpyrotic
Bounce

Py (k) ~ K3k™3 ~ K, (31)

i.e. a scale-invariant power spectrum.

String Gas
Bounce
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Origin of the Entropy Mode
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Introduction
M tior

@ New Ekpyrotic Scenario (Buchbinder, Khoury and

Ovrut (2007); Creminelli and Senatore (2007); Lehners
e et al (2007)) Assume a second scalar field x with the
same Ekpyrotic potential.

Perturbations

Matter

Soune o Extra metric degrees of freedom which arise when the
e Ekpyrotic scenario is considered in terms of its 5-d
Renea” M-theoretic origin (T. Battefeld, RB and S. Patil (2005)).
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Principles

Bounce
SRRl |dea: make use of the new symmetries and new degrees of
freedom which string theory provides to construct a new
theory of the very early universe.
Assumption: Matter is a gas of fundamental strings

Introduction
Motivatior

Overview Assumption: Space is compact, e.g. a torus.

Perturbations Key pOIntS

Bounce o New degrees of freedom: string oscillatory modes
i Formaton o Leads to a maximal temperature for a gas of strings,
Ekpyrotic the Hagedorn temperature

String Gas o New degrees of freedom: string winding modes
Bounce

Pinclen o Leads to a new symmetry: physics at large R is

equivalent to physics at small R

Conclusions
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T-Duality
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Introduction T-Duallty

Motivatior
Inflatior

@ Momentum modes: E, = n/R

M,

Overview o Winding modes: E;, = mR

SR o Duality: R — 1/R (n,m) — (m,n)

g;;ﬁ?ée o Mass spectrum of string states unchanged

maten o Symmetry of vertex operators

Boonce o Symmetry at non-perturbative level — existence of
Sl D-branes

Bounce
Principles
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Adiabatic Considerations
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Dynamics |l
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Introduction We will thus consider the following background dynamics for

M tior

the scale factor a(t):
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The transition from the Hagedorn phase to the radiation
Overvien phase of standard cosmology is given by the unwinding of
Perturbations Wlndlng mOdeS:

i 4
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ieduston © momentum modes prevent contraction
: 0 — Vei(R) has a minimum at a finite value of
R. — Rmin
verview . . .
@ in heterotic string theory there are enhanced symmetry

Perturbations

. states containing both momentum and winding which
Bounce are maSSIeSS at Rmin
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Moduli Stabilization in SGC

Bounce Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

Brandenberger

@ winding modes prevent expansion
ieduston © momentum modes prevent contraction
0 — Ve(R) has a minimum at a finite value of
R, — Rmin
@ in heterotic string theory there are enhanced symmetry
states containing both momentum and winding which

Overview
Perturbations

Matter

Sounce are massless at Ryn
_‘ o — Veff(Rmin) =0
Sounce. o — size moduli stabilized in Einstein gravity background

String Gas Shape Moduli [E. Cheung, S. Watson and R.B., 2005]

Bounce

Principles

@ enhanced symmetry states
@ — harmonic oscillator potential for 6
@ — shape moduli stabilized
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Dilaton stabilization in SGC
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Introduction
Motivatior
Inflatior

o The only remaining modulus is the dilaton

M,

over‘;“ew o Make use of gaugino condensation to give the dilaton a
Perturbations potential with a uniqgue minimum

e o — diltaton is stabilized

e o Dilaton stabilization is consistent with size stabilization
Ekpyrotic [R. Danos, A. Frey and R.B., 2008]
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N.B. Perturbations originate as thermal string gas
fluctuations.
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Method
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Introduction
Motivatior
Inflatior

o Calculate matter correlation functions in the Hagedorn
phase (neglecting the metric fluctuations)

M,

Overview

Perturbations o For fixed k, convert the matter fluctuations to metric
vater fluctuations at Hubble radius crossing t = fj(k)
e o Evolve the metric fluctuations for t > t;(k) using the
Ekpyrotic usual theory of cosmological perturbations
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Extracting the Metric Fluctuations

Bounce

Brandenberger

. Ansatz for the metric including cosmological perturbations
e and gravitational waves:

e ds? = &(n)((1 +20)dn? — [(1 — 20)5; + hyldx’dx!) . (32)
Matter

e Inserting into the perturbed Einstein equations yields

Models

e (|O(K)|?) = 1672GPk4(5T (k)5 T%(K)),  (33)

Bounce

String Gas

e (k)P = 16m*GPh 40T (K)IT)(K)) . (34)
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Overview <5p > — ﬁcv (35)
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Power Spectrum of Cosmological Perturbations

Bounce

Brandenberger

Introduction

Key ingredient: For thermal fluctuations:

2 T2
(6p%) = ﬁCV- (39)
e, Key ingredient: For string thermodynamics in a compact
Bounce Space

Models

Overview

Perturbations

Ekpyrotic

Bounce CV ~ 2 (36)
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Introduction

Po(k) = 8G?k~' < |6p(k)]? >

Overview = 8G2k2 < (5M)2 >R

Perturbations = 8G2k_4 < ((Sp)2 >R

Matter T 1

Bounce — 862 —_—— 37
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Bounce Key features:

String Gas

Sounce @ scale-invariant like for inflation

S o slight red tilt like for inflation
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Comments

Bounce

Brandenberger

o Evolution for t > tj(k): ® ~ const since the equation of
state parameter 1 + w stays the same order of
magnitude unlike in inflationary cosmology.

@ Squeezing of the fluctuation modes takes place on
super-Hubble scales like in inflationary cosmology —

Overview
Perturbations

Matter

Bounce acoustic oscillations in the CMB angular power
spectrum

B o In a dilaton gravity background the dilaton fluctuations
String Gas dominate — different spectrum [R.B. et al, 2006;

Bounce

Kaloper, Kofman, Linde and Mukhanov, 2006]
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Message 7-
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Spectrum of Gravitational Waves
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| — 16m°Gk* < |Ty(R)P >

.
Overview ~ 167° 626—3(1 — T/Th) (38)
Perturbations S
S Key ingredient for string thermodynamics

_ 2
gg%lcoetm < \TU(R)| > ~ W(.l — T/TH) (39)

String Gas
Bounce Key features:

o scale-invariant (like for inflation)
@ slight blue tilt (unlike for inflation)
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Introduction

o 1. static Hagedorn phase (including static dilaton) —

Inflatior

e new physics required.

Overview o 2. Cy(R) ~ R? obtained from a thermal gas of strings
Feubaens provided there are winding modes which dominate.

Matter g . . .

Bounce o 3. Cosmological fluctuations in the IR are described by
i — Einstein gravity.
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Introduction

o 1. static Hagedorn phase (including static dilaton) —
: new physics required.

Qi o 2. Cy(R) ~ R? obtained from a thermal gas of strings
Ferlubatons provided there are winding modes which dominate.

Matter

Bounce o 3. Cosmological fluctuations in the IR are described by
Einstein gravity.

= Note: Specific higher derivative toy model: T. Biswas, R.B.,

String Gas A. Mazumdar and W. Siegel, 2006

Bounce
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Network of cosmic superstrings
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Introduction
Motivatior

@ Remnant of the Hagedorn phase: network of cosmic
" superstrings

Ovenview o This string network will be present at all times and will
SR achieve a scaling solution like cosmic strings forming
Bouncs during a phase transition.

Sep— o Scaling Solution: The network of strings looks

Sl statistically the same at all times when scaled to the

Bounce

Hubble radius.
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Bounce
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Kaiser-Stebbins Effect

Bounce

Sl Space perpendicular to a string is conical with deficit angle

Introduction

Vo a = 8rGu, (40)
: Photons passing by the string undergo a relative Doppler

Overview Shlft

Perturbations

Matter oT

i?ﬁilice T = 87‘(")/( V) VG,UJ 5 (41 )

Ekpyrotc — network of line discontinuities in CMB anisotropy maps

;ZQII?CS - N.B. characteristic scale: comoving Hubble radius at the

rinciples

time of recombination — need good angular resolution to
detect these edges.

Structure
CMB Signatures
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Gaussian temperature map

R 100 x 10° map of the sky at 1.5’ resolution (South Pole
Brandenberger Telescope SpecificationS)
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Cosmic string temperature map

Bounce 10° x 10° map of the sky at 1.5 resolution
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Q Mode Polarization Sky Map

Bounce Gu = 3 x 1077, string signal multiplied by 102, “noise" is
st due to the (dominant) Gaussian fluctuations.
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CANNY edge detection algorithm

Qo

Qo

Qo
Qo

New technique: use CANNY edge detection algorithm
[Canny, 1986]

Idea: find edges across which the gradient is in the
correct range to correspond to a Kaiser-Stebbins signal
from a string

Step 1: generate "Gaussian" and "Gaussian plus
strings" CMB anisotropy maps: size and angular
resolution of the maps are free parameters, flat sky
approximation, cosmic string toy model in which a fixed
number of straight string segments is laid down at
random in each Hubble volume in each Hubble time
step between tc and t.

Step 2: run the CANNY algorithm on the temperature
maps to produce edge maps.

Step 3: Generate histogram of edge lengths
Step 4: Use Fisher combined probability test.
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Introdiction sub-Hubble scales which exit the Hubble radius in the

matter-dominated contracting phase develop into a

scale-invariant spectrum of curvature fluctuations on

Brandenberger

Ovenview super-Hubble scales in the expanding phase.

b o Note: The evolution of fluctuations breaks the time
Bounce symmetry which the background satisfies (R.B., 2009).
o Note: Distinctive shape and amplitude of the

B bispectrum.

g s o Ekpyrotic bounce scenario: Quantum vacuum

Bounce perturbations on sub-Hubble scales in the contracting

phase lead to a scale-invariant spectrum of entropy
fluctuations which in turn can induce a scale-invariant
spectrum of curvature perturbations.
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Introduction characterized by a long-lived loitering Hagedorn phase.

o Thermal fluctuations in the Hagedorn phase have
holographic scaling of thermodynamic correlation

Overview

functions.

Perturbations . . . .
— o Scale invariant spectrum of cosmological fluctuations
Sounes (like in inflationary cosmology).
Ekpylm o Spectrum of gravitational waves has a small blue tilt
Bounce (unlike in inflationary cosmology).
Eir o Possibly distinctive signatures from cosmic superstrings
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Analysis including both string matter and
dilaton potential |

Worry: adding this potential will mess up radion stablilization
Thus: consider dilaton and radion equations resulting from

the action including both the dilaton potential and string gas

matter.

Step 1: convert the string gas matter contributions to the

10-d Einstein frame

e /2gp, (60)
e?/*bg (61)
TS, . (62)
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B Step 4: Stability analysis
Matter
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o Consider small fluctuations about the extremum

ot o show stability (tedious but straightforward)
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